elektro.info

Wieloszczelinowe rdzenie blokowe transformatorów i dławików dla potrzeb elektroenergetyki

Fot. Impregnacja uzwojeń transformatora 50 kVA dla częstotliwości 2,5 kHz z rdzeniem NMSC (dane własne)
Fot. Cezary Świeboda

Fot. Impregnacja uzwojeń transformatora 50 kVA dla częstotliwości 2,5 kHz z rdzeniem NMSC (dane własne)


Fot. Cezary Świeboda

Transformatory i dławiki należą do podstawowych urządzeń
elektrycznych przeznaczonych do przetwarzania energii elektrycznej, a za
ich zasadniczy parametr użytkowy coraz częściej uznaje się po prostu ich
efektywność. Stąd też konstrukcja urządzeń zmienia się ustawicznie i to
nie tylko wskutek nowych zasad projektowania, ale także sposobu doboru
materiałów elektrotechnicznych, w tym technologii uzwajania oraz doboru
ferromagnetyków z przeznaczeniem na rdzenie magnetyczne [1, 2].

Zobacz także

Podstawowe wiadomości o napowietrznej sieci dystrybucyjnej energetyki zawodowej

Podstawowe wiadomości o napowietrznej sieci dystrybucyjnej energetyki zawodowej Podstawowe wiadomości o napowietrznej sieci dystrybucyjnej energetyki zawodowej

Cel artykułu stanowi przybliżenie funkcjonariuszom Straży Pożarnej, a zwłaszcza dowódcom akcji ratowniczo-gaśniczych, cech charakterystycznych napowietrznych linii wysokiego, średniego i niskiego napięcia....

Cel artykułu stanowi przybliżenie funkcjonariuszom Straży Pożarnej, a zwłaszcza dowódcom akcji ratowniczo-gaśniczych, cech charakterystycznych napowietrznych linii wysokiego, średniego i niskiego napięcia. W artykule nie przedstawiono wszystkich rozwiązań technicznych w zakresie budownictwa sieciowego, które są stosowane w sieci dystrybucyjnej na terenie naszego kraju, tylko podstawowe.

Modele niezawodnościowe linii napowietrznych SN z przewodami gołymi

Modele niezawodnościowe linii napowietrznych SN z przewodami gołymi Modele niezawodnościowe linii napowietrznych SN z przewodami gołymi

Artykuł stanowi analizę awaryjności linii napowietrznych SN z przewodami gołymi, eksploatowanych w krajowych sieciach dystrybucyjnych. Wyznaczono w nim modele niezawodnościowe czasu trwania odnowy, czasu...

Artykuł stanowi analizę awaryjności linii napowietrznych SN z przewodami gołymi, eksploatowanych w krajowych sieciach dystrybucyjnych. Wyznaczono w nim modele niezawodnościowe czasu trwania odnowy, czasu trwania wyłączeń awaryjnych, czasu przerw w zasilaniu, a także wartości energii elektrycznej niedostarczonej do odbiorców. Przeprowadzono w nim też analizę sezonowości oraz przyczyn awarii linii. Autor przeprowadził obszerne badania niezawodnościowe na podstawie danych pochodzących z terenu dużej...

Spadki napięć oraz straty mocy w linii średniego napięcia z generacją rozproszoną

Spadki napięć oraz straty mocy w linii średniego napięcia z generacją rozproszoną Spadki napięć oraz straty mocy w linii średniego napięcia z generacją rozproszoną

W artykule przedstawiono korzyści wynikające z podłączania generacji rozproszonej pod kątem strat mocy i poziomów napięć w sieciach średnich napięć. Wykazano, jaki wpływ na poziom strat mocy ma wybór punktu...

W artykule przedstawiono korzyści wynikające z podłączania generacji rozproszonej pod kątem strat mocy i poziomów napięć w sieciach średnich napięć. Wykazano, jaki wpływ na poziom strat mocy ma wybór punktu podłączenia generatora, a także jego moc. Do obliczeń wykorzystano parametry istniejących rzeczywistych linii średniego napięcia. Wykazano, że w przypadku nieodpowiedniego doboru mocy generatora straty mocy w linii mogą wzrosnąć.

