elektro.info

Polskie rozwiązanie w technologii SiC - nowy napęd i system zasilania »

Polskie rozwiązanie w technologii SiC - nowy napęd i system zasilania » Polskie rozwiązanie w technologii SiC - nowy napęd i system zasilania »

Zobacz przegląd zasilaczy UPS »

Zobacz przegląd zasilaczy UPS » Zobacz przegląd zasilaczy UPS »

news Zapraszamy na bezpłatny webinar elektro.info!

Zapraszamy na bezpłatny webinar elektro.info! Zapraszamy na bezpłatny webinar elektro.info!

Zapraszamy serdecznie na pierwszy, bezpłatny webinar organizowany przez „elektro.info”! Tematem webinaru będzie elektromobilność: „Czy w roku 2025 pojazdy z napędem elektrycznym będą masowo wykorzystywane...

Zapraszamy serdecznie na pierwszy, bezpłatny webinar organizowany przez „elektro.info”! Tematem webinaru będzie elektromobilność: „Czy w roku 2025 pojazdy z napędem elektrycznym będą masowo wykorzystywane w Polsce? Prognozy i ocena szans rozwoju elektromobilności”. Spotkanie poprowadzi dr hab. inż. Paweł Piotrowski, profesor Politechniki Warszawskiej.

Zasady projektowania sterowań instalacji do odprowadzania dymu i ciepła

Nagromadzenie dymu i ciepła w budynku, w którym brakuje instalacji oddymiającej

Nagromadzenie dymu i ciepła w budynku, w którym brakuje instalacji oddymiającej

Głównym zagrożeniem w czasie pożaru, przyczyniającym się do większości wypadków śmiertelnych, jest zadymienie. W skład dymu wchodzą produkty spalania, gazy pożarowe i tlenek węgla. Bardzo niebezpieczna jest też ich wysoka temperatura, która stwarza dodatkowe zagrożenie, np. poprzez rozgorzenie. Silne zadymienie utrudnia sprawne przeprowadzenie ewakuacji oraz walkę z pożarem, dlatego przepisy z zakresu ochrony przeciwpożarowej w niektórych przypadkach nakładają obowiązek stosowania specjalnych instalacji do odprowadzania dymu i ciepła z budynków.

Zobacz także

Zagrożenie pożarem i eksplozją beziskiernikowych ograniczników przepięć (część 1.)

Zagrożenie pożarem i eksplozją beziskiernikowych ograniczników przepięć (część 1.) Zagrożenie pożarem i eksplozją beziskiernikowych ograniczników przepięć (część 1.)

Ograniczniki przepięć podczas ich normalnego działania w sieciach elektroenergetycznych średnich i wysokich napięć nie stwarzają zagrożeń dla sąsiadujących z nimi obiektów czy personelu. Ich stosowanie...

Ograniczniki przepięć podczas ich normalnego działania w sieciach elektroenergetycznych średnich i wysokich napięć nie stwarzają zagrożeń dla sąsiadujących z nimi obiektów czy personelu. Ich stosowanie przyczynia się wręcz do eliminacji awarii innych aparatów w wyniku uszkodzeń ich izolacji i związanych z tym zagrożeń. Poprawnie skonstruowane ograniczniki przepięć, dobrane do lokalnych warunków sieciowych i zainstalowane, wykonane z zastosowaniem właściwej technologii, są przez kilkadziesiąt...

Wymagania dla instalacji elektrycznych funkcjonujących w czasie pożaru

Wymagania dla instalacji elektrycznych funkcjonujących w czasie pożaru Wymagania dla instalacji elektrycznych funkcjonujących w czasie pożaru

W budynkach oprócz instalacji zasilających obwody użytkowe występują często instalacje odpowiedzialne ze bezpieczeństwo pożarowe. W większości przypadków odpowiadają za wczesne wykrycie, alarmowanie i...

W budynkach oprócz instalacji zasilających obwody użytkowe występują często instalacje odpowiedzialne ze bezpieczeństwo pożarowe. W większości przypadków odpowiadają za wczesne wykrycie, alarmowanie i rozgłaszanie sygnałów i komunikatów ewakuacyjnych, a także zasilanie i sterowanie urządzeń przeciwpożarowych.

Zasilanie elektryczne urządzeń energetyki funkcjonujących w czasie pożaru

Zasilanie elektryczne urządzeń energetyki funkcjonujących w czasie pożaru Zasilanie elektryczne urządzeń energetyki funkcjonujących w czasie pożaru

Rozbudowa systemu elektroenergetycznego, jaka ma obecnie miejsce, jest związana z wprowadzaniem coraz nowocześniejszych technologii wytwarzania i przesyłu energii elektrycznej. Podyktowane jest to potrzebami...

Rozbudowa systemu elektroenergetycznego, jaka ma obecnie miejsce, jest związana z wprowadzaniem coraz nowocześniejszych technologii wytwarzania i przesyłu energii elektrycznej. Podyktowane jest to potrzebami rynku energetycznego, wymagającego dużej dyspozycyjności i niezawodności zasilania elektrycznego. Rozwiązania wprowadzane w obiektach energetyki muszą być niezawodne, a przy tym bardzo bezpieczne.

Zgodnie z Rozporządzeniem Ministra Spraw Wewnętrznych i Administracji z 21 kwietnia 2006 r. w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów, rozdział 4, § 11, ust. 1, „Z każdego miejsca przeznaczonego na pobyt ludzi w obiekcie powinny być zapewnione odpowiednie warunki ewakuacji, zapewniające możliwość szybkiego i bezpiecznego opuszczenia strefy zagrożonej lub objętej pożarem, dostosowane do liczby i stanu sprawności osób przebywających w obiekcie oraz jego funkcji, konstrukcji i wymiarów, a także zastosowane techniczne środki zabezpieczenia przeciwpożarowego, polegające m.in. na: (…) pkt 4, zabezpieczeniu przed zadymieniem wymienionych w przepisach techniczno- budowlanych dróg ewakuacyjnych, w tym: na stosowaniu urządzeń zapobiegających zadymieniu lub urządzeń i innych rozwiązań technicznobudowlanych zapewniających usuwanie dymu”. Z kolei w § 12, ust. 1, stwierdza się, że: „Podstawą do uznania użytkowanego budynku istniejącego za zagrażający życiu ludzi jest niezapewnienie przez występujące w nim warunki techniczne możliwości ewakuacji ludzi, w szczególności w wyniku: (…) pkt 5, niezabezpieczenia przed zadymieniem dróg ewakuacyjnych wymienionych w przepisach techniczno-budowlanych, w określony tam sposób”. Przepisy budowlane nakazują, aby w szczególności urządzenia zapobiegające zadymieniu lub samoczynne urządzenia oddymiające uruchamiane za pomocą systemu wykrywania dymu były stosowane:

  • na klatkach schodowych i przedsionkach przeciwpożarowych, stanowiących drogę ewakuacyjną w budynku wysokim (W) dla strefy pożarowej ZL II oraz w budynku wysokościowym (WW) dla stref pożarowych innych niż ZL IV,
  • klatkach schodowych i przedsionkach przeciwpożarowych, stanowiących drogę ewakuacyjną w budynku wysokim (W) dla strefy pożarowej ZL I, ZL III, ZL V lub PM oraz w budynku wysokościowym (WW) dla strefy pożarowej ZLIV,
  • szybach windowych dźwigów dla ekip ratowniczych,
  • klatkach schodowych obudowanych i zamykanych drzwiami w budynkach:
    1) niskim (N), zawierającym strefę pożarową ZL II,
    2) średniowysokim (SW), zawierającym strefę pożarową ZL I, ZL II, ZL III lub ZLV,
    3) niskim (N) i średniowysokim (SW), zawierającym strefę pożarową PM o gęstości obciążenia ogniowego powyżej 500 MJ/m2 lub pomieszczenie zagrożone wybuchem.

Ponadto odpowiednie wydzielenie klatek schodowych i ich zamknięcie drzwiami o odporności ogniowej co najmniej EI 30 oraz wyposażenie w urządzenia zapobiegające zadymieniu lub służące do usuwania dymu, o których będzie mowa w dalszej części artykułu, umożliwia traktowanie wyjścia do klatki schodowej jako równorzędnego wyjścia do sąsiedniej strefy pożarowej. Dzięki temu możliwe jest zwiększenie długości dojść ewakuacyjnych (długość dojścia ewakuacyjnego mierzy się od wyjścia z pomieszczenia na tę drogę do wyjścia do innej strefy pożarowej, na zewnątrz budynku lub do odpowiednio wydzielonej i oddymianej klatki schodowej), których długość w przypadku stref pożarowych zaliczonych do ZLI, II i IV wynosi 10 m (przy jednym dojściu) lub 40 m (przy co najmniej dwu dojściach). Oddymianie polega na wytworzeniu odpowiedniej różnicy ciśnień. Można je uzyskać wykorzystując instalacje grawitacyjne oraz instalacje mechaniczne.

Zadania urządzeń i instalacji oddymiających

Urządzenia i instalacje oddymiające powinny:

  • zapewnić w chronionym pomieszczeniu wystarczającą widoczność,
  • obniżyć stężenie toksycznych gazów pożarowych,
  • utrzymać odpowiedni poziom tlenu,
  • usunąć ciepło powstające w czasie pożaru.

Proces oddymiania z reguły powinien przebiegać w dwóch etapach:

  • etap I – utrzymanie dostępności do pomieszczeń w celu ewakuacji ludzi, dlatego instalacja powinna zostać uruchomiona w jak najkrótszym czasie, zaraz po powstaniu pożaru,
  • etap II – powstrzymanie rozprzestrzeniania się dymu poza przestrzeń objętą pożarem.

Rozróżniamy dwa podstawowe sposoby oddymiania: grawitacyjne i mechaniczne.

Instalacje oddymiania grawitacyjnego

W przypadku powstania pożaru w zamkniętym pomieszczeniu lub budynku bardzo szybko gromadzą się dym i gazy pożarowe wypełniając je najpierw w górnej części, a potem stopniowo obniżając się ku dołowi. Gazy pożarowe posiadają stosunkowo wysoką temperaturę, sięgającą nawet 1000°C, mogącą przyczynić się do naruszenia konstrukcji budynku. Jeżeli w budynku występuje instalacja oddymiająca, w odpowiednim czasie po wykryciu pierwszych oznak pożaru (dymu lub ciepła) następuje jej zadziałanie. Polega ono na otwarciu specjalnych klap lub okien oddymiających i tym samym odprowadzeniu nagromadzonych gazów i ciepła na zewnątrz.

Instalacje grawitacyjne są stosowane do odprowadzania gazów pożarowych z klatek schodowych budynków oraz oddymiania dużych powierzchni produkcyjnych i magazynowych. W przypadku oddymiania klatek schodowych jego skuteczność jest dostateczna, jeżeli budynki posiadają powyżej 5 kondygnacji (im wyższy komin, tym silniejsze zasysanie). Otwarciu klapy na stropie lub okna na najwyższej kondygnacji powinno towarzyszyć otwarcie odpowiednich otworów napowietrzających w dolnej części budynku.

Zasada działania systemu oddymiania

W momencie wykrycia produktów spalania przez czujki dymu (lub przyrostu temperatury przez czujki temperatury – tylko tam, gdzie stosowanie czujek dymu jest niedopuszczalne), następuje ich pobudzenie. Sygnał alarmu dociera do centrali oddymiania, a następnie za pośrednictwem siłowników centrala steruje otwarciem okien lub klap oddymiających oraz napowietrzających. Jednocześnie sygnał przekazywany jest do centrali sygnalizacji pożarowej budynku (o ile taka jest w budynku). Uruchomienie systemu może też nastąpić poprzez wciśnięcie ręcznego przycisku oddymiania. Otwarcie klap jest sygnalizowane optycznie i akustycznie, zazwyczaj w przyciskach alarmowych oddymiania lub za pomocą sygnalizatorów optyczno-akustycznych. Tego typu systemy posiadają też możliwość otwarcia klap w celu przewietrzenia pomieszczeń, służą temu specjalne przyciski przewietrzające, które umożliwiają ręczne otwarcie i zamknięcie klap i okien oddymiających. Dodatkowo w celu zabezpieczenia zarówno samej instalacji, jak i elementów budynku oraz materiałów w nim zgromadzonych, stosuje się specjalne moduły pogodowe, które zapewniają automatyczne zamknięcie otworów przy silnym wietrze lub deszczu.