W przypadku obwodów magnetycznych pracujących w podwyższonych częstotliwościach, tj. dla potrzeb szeroko rozumianej energoelektroniki – coraz częściej wykorzystuje się w tych urządzeniach (przykładowo [2–6]) – rdzenie z taśm nanokrystalicznych [7]. Jest to następstwem upowszechnienia rozwoju inżynierii materiałów magnetycznych związanych z nanokrystalizacją stopu FeSi w matrycy amorficznej [7–11].

b wieloszczelinowe rdzenie rys01

Rys. 1. Struktura nanokrystaliczna z objętościowym udziałem faz (dane literaturowe, za [10]): gdzie: 1 – obszary o dużej koncentracji miedzi (warunkujące rozrost ziaren), 2 – komórki elementarne nanoziaren roztworu stałego FeSi (ok. 70–80% materiału), 3 – matryca amorficzna (szkło metaliczne) na bazie Fe (objętościowo ok. 20–30% materiału); rys. Cezary Świebioda

Taśmy nanokrystaliczne produkuje się dwuetapowo: poprzez gwałtowne schładzanie stopu amorficznego FeCuNbSiB uzyskuje się szkło metaliczne, którego podstawowym składnikiem jest żelazo, a następnie poprzez obróbkę w polu termicznym i niekiedy magnetycznym tak wytworzonego szkła metalicznego, uzyskuje się materiał o strukturze nanokrystalicznej (rys. 1.).

Podczas wspomnianej obróbki zachodzi kontrolowany proces krystalizacji drobnokrystalicznej – stwarzający dodatkowo możliwości wytwarzania – wskutek zjawiska anizotropii indukowanej – materiałów o różnych własnościach magnetycznych.

Taśmy nanokrystaliczne – na bazie Fe w przeciwieństwie do amorficznych – charakteryzują się małą magnetostrykcją (cechą zmiany wymiarów geometrycznych pod wpływem zewnętrznego pola magnetycznego). Wynika to z faktu, że stała magnetostrykcji l fazy ferromagnetycznej nanokrystalicznej a – FeSi (obszar 2 na rys. 1.) wynosi λa-FeSi ≈ –9·10–6, podczas gdy dla fazy amorficznej Fe (obszar 3 na rys. 1.) λam ≈ +21·10–6.

Łatwo zatem obliczyć – korzystając z superpozycji, że przy udziale objętościowym ok. 80–70% fazy nanokrystalicznej i 20–30% fazy amorficznej (rys. 1.) – wypadkowa wartość magnetostrykcji wynosić może nawet zero.

Ze względu na oddziaływania pomiędzy fazami nanokrystaliczną i amorficzną oraz obecność Cu w stopie – za katalogową magnetostrykcję taśm nanokrystalicznych przyjmuje się wartość λ = +0,5·10-6, co czyni ten materiał bardzo odpowiednim w bezszumowych urządzeniach pracujących w podwyższonych częstotliwościach.

b wieloszczelinowe rdzenie rys02

Rys. 2. Poziomy stratności magnetycznych taśmy elektrotechnicznej oraz rdzeni z różnych materiałów magnetycznych dla B =0,1 T oraz częstotliwości f = 10 kHz (dane literaturowe na podstawie katalogów i badań własnych, za [6]) gdzie: 0,1 taśma GO – taśma elektrotechniczna zorientowana o grubości 100 mm (dane katalogowe), 0,1 rdzeń JNEX – rdzeń pakietowany z taśmy 6,5%SiFe o grubości 100 mm [16], 0,02 rdzeń AMCC1000 – rdzeń zwijany owalny cięty z taśmy amorficznej Fe o grubości 20 mm [17], rdzeń NMSC – rdzeń pakietowany z taśmy nanokrystalicznej Fe o grubości ok. 33 mm [18], rdzeń FINEMET F3CC0125 – rdzeń zwijany owalny cięty z taśmy nanokrystalicznej Fe o grubości ok. 20 mm; rys. Cezary Świeboda

Przedstawione omówienie uzasadnia w pełni propozycję szerszego upowszechnienia taśm nanokrystalicznych – nie tylko w postaci rdzeni zwijanych, ale także pakietowanych, w tym rdzeni wieloszczelinowych w dławikach układów przekształtnikowych. Odpowiednia obróbka wyjściowego szkła metalicznego, warunkuje bowiem pożądany poziom jego krystalizacji (rys. 1.), a to pozwala z kolei na modelowanie własności magnetycznych wytwarzanych w ten sposób taśm nanokrystalicznych [7, 9–11]: z niezwykle małym natężeniem koercji, nawet Hc < 1 A/m oraz bardzo dużą początkową względną przenikalnością magnetyczną mi dochodzącą do 300 000 (dotyczy rdzeni toroidalnych i po obróbce w odpowiednio ukierunkowanym polu magnetycznym [12]).

Bliższe dane dotyczące własności materiałów oraz cechy niektórych typów rdzeni produkowanych z taśm nanokrystalicznych znaleźć można w katalogach licznych ich producentów, przykładowo [13–15]. Zauważa się przy tym najniższe straty w tych materiałach, co jest szczególnie przydatne w warunkach podwyższonych częstotliwości (rys. 2.).

Do budowy rdzeni wieloszczelinowych wykorzystywane są głównie stale elektrotechniczne SiFe [3], w tym w przypadku podwyższonych częstotliwości do ok. 5 kHz stale o zawartości krzemu 6,5%SiFe [16].