System oddymiania powinien współpracować z sygnalizacją pożarową. W takim przypadku wymagana jest możliwość uruchomienia centrali oddymiania przez centralę sygnalizacji pożarowej, jednocześnie zwrotnie powinna zostać przekazana informacja potwierdzająca uruchomienie siłowników, a także przekazanie alarmu uszkodzeniowego. W tym celu do przekaźników alarmu pożarowego oraz alarmu uszkodzeniowego systemu oddymiania należy podłączyć obwody wejściowe CSP (np. liniowe moduły wejściowe). Z kolei do elementu wykonawczego CSP należy podłączyć wejście uruchamiające system oddymiania oraz zastosować rozwiązanie umożliwiające nadzorowanie wszystkich sterowań i połączeń.

Ze względu na występujące spadki napięcia na przewodach łączących sterownik centrali z siłownikiem (zasilany jest on napięciem 24 V DC, średni pobór prądu od 0,3 do ok. 2 A) są stosowane rozwiązania, w których centrala oddymiania znajduje się w bezpośredniej bliskości siłownika. Z tego wynika konieczność zapewnienia jej odpowiedniej odporności na wysoką temperaturę.

Elementy instalacji oddymiającej

Centrala oddymiająca – służy do sterowania urządzeniami oddymiającymi, pracującymi na zasadzie termicznego ciągu wznoszącego. Centrala może być kompaktowa lub modułowa, wówczas znajdują się w niej specjalne miejsca do podłączenia odpowiednich modułów, do których podłącza się z kolei urządzenia wykrywające produkty spalania montowane w liniach dozorowych (najczęściej do central można podłączyć kilka linii z czujkami) oraz elementy peryferyjne (napędy, czujniki pogodowe dodatkowe przyciski, itp.). Centrale oddymiania mogą też służyć do przewietrzania chronionych pomieszczeń, należy jednak pamiętać, że funkcja alarmowa jest w tym przypadku funkcją nadrzędną, dlatego też stosuje się wymóg nadzorowania linii czujek i linii wykonawczych oraz sygnalizowania optycznie i akustycznie ewentualnych zakłóceń. Centrala steruje otwieraniem otworów oddymiających za pośrednictwem specjalnych siłowników. W zależności od sposobu zgrupowania możliwe jest wysterowanie kilku grup siłowników (najczęściej 1 - 5 grup).

Wymagania techniczne dla instalacji oddymiania:

  • powinny być zasilane z dwóch niezależnych źródeł zasilania, sieciowego (podstawowego) i akumulatorowego (rezerwowego),
  • każde źródło powinno być tak dobrane, aby mogło uruchomić komplet wszystkich napędów zainstalowanych w linii,
  • źródło zasilania awaryjnego powinno zapewnić pracę systemu przez min. 72 godziny w stanie alarmu, a po upływie tego czasu umożliwić jeszcze zadziałanie siłowników.
  • funkcja oddymiania powinna zawsze mieć pierwszeństwo oraz zostać odpowiednio sygnalizowana,
  • wszystkie funkcje związane z bezpieczeństwem powinny być nadzorowane – w szczególności: sieć zasilająca, stan akumulatorów, napędy, urządzenia detekcyjne i wyzwalające.
  • sygnalizacja zakłóceń powinna być uwidoczniona,
  • do zasilania siłowników powinno się stosować przewody umożliwiające ich pracę w warunkach pożaru (powinny być stosowane przewody bezhalogenowe typu X-flame lub przewody zapewniające ciągłość dostawy energii elektrycznej przez min. 30 min).

Czujki dymowe – są najbardziej rozpowszechnionym sygnalizatorem zadymienia, z reguły w instalacjach oddymiania stosowane są optyczne punktowe czujki dymu działające na zasadzie światła rozproszonego.

Czujki temperatury (nadmiaroworóżnicowe) – działają po przekroczeniu określonej temperatury w chronionym pomieszczeniu oraz w przypadku jej nadmiernego przyrostu w czasie, są mniej popularne i stosuje się je tylko tam, gdzie czujki dymu mogłyby powodować fałszywe alarmy.

Przyciski alarmowe oddymiania – stosuje się je w celu ręcznego uruchomienia systemu w czasie pożaru. Uruchomienie następuje w przypadku zbicia szybki i wciśnięcia przycisku lub tylko zbicia specjalnej „bezpiecznej” szybki. Rozróżnia się przy tym przyciski:

  • typu OTWIERANIE – ZAMYKANIE – wyposażone we wskaźniki alarmowe i kontrolne, niekiedy też w optyczny wskaźnik zakłóceń, otwarcia oraz sygnalizację akustyczną otwarcia; wykonywane są one w zależności od rodzaju w wersji nad- lub podtynkowej oraz w obudowie odpornej na warunki atmosferyczne; podłączany do centrali za pomocą dwużyłowych przewodów,
  • typu OTWIERANIE – wyposażone we wskaźnik kontrolny i alarmowy, podłączany do centrali za pomocą dwużyłowych przewodów,
  • typu OTWIERANIE (jw.) – radiowy.

Miejsca instalowania przycisków do ręcznego uruchamiania klap dymowych na klatkach schodowych należy przewidywać przy wejściu do budynku i na najwyższej kondygnacji oraz na co trzeciej kondygnacji, a w szybach dźwigów na najniższej i najwyższej kondygnacji nadziemnej.

Napęd (siłownik) – element wykonawczy otwierający klapę dymową, uruchamiany centralą lub sterownikiem oddymiania i odprowadzania ciepła lub wyzwalaczem. Napędy służą do otwierania klap i okien oddymiających, rozróżniamy przy tym napędy łańcuchowe i zębatkowe (rys. 6.).

Napędy łańcuchowe (siłowniki łańcuchowe) stosowane są do większości okien fasadowych, okien w połaci dachowej oraz klap przewietrzających. Wyposażone są w wyłączniki krańcowe, regulację siły zamykania i otwierania, możliwość dobrania odpowiedniej długości łańcucha czy siłownika o różnych siłach ściskających. Dzięki zastosowaniu różnych konsol mocujących, siłowniki mają duże możliwości zastosowań.

Napędy zębatkowe znajdują zastosowanie przy otwieraniu klap oddymiających, okien fasadowych, świetlików, szklanych konstrukcji dachowych, piramidek oraz okien połaciowych. Konstrukcja tych siłowników zapewnia dużą stabilność podczas pracy, można je też stosować w ekstremalnych warunkach. Posiadają wyłączniki krańcowe położenia oraz wyłączniki bezpieczeństwa w przypadku przeciążenia, możliwy jest dobór indywidualnej długości zębatki. Wbudowany w każdy napęd elektroniczny regulator pozwala na ich zsynchronizowaną pracę w zespole oraz równomierne rozłożenie ciężaru i bezpieczne otwieranie i zamykanie.

Czujniki pogodowe służą do analizy warunków pogodowych panujących na zewnątrz chronionego pomieszczenia. W przypadku wystąpienia opadów deszczu i/lub silnego wiatru powodują one podanie odpowiedniego sygnału do centralki oddymiania i zamknięcie lub niedopuszczenie do otwarcia klap czy okien. Mają one głównie zastosowanie w systemach przewietrzania i oddymiania z funkcją przewietrzania. W przypadku powstania sygnału alarmu pożarowego zostają odłączone i wówczas możliwe jest zadziałanie siłowników niezależnie od warunków pogodowych. Posiadają również możliwość zapamiętywania sygnałów deszczowych i siły wiatru oraz ogrzewanej powierzchni czujnika.

Wymagane powierzchnie oddymiania i napowietrzania

W przypadku instalacji grawitacyjnych do odprowadzania dymu i ciepła wymaganą powierzchnię oddymiania wyznacza się zgodnie z PN-B-02877-4:2001/Az1:2006 Ochrona przeciwpożarowa budynków. Instalacje grawitacyjne do odprowadzania dymu i ciepła. Jednak norma ta określa wymaganą powierzchnię oddymiania jedynie w przypadku, kiedy klapy montowane są w stropie lub dachu budynku. W przypadku, kiedy do odprowadzania dymu i ciepła stosowane są okna w elewacji budynku, wymaganą powierzchnię wyznacza się na podstawie PN-EN12101-2:2006 Systemy usuwania dymu i ciepła. Wymagania dla klap do naturalnego usuwania dymu i ciepła. Zgodnie z tą normą, uzyskanie wymaganej powierzchni oddymiania uzależnione jest od wielkości okna i skoku siłownika. W przypadku okien posiadających wyniki badań powierzchni czynnej, należy przy wyznaczaniu wymaganej powierzchni wykorzystać uzyskane wyniki, w przeciwnym razie powierzchnię czynną można wyznaczyć zgodnie z zasadami wiedzy technicznej. W pierwszej kolejności należy określić wartość współczynnika cv zależnego od kąta otwarcia okna i kierunku jego otwarcia, wartość współczynnika cv mieści się w granicach od 0,25 (dla kąta 30°) do 0,5 (dla kąta 90°) dla okien otwieranych na zewnątrz, oraz odpowiednio od 0,2 do 0,4, następnie:

– ustala się powierzchnię geometryczną otworu okiennego P:

gdzie:

H – wysokość otworu w świetle,

B – szerokość otworu w świetle,

– ustala się powierzchnię czynną Pcz:

Instalacja zapobiegająca zadymieniu – nadciśnieniowa

Instalacje nadciśnieniowe mają zastosowanie przy oddymianiu oraz niedopuszczaniu do zadymienia na klatkach schodowych i drogach ewakuacyjnych. Ich działanie polega na wytworzeniu regulowanego nadciśnienia, które nie dopuszcza do wtargnięcia dymu na drogi ucieczki. Specjalny układ elektroniczny kontroluje za pośrednictwem dwóch niezależnych linii oddymiania i grup napędów oraz specjalnych wyłączników nadciśnieniowych cały proces oddymiania i przyrostu ciśnienia. Odpowiednie wysterowanie zainstalowanych w obszarze klap oddymiających i napowietrzających powoduje również skuteczne oddymianie chronionego obszaru.Przykładowy schemat układu instalacji nadciśnieniowego oddymiania został przedstawiony na rys. 13.

Przy projektowaniu instalacji nadciśnieniowych przyjmuje się, że nadciśnienie w klatce schodowej będzie wynosić od 20 do 80 Pa, a prędkość przepływającego powietrza w klatce schodowej będzie nie większa niż 5 m/s. Powietrze powinno napływać do klatki schodowej w sposób równomierny, tzn. wlot powietrza powinien zapewniać jego rozpływ w dolnej części klatki schodowej i przemieszczanie się w górę całym jej przekrojem. Otwór wlotowy świeżego powietrza najlepiej spełnia swoją funkcję, kiedy umieszczony jest możliwie nisko, nie niżej jednak niż 0,5 m nad podłogą. Nawiew musi dostarczać wymaganą ilość świeżego powietrza z zewnątrz. Zastosowany układ stopniowania ciśnień pozwala na ukierunkowanie przepływu świeżego powietrza.

Instalacje zamknięć przeciwpożarowych

Zamknięcia ogniowe mają na celu niedopuszczenie do rozprzestrzeniania się pożaru i zadymienia. W zależności od klasy odporności pożarowej budynku drzwi przeciwpożarowe lub inne zamknięcia powinny spełniać kryteria szczelności „E” i izolacyjności „I” ogniowej, zgodnie z tab. 1.