Taśmy na rdzenie JNEX (rys. 2.) mają niewielką magnetostrykcję oraz charakteryzują się użytkowymi grubościami do 200 mm i z tego też względu rdzenie wykonane z tych materiałów mają relatywnie wysoki poziom stratności magnetycznej.

Lepszą przydatność w podwyższonych częstotliwościach wykazują rdzenie typu AMCC z taśm amorficznych, a także nanokrystaliczne (dostępne jednakże w masach do ok. 2 kg) F3CC0125 – szeroko stosowane w postaci rdzeni zwijanych i ciętych (rys. 3b) dla zakresów częstotliwości do minimum kilkunastu kHz.

Materiał amorficzny wykazuje jednak negatywną cechę użytkową przy pracy w podwyższonych częstotliwościach, w postaci wysokiego poziomu generowanego hałasu oraz zmiany wymiarów. Te właściwości fizyczne ograniczają szersze ich wykorzystanie do budowy rdzeni wieloszczelinowych nawet w warunkach sieciowych.

b wieloszczelinowe rdzenie rys03

Rys. 3. Podstawowe typy rdzeni zwijanych i zwijanych ciętych (dane katalogowe): a) toroidalny, b) zwijany cięty o oknie prostokątnym, c) zwijany cięty wieloszczelinowy typu C, d) zwijany cięty wieloszczelinowy typu I; rys. Cezary Świebioda

Najniższym poziomem stratności magnetycznej w podwyższonych częstotliwościach charakteryzuje się materiał nanokrystaliczny. Jednakże produkowane na dużą skalę rdzenie toroidalne (rys. 3a) oraz cięte (toroidalne lub owalne) nie są spotykane w dużych rozmiarach i masach, a to z uwagi na ograniczenia wynikające z powszechnie stosowanej obróbki termicznej materiału w atmosferze ochronnej wodoru.

b wieloszczelinowe rdzenie rys04a

Rys. 4a i rys. 4b. Rdzenie pakietowane z taśmy nanokrystalicznej (dane własne): a) przykład realizacji pojedynczego rdzenia pakietowanego naprzemiennie o masie ok. 6 kg [22], b) zestaw czterech rdzeni z przeznaczeniem na transformator (fot.) przekształtnikowy 50 kVA; rys. Cezary Swieboda

Rdzeń NMSC z opisu na rys. 2. (Nanocrystalline Magnetic Stacked Core) jest rdzeniem pakietowanym (rys. 4.) z taśm nanokrystalicznych i bez ograniczeń co do masy rdzenia (wskutek obróbki z wykorzystaniem procesu rekuperacji – rys. 5c).

Rys. 4a i rys. 4b. Rdzenie pakietowane z taśmy nanokrystalicznej (dane własne): a) przykład realizacji pojedynczego rdzenia pakietowanego naprzemiennie o masie ok. 6 kg [22], b) zestaw czterech rdzeni z przeznaczeniem na transformator (fot.) przekształtnikowy 50 kVA; rys. Cezary Swieboda 

b wieloszczelinowe rdzenie rys05

Rys. 5. Fotografie urządzeń i schemat systemu do obróbek termomagnetycznych do wytwarzania pakietowanych i blokowych rdzeni nanokrystalicznych (dane własne [18]): a) linia cięcia, b) robot pakietujący rdzenie, c) schemat systemu do obróbek termomagnetycznych z rekuperacją; rys. Cezary Świedoda

W przypadku rdzeni NMSC (charakteryzujących się pośrednimi stratnościami – rys. 2.) oraz blokowych NMBC (Nanocrystalline Block Corerys. 6.) uznać można – że pokonana została bariera ograniczonej masy w obróbce termicznej dużego wsadu nanokrystalicznego – co rodzi pozytywne skutki szerszego ich upowszechnienia.

b wieloszczelinowe rdzenie rys06

Rys. 6. Typy wieloszczelinowych rdzeni pakietowanych z taśm nanokrystalicznych ze skupioną szczeliną powietrzną (dane własne): a) rdzeń wieloszczelinowy z kolumną wykonaną z krótkich odcinków taśmy, b) rdzeń wieloszczelinowy z kolumną wykonaną z długich odcinków taśmy, c) rdzeń wieloszczelinowy w wariantach wykonania od 10 do 600 warstw taśmy nanokrystalicznej w wyróżnionej części pakietowanego rdzenia; rys. Cezary Świeboda

Podstawowe typy rdzeni magnetycznych dla potrzeb energoelektroniki

Rdzeń nanokrystaliczny wykonany z taśmy, jako przetworzonej odmiany szkła metalicznego, jest materiałem twardym i wyjątkowo kruchym. Z tego względu proces jego przecinania jest odmienny aniżeli w przypadku zwykłych stali SiFe czy nawet stali amorficznych [19–20].