Instalacja zamknięć przeciwpożarowych składa się z czujki pożarowej umieszczonej w nadzorowanym pomieszczeniu, przy czym powierzchnia nadzorowana bezpośrednio przed drzwiami pożarowymi wynosi ok. 100 m2. Jej zadeklarowany w systemie zmienny próg alarmowania umożliwia reagowanie na cząsteczki dymu przy jego ok. 3 % gęstości. Drzwi pożarowe zamykają się automatycznie w momencie otrzymania przez centralkę impulsu z czujki pożarowej. Zamknięcie drzwi następuje w wyniku zwolnienia elektromagnetycznych chwytaków drzwiowych. W przypadku drzwi dwuskrzydłowych w celu zapewnienia odpowiedniej kolejności zamykania się drzwi stosuje się specjalne mechaniczne lub elektroniczne regulatory kolejności zamykania. Na rys. 17. zostały przedstawione orientacyjne wymiary i odległości mocowania elementów omawianej instalacji oraz ogólne zasady wbudowywania i projektowania elementów systemu zamknięć przeciwpożarowych.

Kable w systemach sterowania oddymianiem

Rozporządzenie Ministra Infrastruktury z 2002 r. określa w rozdziale 8., dotyczącym wymagań dla instalacji elektrycznych (§ 187, pkt 3 i 4), minimalne czasy zapewnienia ciągłości dostawy energii elektrycznej w warunkach pożaru dla linii kablowych i urządzeń przeciwpożarowych. Zgodnie z ust. 4, kable i przewody zasilające i sterujące urządzeniami klap dymowych, w tym także oddymiania grawitacyjnego, zgodnie z EN12101 powinny zapewnić ciągłość dostawy energii przez 30 min.Proponowane zmiany tego rozporządzenia przewidują zrezygnowanie z zapisu (ust. 3) dotyczącego określenia minimalnego czasu działania urządzenia wynoszącego 90 min na rzecz „wymaganego czasu działania urządzenia przeciwpożarowego”. Według oznaczeń określonych przez CEN, kryteriami według których przeprowadza się ocenę odporności ogniowej, są:

  • nośność oznaczana jako „R” – jest to zdolność elementu próbnego nośnego elementu konstrukcji do utrzymania obciążenia badawczego bez przekraczania określonych kryteriów pod względem wielkości i prędkości przemieszczenia,
  • szczelność dymowa oznaczana jako „E” – jest to zdolność elementu próbnego oddzielającego element konstrukcji budowlanej do zapobieżenia przejściu płomieni i gorących gazów oraz pojawienia się płomieni na powierzchni nie nagrzewanej,
  • izolacyjność ogniowa oznaczana jako „I” – jest to zdolność elementu próbnego oddzielającego element konstrukcji budowlanej, poddanego oddziaływaniu ognia z jednej strony, do ograniczenia przyrostu temperatury nie nagrzewanej powierzchni poniżej określonych poziomów.

Dodatkowymi kryteriami użytkowymi są:

  • przepuszczalność promieniowania „W” – jeżeli o izolacyjności decyduje promieniowanie cieplne,
  • odporność na działanie mechaniczne „M” – w przypadku, kiedy o odporności materiału decyduje oddziaływanie mechaniczne,
  • samozamykalność „C” – kryterium dotyczy drzwi zaopatrzonych w samozamykacze,
  • ograniczenie rozprzestrzeniania się dymu „S” – dla elementów, które powinny zapewniać ograniczenie rozprzestrzeniania się dymu,
  • ciągłość dostawy energii:
    – pH – ciągłości dostawy energii przez k able o średnicy do 2,5 mm,
    – H – ciągłości dostawy energii przez kable o średnicy przewodów równej lub większej niż 2,5 mm.

Zgodnie z wymaganiami zawartymi w przepisach, poszczególne odcinki kabli i przewodów w instalacjach sterowania oddymianiem i zapobiegania zadymieniu powinny spełniać kryteria przedstawione w tab. 2. Kable i osprzęt użyty do wykonania instalacji powinien prawidłowo funkcjonować w przedziałach czasu 30, 60 i 90 min, co odpowiada kryterium zachowania funkcji zespołu kablowego (kabel + osprzęt) E30, E60 i E90 [1] lub PH15, PH30, PH60, PH90 – według PN-EN 50200 [2].

Literatura

  1. DIN 4102-12 Zachowanie się materiałów i elementów budowlanych pod wpływem ognia. Podtrzymywanie funkcji urządzeń w czasie pożaru. Wymagania i badania.
  2. PN-EN 50200 Metoda badania palności cienkich przewodów i kabli bez ochrony specjalnej stosowanych w obwodach zabezpieczających.
  3. Materiały udostępnione przez firmę NIEDAX KLEINHUIS POLSKA Sp. z o.o.
  4. PN-B-02851-1:1997 Ochrona przeciwpożarowa budynków. Badania odporności ogniowej elementów budynku. Wymagania ogólne i klasyfikacja.
  5. M. Profit-Szczepańska, Wybrane problemy palności kabli elektrycznych, „Ochrona Przeciwpożarowa” nr 1/2003.
  6. Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75, poz. 690).
  7. J. Sawicki, Zagadnienia związane ze sterowaniem pożarowych instalacji oddymiania i odprowadzania ciepła, konferencja SAP, wrzesień 2004.
  8. Materiały do projektowania instalacji oddymiających firmy D+H Mechatronic GmbH.

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Zasady oświetlenia miejsc pracy na zewnątrz

Zasady oświetlenia miejsc pracy na zewnątrz Zasady oświetlenia miejsc pracy na zewnątrz

W artykule opisano kryteria projektowania oświetlenia miejsc pracy na zewnątrz, podano też przykłady wymagań oświetleniowych oraz procedurę weryfikacji projektu oświetlenia. Ujęto również zalecenia wynikające...

W artykule opisano kryteria projektowania oświetlenia miejsc pracy na zewnątrz, podano też przykłady wymagań oświetleniowych oraz procedurę weryfikacji projektu oświetlenia. Ujęto również zalecenia wynikające z dobrej praktyki oświetlania. Dodatkowo podano parametry oświetlenia miejsc pracy na zewnątrz z uwzględnieniem czynników bezpieczeństwa i ochrony. Na końcu umieszczono słownik z kluczowymi pojęciami. Podstawowym źródłem opracowania jest EN 12464-2:2007 Lighting of work places. Part 2: Outdoor...

Kurs praktycznego wykorzystania programu ATP - EMTP (część 4.)

Kurs praktycznego wykorzystania programu ATP - EMTP (część 4.) Kurs praktycznego wykorzystania programu ATP - EMTP (część 4.)

W czwartej części kursu zostaną szczegółowo scharakteryzowane transformatory i autotransformatory. W obliczeniach przeprowadzanych za pomocą pakietu ATP wykorzystywane są wyniki prób stanu jałowego i zwarcia...

W czwartej części kursu zostaną szczegółowo scharakteryzowane transformatory i autotransformatory. W obliczeniach przeprowadzanych za pomocą pakietu ATP wykorzystywane są wyniki prób stanu jałowego i zwarcia powszechnie dostępne na tabliczkach znamionowych i w katalogach.

Kurs praktycznego wykorzystania programu ATP EMTP (część 3.)

Kurs praktycznego wykorzystania programu ATP EMTP (część 3.) Kurs praktycznego wykorzystania programu ATP EMTP (część 3.)

W trzeciej części kursu zostaną scharakteryzowane linie przesyłowe (napowietrzne i kablowe). W obliczeniach przeprowadzanych za pomocą pakietu ATP wykorzystywane są typowe, powszechnie dostępne w katalogach...

W trzeciej części kursu zostaną scharakteryzowane linie przesyłowe (napowietrzne i kablowe). W obliczeniach przeprowadzanych za pomocą pakietu ATP wykorzystywane są typowe, powszechnie dostępne w katalogach parametry. Wszystkie inne niezbędne parametry, takie jak m.in. reaktancje podłużne i susceptancje poprzeczne, są automatycznie przeliczane przez ATP i nie ma konieczności przeprowadzania dodatkowych obliczeń.

Kurs praktycznego wykorzystania programu ATP - EMTP (część 2.)

Kurs praktycznego wykorzystania programu ATP - EMTP (część 2.) Kurs praktycznego wykorzystania programu ATP - EMTP (część 2.)

Układy trójfazowe prądu sinusoidalnie zmiennego są powszechnie stosowane w elektroenergetyce. W rękach sprawnego inżyniera możliwość przeprowadzania prostych, szybkich i bezbłędnych obliczeń może być bardzo...

Układy trójfazowe prądu sinusoidalnie zmiennego są powszechnie stosowane w elektroenergetyce. W rękach sprawnego inżyniera możliwość przeprowadzania prostych, szybkich i bezbłędnych obliczeń może być bardzo często przydatna w pracy zawodowej. Pakiet ATP może być nieocenionym źródłem pomocy. W drugiej części kursu poprawność wykonywanych obliczeń zostanie zweryfikowana analitycznie, na przykładzie prostego układu trójfazowego.

Kurs praktycznego wykorzystania programu ATP - EMTP (część 1.)

Kurs praktycznego wykorzystania programu ATP - EMTP (część 1.) Kurs praktycznego wykorzystania programu ATP - EMTP (część 1.)

Pakiet ATP to oprogramowanie służące do analizy obwodów w dziedzinie czasu. Poprawność obliczeń wykonywanych przez program była już wielokrotnie weryfikowana w praktyce i to z dobrymi efektami. ATP to...

Pakiet ATP to oprogramowanie służące do analizy obwodów w dziedzinie czasu. Poprawność obliczeń wykonywanych przez program była już wielokrotnie weryfikowana w praktyce i to z dobrymi efektami. ATP to pakiet programów o ogromnych możliwościach. W rękach sprawnego inżyniera będzie stanowił nieocenione narzędzie pracy.

Statystyki pożarów budynków

Statystyki pożarów budynków Statystyki pożarów budynków

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów,...

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów, występowania urządzeń przeciwpożarowych, czasu przybycia i sprawności działania jednostek ochrony przeciwpożarowej.

Przeciwpożarowy wyłącznik prądu i zagrożenia stwarzane przez wyłącznik epo zasilaczy ups oraz ich neutralizacja

Przeciwpożarowy wyłącznik prądu i zagrożenia stwarzane przez wyłącznik epo zasilaczy ups oraz ich neutralizacja Przeciwpożarowy wyłącznik prądu i zagrożenia stwarzane przez wyłącznik epo zasilaczy ups oraz ich neutralizacja

Problematyka przeciwpożarowego wyłącznika prądu była wielokrotnie opisywana w literaturze. Mimo to w dalszym ciągu spotykamy się z wątpliwościami w zakresie projektowania i wykonywania tego urządzenia....

Problematyka przeciwpożarowego wyłącznika prądu była wielokrotnie opisywana w literaturze. Mimo to w dalszym ciągu spotykamy się z wątpliwościami w zakresie projektowania i wykonywania tego urządzenia. Szczególnym problemem jest kwestia związana z przeciwpożarowym wyłącznikiem prądu dla zasilaczy UPS. Niniejszy artykuł stanowi próbę przybliżenia tego zagadnienia.

Ochrona przed pożarem z wykorzystaniem wyłączników różnicowoprądowych i urządzeń do detekcji zwarć łukowych

Ochrona przed pożarem z wykorzystaniem wyłączników różnicowoprądowych i urządzeń do detekcji zwarć łukowych Ochrona przed pożarem z wykorzystaniem wyłączników różnicowoprądowych i urządzeń do detekcji zwarć łukowych

Jeżeli na drodze prądu upływowego znajdują się elementy o charakterze rezystancyjnym i są palne, to prąd ten może nagrzać je do wysokiej temperatury i wywołać pożar. Zapalić może się pył przewodzący, zwęglona...

Jeżeli na drodze prądu upływowego znajdują się elementy o charakterze rezystancyjnym i są palne, to prąd ten może nagrzać je do wysokiej temperatury i wywołać pożar. Zapalić może się pył przewodzący, zwęglona izolacja lub materiały stykające się z gorącym elementem, przez który przepływa prąd upływowy [2, 5, 6]. Pożar może również powstać w wyniku zwarcia doziemnego łukowego lub iskrzenia w obwodzie, w którym pogorszyło się połączenie przewodu bądź doszło do jego zmiażdżenia.