W klasycznym podziale typów rdzeni magnetycznych, tj. wytwarzanych z taśm elektrotechnicznych SiFe, wyróżnia się rdzenie zwijane (w tym zwijane cięte – rys. 3.) oraz pakietowane (rys. 4.).

Technologię wytwarzania rdzeni toroidalnych zwijanych (rys. 3a) upowszechniono w szeroko dostępny sposób także dla celów produkcji rdzeni nanokrystalicznych owalnych ciętych z oknem prostokątnym (rys. 3b).

Niezależnie od zalet lub wad oraz cech użytkowych rdzeni z rys. 3., zwrócić należy uwagę na fakt, że w rdzeniach zwijanych ciętych wieloszczelinowych typu C lub typu I (rys. 3c i 3d) strumień pola magnetycznego przepływa zawsze w kierunku osi taśmy. Stąd stosunkowo łatwo jest zatem zaindukować – wskutek wspomnianego zjawiska anizotropii – lepsze własności magnetyczne wzdłuż tego kierunku (większą indukcję magnetyczną i mniejszą stratność). Te lepsze własności magnetyczne ulegają jednak degradacji wskutek wielokrotnego rozcinania rdzenia magnetycznego.

Sam proces cięcia wymaga precyzji, tak aby utrzymana została równoległość płaszczyzn przeciętych bloków, a sam rdzeń nie uległ rozwarstwieniu. Jest to zadanie technicznie skomplikowane, ale w przypadku pokonania ograniczeń, poszczególne bloki mogą być wykorzystywane w dowolnej konfiguracji po rozcięciu rdzenia (przykładowo rys. 3c). W przeciwnym przypadku bloki nie są wymienne między sobą z uwagi na brak równoległości płaszczyzn.

Rdzeń typu jak na rys. 3c zwijany jest z taśm amorficznych lub nanokrystalicznych [21], natomiast rdzeń typu jak na rys. 3d zwijany jest ze stali elektrotechnicznej 6,5%SiFe, tj. taśmy o większych grubościach.

Inny rodzaj i typy rdzenia stanowią rdzenie pakietowane. Za klasyczne rozwiązanie rdzenia pakietowanego nanokrystalicznego uznać należy rdzenie pakietowane naprzemian jak na rys. 4a, w tym najkorzystniej z wykorzystaniem robota przemysłowego.

Do wytwarzania rdzeni jak na rys. 4. w sposób ekonomicznie uzasadniony, niezbędnym jest wykorzystanie linii cięcia taśm nanokrystalicznych o sprawności rzędu tysięcy kształtek na godzinę (rys. 5a), robota pakietującego naprzemiennie warstwa po warstwie cztery kształtki jednocześnie i o sprawności produkcyjnej kilku rdzeni dziennie (rys. 5b) oraz systemu z rekuperacją (tj. bez użycia wodoru) do obróbki termomagnetycznej wsadu nanokrystalicznego (rys. 5c).

Zestaw urządzeń jak na rys. 5., wraz z niezbędnym oprzyrządowaniem, umożliwia przygotowanie cienkich prostokątnych kształtek nanokrystalicznych, z których składany jest w sposób automatyczny (rys. 5b) rdzeń pakietowany (przykładowo w postaci jak na rys. 4a).

Dla potrzeb rdzeni z przeznaczeniem dla energoelektroniki, uzasadnionym jest użytkowanie typów rdzeni, którymi są: pakietowane z taśm nanokrystalicznych w pojedynczych warstwach (z wieloma szczelinami tj. z rozproszoną szczeliną powietrzną – rys. 4a) oraz rdzenie blokowe wieloszczelinowe o skupionej szczelinie powietrznej – rys. 6.).

b wieloszczelinowe rdzenie rys07

Rys. 7. Fotografia wieloszczelinowego rdzenia NMBC o masie 5 kg i o wymiarach zewnętrznych 150 mm ´ 80 mm ´ 100 mm i oknie 90 mm ´ 40 mm (dane własne): a) widok ogólny, b) ilustracja obrazująca rozcięcie trzech bloków z jednego spakietowanego bloku nanokrystalicznego; czerwone linie oznaczają płaszczyzny cięcia; rys. Cezary Świeboda

Należy przy tym zauważyć, że pojedynczy blok rdzenia (zarówno jarzma, jak i kolumny) z rys. 6a, w zależności od jego wymiarów, grubości użytej taśmy oraz współczynnika upakowania, może składać się nawet z kilku tysięcy warstw taśmy nanokrystalicznej.

Z tak wykonanych bloków składane są następnie rdzenie z przeznaczeniem na wiele różnorakich obwodów magnetycznych.

Zalecanym jest, aby bloki kolumn wieloszczelinowych rdzeni nanokrystalicznych wykonywane były z możliwie długich odcinków taśmy (jak na rys. 6b), a nie jak w przypadku z rys. 6a – co wynika z mniejszej liczby niezbędnych operacji na linii cięcia oraz łatwości pakietowania.

W obu przypadkach bloki pakietowane (a raczej układane) są wzdłuż fabrycznie gładkiej krawędzi rozcięcia taśmy nanokrystalicznej, które z kolei charakteryzują się aktualnie szerokością do 80 mm – tak, aby te gładkie krawędzie tworzyły powierzchnie aktywnego styku obwodu magnetycznego bez konieczności szlifowania (z sąsiednim blokiem lub jarzmem – jak na rys. 7.).

Jakość krawędzi taśmy po ucięciu kształtki (rys. 6b) nie odgrywa większej roli, a nawet polepsza proces klejenia i usztywniania bloku. Przedstawione rozwiązanie oznacza, że przepływ strumienia magnetycznego w kolumnach (rys. 6b i rys. 7.) następuje w poprzek osi taśmy nanokrystalicznej, a więc w kierunku najgorszych własności magnetycznych – ale w warunkach dużej liniowości krzywej magnesowania (rys. 8a) – co dodatkowo ułatwia produkcję dławików. Niedogodność tę można – tam, gdzie jest to oczekiwane – skorygować poprzez obróbkę rdzeni magnetycznych w obecności pola magnetycznego, ale bliższe omówienie tego zagadnienia przekracza zakres pracy.

b wieloszczelinowe rdzenie rys08a

Rys. 8a. Własności magnetyczne przy f = 50 Hz rdzeni NMSC z rozproszoną szczeliną powietrzną (jak na rys. 4a) oraz NMBC (jak na rysunku 7.) ze skupioną szczeliną powietrzną (dane własne): indukcja magnetyczna Fot. Cezary Świeboda

Wyróżnić należy również rdzenie wieloszczelinowe pakietowane ze skupioną szczeliną powietrzną, tj. taką jak to przedstawiono na rys. 6c.

Ten typ rdzenia nie wymaga klasycznego pakietowania jak w przypadku rdzenia pakietowanego z rozproszoną szczeliną powietrzną przedstawionego na rys. 4a.

W przypadku rdzenia jak na rys. 6c wystarczającym jest składanie wzdłuż krawędzi rozcięcia taśmy od kilkunastu do kilkuset kształtek i utworzenie jednakowo ułożonej pojedynczej części takiego rdzenia.

Zmiana liczby warstw w obrębie jednej takiej części wpływa na wielkość skupionej szczeliny powietrznej w całym obwodzie magnetycznym, a tym samym umożliwia zmianę oraz dobór jego własności magnetycznych zgodnie z wymaganiami aplikacyjnymi.

Także i w tym przypadku zauważa się pozytywny wpływ obróbki termicznej w obecności pola magnetycznego na parametry użytkowe wyrobu końcowego [5].

Ocena własności magnetycznych nanokrystalicznych rdzeni blokowych oraz ich wykorzystanie

Prezentowane w pracy wyniki pomiarów własności magnetycznych rdzeni zrealizowane zostały z wykorzystaniem systemu pomiarowego pracującego w zgodzie z obowiązującą normą dotyczącą pomiarów własności [23]. System pomiarowy zaimplementowany został w środowisku National Instruments LabVIEW. Wykorzystano wielokanałową przemysłową kartę akwizycji danych NI PCI-6110 z jednoczesnym wyzwalaniem.

W dalszej części pracy przedstawiono wyniki badań wybranych parametrów magnetycznych rdzeni wieloszczelinowych prezentowanych na rys. 7. i wykonywanych z taśm nanokrystalicznych zgodnie ze schematem jak na rys. 6b.

Dodatkową, bardzo ważną zaletą rozwiązania technicznego jak na rys. 7. jest możliwość wykonywania długich bloków (np. o długości ok. 250 mm – jak na rys. 7b) i rozcięcie ich na bloki kolumn o długościach odpowiadających wymiarom rdzenia magnetycznego.

b wieloszczelinowe rdzenie rys08

Rys. 8. Własności magnetyczne przy f = 50 Hz rdzeni NMSC z rozproszoną szczeliną powietrzną (jak na rys. 4a) oraz NMBC (jak na rys. 7.) ze skupioną szczeliną powietrzną (dane własne): a) indukcja magnetyczna, b) stratność magnetyczna; rys. Cezary Świeboda

Takie rozwiązanie, tzn. rozcięcie długiego bloku na kilka mniejszych, ma bardzo niewielki wpływ na pogorszenie własności wyrobu końcowego, a to z uwagi na to, że powierzchnie cięte nie są powierzchniami styku z kolejnymi blokami, a występują ponadto na skraju obwodu magnetycznego.