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.) Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi

Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi

Pożary budynków to zjawisko w dużym stopniu losowe. Wzrost liczby budynków na terenie Polski, wzrost liczby niefachowo wykonanych instalacji elektrycznych, wzrost niskiej jakości elementów zastosowanych...

Pożary budynków to zjawisko w dużym stopniu losowe. Wzrost liczby budynków na terenie Polski, wzrost liczby niefachowo wykonanych instalacji elektrycznych, wzrost niskiej jakości elementów zastosowanych do ich wykonania oraz malejąca jakość urządzeń elektrycznych mogą być potencjalną przyczyną wzrostu liczby pożarów budynków. Nowym, potencjalnym źródłem pożarów są również instalowane coraz bardziej masowo na dachach budynków systemy fotowoltaiczne oraz punkty ładowania pojazdów elektrycznych wewnątrz...

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 2.)

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 2.) Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 2.)

W drugiej części artykułu zostanie zwrócona uwaga na zagrożenia stwarzane przez baterie akumulatorów oraz konieczność badania ich stanu technicznego, o czym powszechnie zapomina się podczas eksploatacji....

W drugiej części artykułu zostanie zwrócona uwaga na zagrożenia stwarzane przez baterie akumulatorów oraz konieczność badania ich stanu technicznego, o czym powszechnie zapomina się podczas eksploatacji. W praktyce stosowanie zasilaczy UZS lub zasilaczy UPS w układzie sterowania PWP może być stosowane w sporadycznych, technicznie uzasadnionych przypadkach.

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.)

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.) Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.)

Od wielu lat obserwujemy ożywioną dyskusję dotyczącą rozwiązań technicznych przeciwpożarowych wyłączników prądu, w której to dyskusji ścierają się różne poglądy środowiska zawodowego pożarników oraz środowiska...

Od wielu lat obserwujemy ożywioną dyskusję dotyczącą rozwiązań technicznych przeciwpożarowych wyłączników prądu, w której to dyskusji ścierają się różne poglądy środowiska zawodowego pożarników oraz środowiska zawodowego elektryków. Wiele ­zamieszania w tym zakresie wprowadziło Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 roku, w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym. Mimo upływu dwóch...

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru

Przy projektowaniu układów zasilania budynków pojawia się szereg wątpliwości wynikających z oczekiwanego poziomu niezawodności dostaw energii elektrycznej. Brak wytycznych w tym zakresie często prowadzi...

Przy projektowaniu układów zasilania budynków pojawia się szereg wątpliwości wynikających z oczekiwanego poziomu niezawodności dostaw energii elektrycznej. Brak wytycznych w tym zakresie często prowadzi do błędnego rozumienia tego problemu przez inwestora oraz projektanta. Natomiast wymagania dotyczące ochrony ppoż. wymagają przystosowania budynku eksploatowanego w warunkach normalnych do zasilania pożarowego, gdzie warunki środowiskowe znacznie różnią się od warunków normalnych. W tym przypadku...

Zachowanie się przewodów i kabli elektrycznych w wysokich temperaturach (część 2.)

Zachowanie się przewodów i kabli elektrycznych w wysokich temperaturach (część 2.) Zachowanie się przewodów i kabli elektrycznych w wysokich temperaturach (część 2.)

Zachowanie się kabli i przewodów elektrycznych podczas pożarów określa się na podstawie badań różnych właściwości materiałów, z których zostały wyprodukowane. Podstawowym parametrem określającym zachowanie...

Zachowanie się kabli i przewodów elektrycznych podczas pożarów określa się na podstawie badań różnych właściwości materiałów, z których zostały wyprodukowane. Podstawowym parametrem określającym zachowanie się oprzewodowania podczas pożaru jest palność przewodów i kabli – czy są „samogasnące”, czy podtrzymują palenie itp. Kolejne kryteria określają ilość wydzielanego dymu podczas pożaru oraz zawartość w tym dymie substancji szkodliwych i korozyjnych. Bardzo istotną cechą wyznaczaną podczas badań...

Dystrybucja energii elektrycznej w systemach kontroli rozprzestrzeniania dymu i ciepła

Dystrybucja energii elektrycznej w systemach kontroli rozprzestrzeniania dymu i ciepła Dystrybucja energii elektrycznej w systemach kontroli rozprzestrzeniania dymu i ciepła

W trakcie konsultacji prowadzonych z projektantami oraz wykonawcami systemów wentylacji pożarowej pojawiają się wątpliwości oraz pytania dotyczące interpretacji zapisów normy PN-EN 12101-10:2007 Systemy...

W trakcie konsultacji prowadzonych z projektantami oraz wykonawcami systemów wentylacji pożarowej pojawiają się wątpliwości oraz pytania dotyczące interpretacji zapisów normy PN-EN 12101-10:2007 Systemy kontroli rozprzestrzeniania się dymu i ciepła. Część 10: Zasilanie [1]. Zalecane przez tę normę układy zasilania nie spełniają wymogów reguły niezawodnościowej n+1. W artykule zostanie wyjaśniony problem oraz metodyka jego rozwiązania spełniająca regułę n+1, która w odniesieniu do zasilania urządzeń...

Urządzenia i instalacje elektryczne a pożar (część 1.)

Urządzenia i instalacje elektryczne a pożar (część 1.) Urządzenia i instalacje elektryczne a pożar (część 1.)

Integralną częścią każdego budynku jest instalacja elektryczna, zapewniająca jego prawidłową i bezpieczną eksploatację. Każdy dom, biuro, zakład pracy posiada kilkanaście, czy nawet kilkaset odbiorników...

Integralną częścią każdego budynku jest instalacja elektryczna, zapewniająca jego prawidłową i bezpieczną eksploatację. Każdy dom, biuro, zakład pracy posiada kilkanaście, czy nawet kilkaset odbiorników energii elektrycznej. Projektując i montując instalacje oraz produkując urządzenia elektryczne, należy robić to w taki sposób, aby w całym okresie ich użytkowania spełniały wymagania określone w normach i przepisach, gwarantując wyznaczony komfort życia mieszkańców.