Rozcinanie prowadzone jest tak, aby ograniczyć negatywny wpływ rozpływu prądów wirowych w układzie międzywarstwowym. Ten sposób wytwarzania wieloszczelinowych rdzeni blokowych z materiałów nanokrystalicznych uznać należy za zaakceptowaną formę wyrobu, w pełni odpowiednią do jeszcze szerszego upowszechnienia.

W związku z przedstawionymi rozważaniami dotyczącymi kierunku i sposobu pakietowania, na rys. 8. przedstawiono wyniki pomiarów magnetycznych krzywej magnesowania i stratności – z uwzględnieniem wymagań normy [23] dla przypadku nanokrystalicznych rdzeni blokowych wykonanych w dwóch różnych typach: pakietowanego z rozproszoną szczeliną powietrzną (jak na rys. 4a) oraz wieloszczelinowego blokowego z rozproszoną szczeliną powietrzną (jak na rys. 7.).

Jak wynika z danych przedstawionych na rys. 8., rdzenie pakietowane NMSC oraz blokowe NMBC różnią się od siebie własnościami magnetycznymi, a co za tym idzie odmienna jest ich przydatność aplikacyjna.

Rdzenie pakietowane NMSC znajdują swoje zastosowanie w transformatorach dla podwyższonych częstotliwości, natomiast rdzenie blokowe NMBC wykorzystywane są w dławikach filtrujących. Rdzenie blokowe NMBC charakteryzują się większymi stratnościami, ale niskie straty w rdzeniach NMSC (rys. 4a) uzasadniają ich zastosowanie nawet dla niektórych rozwiązań dla częstotliwości sieciowych (dotyczy zwłaszcza taśm nanokrystalicznych o grubościach powyżej 30 um.

Przebieg indukcji magnetycznej rdzeni blokowych NMBC ma charakter niemal liniowy z uwagi na obecność skupionych szczelin powietrznych między blokami. Zmiana wielkości szczelin umożliwia zatem bardzo dużą liniowość oraz łatwy dobór odpowiednich własności w zależności od wymagań aplikacyjnych dla rdzenia magnetycznego.

Dla potwierdzenia tej obserwacji, na rys. 9. przedstawiono poziomy indukcyjności własnej Ls dla f ≤ 200 kHz rdzeni blokowych NMBC (jak na rys. 7.) z dwoma przykładowymi wielkościami szczelin powietrznych.

b wieloszczelinowe rdzenie rys09

Rys. 9. Indukcyjność Ls w funkcji częstotliwości f rdzenia wieloszczelinowego blokowego NMBC jak na rys. 7. bez szczeliny i z dwiema różnymi szczelinami powietrznymi (dane własne); rys. Cezary Świeboda

Wielkości szczelin powietrznych 1 mm lub 2 mm przedstawione na rys. 9. dotyczą sumarycznej wielkości wszystkich szczelin pomiędzy wszystkimi blokami rdzenia magnetycznego z trzema blokami wewnętrznymi w jednej kolumnie. Dla rdzenia jak z rys. 7a, jest to zatem 8 pojedynczych jednakowych i symetrycznie rozłożonych szczelin powietrznych pomiędzy wszystkimi jego elementami składowymi.

Rdzenie tego typu, z uwagi na ich konstrukcje oraz własności użytkowe, stosuje się przede wszystkim w filtrach selektywnych.

Bliższe omówienie tych zagadnień, podobnie jak omówienie parametrów użytkowych rdzeni pakietowanych ze skupioną szczeliną powietrzną jak na rys. 6c, przekracza zakres pracy – między innymi ze względu na rozwiązania dedykowane konkretnemu odbiorcy.

Dla ilustracji możliwości aplikacyjnych nanokrystalików w dalszej części pracy przedstawiono przykład realizacji transformatora energoelektronicznego wykonanego na podstawie rdzenia pakietowanego z rozproszoną szczeliną powietrzną (rys. 4a).

Przykład praktycznej realizacji z wykorzystaniem rdzenia pakietowanego z rozproszoną szczeliną powietrzną

Budowa transformatorów oraz dławików z przeznaczeniem dla podwyższonych i wysokich częstotliwości wymaga uwzględnienia wielu czynników, w tym warunków pracy urządzenia (m.in. temperatury, obecności kwasów i olejów, zapylenia czy wibracji).

W niektórych rozwiązaniach zdarza się, że wytwarzane obwody magnetyczne dla wysokich częstotliwości są celowo, lecz z technicznego punktu widzenia zbędnie przewymiarowywane.

Przy prawidłowym doborze materiału na rdzeń magnetyczny oraz przy uwzględnieniu wymaganych własności magnetycznych należy wykonać mimo tych uwag element indukcyjny o możliwie wysokiej efektywności, tak jak to zasygnalizowano w początkowej części pracy.

Na fot. 1. (patrz: zdjęcie główne) przedstawiono fotografie transformatora wykonanego na bazie nanokrystalicznego rdzenia pakietowanego NMSC (rys. 4.) z przeznaczeniem do pracy przy częstotliwości 2,5 kHz i mocy 50 kVA.

Do budowy transformatora z fot. 1. (patrz: zdjęcie główne) wykorzystano zestaw czterech nanokrystalicznych rdzeni pakietowanych NMSC o masie 5,75 kg każdy, w sumie 23 kg.

Uzwojenie elektryczne transformatora wykonano licą nawojową o prostokątnym przekroju. Bliższe dane o urządzeniu nie są prezentowane z uwagi na specyfikę rozwiązania, ale całkowita masa transformatora energoelektronicznego o mocy 50 kVA wynosi zaledwie 30 kg. Wskazuje to na bardzo duże możliwości nowych rozwiązań aplikacyjnych przedstawianego rozwiązania technicznego.

Podsumowanie i wnioski

Wykorzystanie materiałów nanokrystalicznych do budowy transformatorów oraz dławików jest obecnie już nie tylko potrzebą, ale koniecznością.

Nieustanny rozwój energoelektroniki i związany z nim wzrost częstotliwości prądu stosowanych urządzeń wymusza stosowanie coraz lepszych jakościowo materiałów magnetycznych – w tym także taśm nanokrystalicznych.

Dodatkowo, rozwijane i ulepszane są istniejące już konstrukcje całych obwodów magnetycznych, tak aby podnosić ich przydatność aplikacyjną oraz zwiększać efektywność przetwarzania energii elektrycznej.

Prezentowane w pracy nanokrystaliczne rdzenie wieloszczelinowe spełniają oba te warunki. Są odpowiednie do stosowania w podwyższonych częstotliwościach prądu magnesującego, a ich wieloszczelinowa konstrukcja umożliwia dowolną konfigurację oraz kalibrację adresowaną pod konkretne zastosowanie.

Opanowana technologia cięcia taśm nanokrystalicznych i produkcji rdzeni, w tym obróbek termomagnetycznych (T + H) umożliwia dalsze polepszanie własności magnetycznych wytwarzanych wyrobów o masach dochodzących do kilkudziesięciu kilogramów.

Zalecane są dalsze prace dotyczące usprawnienia opracowanej technologii wytwarzania rdzeni, a w tym prace związane z ich międzywarstwowym izolowaniem, co znacznie podnosi zakres zastosowań do ponad 50 kHz.

* * *

Autor składa serdeczne podziękowania prof. dr. hab. inż. Marianowi Soińskiemu za cenne uwagi dotyczące niniejszej pracy.

Pracę wykonano w ramach projektu pt. „Badania przemysłowe nowego typu wytwarzania nanokrystalicznych rdzeni pakietowanych” współfinansowanego ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka, nr umowy UDA-POIG.01.04.00-24-004/10-00.

 