Certyfikacja źródeł zasilania stosowanych w ochronie przeciwpożarowej

Certyfikacja źródeł zasilania stosowanych w ochronie przeciwpożarowej Certyfikacja źródeł zasilania stosowanych w ochronie przeciwpożarowej

Tematyka związana z certyfikacją może przysporzyć nam wiele trudności, jeżeli nie poznamy podstawowych zasad, z jakich wynika obowiązek uzyskania odpowiednich dokumentów dla konkretnych produktów, urządzeń,...

Tematyka związana z certyfikacją może przysporzyć nam wiele trudności, jeżeli nie poznamy podstawowych zasad, z jakich wynika obowiązek uzyskania odpowiednich dokumentów dla konkretnych produktów, urządzeń, zestawów itp. Do określenia wymaganych dokumentów niezbędna jest jednoznaczna identyfikacja przedmiotu i określenia jego funkcji, jaką realizuje w środowisku, w którym współdziała. W zakresie określenia przedmiotu dość istotne znaczenie mają definicje, gdyż to z nich wynika identyfikacja przedmiotu....

Statystyki pożarów budynków, których przyczyną była niesprawna instalacja elektryczna lub przyłączone do niej urządzenia elektryczne

Statystyki pożarów budynków, których przyczyną była niesprawna instalacja elektryczna lub przyłączone do niej urządzenia elektryczne Statystyki pożarów budynków, których przyczyną była niesprawna instalacja  elektryczna lub przyłączone do niej urządzenia elektryczne

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów,...

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów, występowania urządzeń przeciwpożarowych, czasu przybycia i sprawności działania jednostek ochrony przeciwpożarowej.

Szybkość rozwoju pożaru i spodziewana moc pożaru

Szybkość rozwoju pożaru i spodziewana moc pożaru Szybkość rozwoju pożaru i spodziewana moc pożaru

Parametrem pozwalającym opisać zagrożenie pożarowe jest szybkość rozprzestrzeniania się pożaru wyrażona przez szybkość wydzielania się ciepła i dymu w czasie. Dla pożarów rzeczywistych szybkość ich rozwoju...

Parametrem pozwalającym opisać zagrożenie pożarowe jest szybkość rozprzestrzeniania się pożaru wyrażona przez szybkość wydzielania się ciepła i dymu w czasie. Dla pożarów rzeczywistych szybkość ich rozwoju może w istotny sposób odbiegać od warunków przyjmowanych za wzorcowe. Parametr szybkości rozwoju pożaru jest powszechnie stosowanym prawie we wszystkich krajach wysoko rozwiniętych [16].

Podstawy teorii pożaru

Podstawy teorii pożaru Podstawy teorii pożaru

Do powstania pożaru potrzebne są trzy czynniki: materiał palny, utleniacz oraz źródło ciepła o dostatecznie dużej energii umożliwiającej zapłon materiału palnego. Materiały palne są to substancje, które...

Do powstania pożaru potrzebne są trzy czynniki: materiał palny, utleniacz oraz źródło ciepła o dostatecznie dużej energii umożliwiającej zapłon materiału palnego. Materiały palne są to substancje, które ogrzane ciepłem dostarczonym z zewnątrz zaczynają wydzielać gazy w ilości wystarczającej do ich trwałego zapalenia się. Tlen z kolei jest jednym z najaktywniejszych pierwiastków chemicznych. Wchodzi w reakcję z wieloma pierwiastkami i związkami.

Zasady wprowadzania do obrotu i stosowania urządzeń przeciwpożarowych

Zasady wprowadzania do obrotu i stosowania urządzeń przeciwpożarowych Zasady wprowadzania do obrotu i stosowania urządzeń przeciwpożarowych

Elementy instalacji oraz innych urządzeń przeciwpożarowych muszą spełniać wymagania wysokiej niezawodności i gwarantować wspomaganie akcji ratowniczo gaśniczej w płonącym budynku. Zatem wymagania stawiane...

Elementy instalacji oraz innych urządzeń przeciwpożarowych muszą spełniać wymagania wysokiej niezawodności i gwarantować wspomaganie akcji ratowniczo gaśniczej w płonącym budynku. Zatem wymagania stawiane tym wyrobom budowlanym są bardzo wysokie i niejednokrotnie przewyższają wymagania stawiane wyrobom powszechnego użytku.

Co z certyfikacją zestawu tworzącego przeciwpożarowy wyłącznik prądu?

Co z certyfikacją zestawu tworzącego przeciwpożarowy wyłącznik prądu? Co z certyfikacją zestawu tworzącego przeciwpożarowy wyłącznik prądu?

Na zaproszenie zastępcy Komendanta Głównego Państwowej Straty Pożarnej st. bryg. Tadeusza Jopka, 6 lipca 2018 roku w Biurze Rozpoznawania Zagrożeń KG PSP odbyło się spotkanie poświęcone problematyce przeciwpożarowego...

Na zaproszenie zastępcy Komendanta Głównego Państwowej Straty Pożarnej st. bryg. Tadeusza Jopka, 6 lipca 2018 roku w Biurze Rozpoznawania Zagrożeń KG PSP odbyło się spotkanie poświęcone problematyce przeciwpożarowego wyłącznika prądu (PWP), który został zakwalifikowany przez Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 roku w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (DzU z 2016 roku, poz....

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Statystyka pożarów w Polsce w latach 2000–2017

Statystyka pożarów w Polsce w latach 2000–2017 Statystyka pożarów w Polsce w latach 2000–2017

O tym jak ważna jest ochrona przeciwpożarowa i bezpieczeństwo pożarowe świadczą statystyki pożarów. Przedstawiając dane statystyczne autor zwraca uwagę na problem właściwej eksploatacji i projektowania...

O tym jak ważna jest ochrona przeciwpożarowa i bezpieczeństwo pożarowe świadczą statystyki pożarów. Przedstawiając dane statystyczne autor zwraca uwagę na problem właściwej eksploatacji i projektowania instalacji elektrycznych aby uniknąć takich zdarzeń.

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.