Bibliografia

  1. Kuczyński K., „Transformatory rozdzielcze”, Elektro Info, 7-8/2010, str. 51.
  2. Tomczuk K., „Przegląd przekształtników do zasilania silników reluktancyjnych”, Elektro Info, 7-8/2010, str. 46.
  3. Czornik J., „Filtry harmonicznych gwarancją kompatybilności elektromagnetycznej oraz wysokiej sprawności przekształtnikowych układów napędowych”, Elektro Info, 7/8 2016, str. 20.
  4. Szymański J., „Efektywność tłumienia prądów doziemnych silnika filtrami LC w napędach z falownikami napięciowymi zasilanymi z sieci TN”, Elektro Info, 7-8/2011, str. 24.
  5. Soinski M., Leszczynski J., Swieboda C., Kwiecień M., „The applicability of nanocrystalline stacked cores for power electronics”, International Journal of Applied Electromagnetics and Mechanics, vol. 48, no. 2,3, 2015, pp. 301-307, 10.3233/JAE-152002.
  6. Soinski M., Leszczynski J., Swieboda C., Kwiecien., „Nanocrystalline Block Cores for High-Frequency Chokes”, IEEE Transactions on Magnetics, vol. 50, November 2014, no. 11, part 1 of 2, article no. 2801904.
  7. Yoshizawa Y., Yamauchi K., Oguma S.: New Fe-based soft magnetic alloys composed of ultrafine grain structure, European Patent Application 0271 657, 1988.
  8. Herzer G.: Nanocrystalline Soft Magnetic Alloys, Handbook of Magnetic Materials, North - Holland, Vol. 9, 1997, s. 417 – 462.
  9. Kulik T., „Nanokrystaliczne materiały magnetycznie miękkie otrzymywane przez krystalizację szkieł metalicznych”, Wydawnictwo Politechniki Warszawskiej, monografia nr 7, 1998.
  10. Soiński M., „Materiały magnetyczne w technice”, Warszawa, COSiW SEP, 2001.
  11. Zbroszczyk J., „Amorficzne i nanokrystaliczne stopy żelaza”, Monografie 134, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2007.
  12. Świeboda C., „Current and future use of the nanocrystalline strips”, 3rd IEEE International Students Conference on Electrodynamics and Mechatronics, Opole University of Technology, Opole, 6–8.10.2011.
  13. Dane katalogowe: Hitachi Powerlite® Inductor Cores, Metglas, 2011 [dostępne online pod adresem www.metglas.com].
  14. Dane katalogowe: Vacuumschmelze GmbH & co. KG, Germany, “Nanocrystalline VITROPERM EMC Products” [dostępne online pod adresem www.vacuumschmelze.de].
  15. Dane katalogowe: Anhui Astromagnet Co.,Ltd, China, “Amorphous Division”. [dostępne online pod adresem www.astromagnet.cn].
  16. Dane katalogowe: JFE Steel Corporation, JFE Super Core (electrical steel sheets for high-frequency application), 2012 [dostępne online pod adresem www.jfe-steel.co.jp].
  17. Dane katalogowe: Hitachi Metals, Tokyo, Japan. Metglas® AMCC Series Cut Core, Power Electronics Components (Catalog). [dostępne online pod adresem www.hitachimetals.co.jp].
  18. Świeboda C., „Informacja Techniczna nr III – Projekt badawczy pt.: Badania przemysłowe nowego typu wytwarzania nanokrystalicznych rdzeni pakietowanych”, Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka, nr umowy UDA-POIG.01.04.00-24-004/10-00, 22.05.2014.
  19. Cezary Świeboda, Jacek Leszczyński, Influence of production technology on magnetic properties of nanocrystalline stacked and block magnetic cores (na prawach rękopisu).
  20. Leszczyński J., Soiński M., Pytlech R., Rozik M., Pinkosz P., Kwiecień M., Pasek T., Pasierb P.: „ Narzędzie do cięcia taśm amorficznych”, zgłoszenie patentowe do Urzędu Patentowego Rzeczypospolitej Polskiej z dnia 23.08.2011, numer zgłoszenia P.396093.
  21. Cezary Świeboda, Marcin Kwiecień, Przemysław Pinkosz, „Analiza wybranych właściwości magnetycznych oraz ocena aplikacyjnej przydatności magnetycznych rdzeni blokowych z taśm amorficznych i nanokrystalicznych”, Wiadomości Elektrotechniczne, nr 9/2012, str. 22 – 24.
  22. J. Leszczyński, M. Soiński, R. Pytlech, R. Rygał, M. Pałęga, P. Pinkosz, M. Kwiecień, C. Świeboda, „Sposób wytwarzania rdzenia magnetycznego z taśmy nanokrystalicznej”, Urząd Patentowy Rzeczypospolitej Polskiej, patent nr DP.P.401882.9.shol.
  23. IEC 60404-:2004 Magnetic materials – Part 6: Methods of measurement of the magnetic properties of magnetically soft metallic and powder materials at frequencies in the range 20 Hz to 200 kHz by the use of ring specimens.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Najnowsze produkty i technologie

Simultus - oprogramowanie do modelowania układów automatyki i urządzeń

Simultus - oprogramowanie do modelowania układów automatyki i urządzeń Simultus - oprogramowanie do modelowania układów automatyki i urządzeń

Program pozwala na symulację praktycznie dowolnego urządzenia oraz podłączenie urządzenia do symulatora lub rzeczywistego sterownika PLC firmy FATEK oraz Trio Motion i pulpitu HMI. Dzięki temu możemy symulować...

Program pozwala na symulację praktycznie dowolnego urządzenia oraz podłączenie urządzenia do symulatora lub rzeczywistego sterownika PLC firmy FATEK oraz Trio Motion i pulpitu HMI. Dzięki temu możemy symulować urządzenia jako całość: konstrukcję mechaniczną oraz program sterujący. Możliwości testowania zachowania się urządzeń jeszcze na etapie ich projektowania to redukcja kosztów i ryzyka popełnienia błędu.

Instalacja fotowoltaiczna, czyli gwarantowany sposób na oszczędności. Jaką wybrać?

Instalacja fotowoltaiczna, czyli gwarantowany sposób na oszczędności. Jaką wybrać? Instalacja fotowoltaiczna, czyli gwarantowany sposób na oszczędności. Jaką wybrać?

„To się nie opłaca”, „To jest za drogie”, „W Polsce mamy za mało słonecznych dni” – wciąż można się spotkać z takimi i podobnymi opiniami wśród osób, które podważają sens inwestycji w domową instalację...

„To się nie opłaca”, „To jest za drogie”, „W Polsce mamy za mało słonecznych dni” – wciąż można się spotkać z takimi i podobnymi opiniami wśród osób, które podważają sens inwestycji w domową instalację fotowoltaiczną. Tymczasem, jak wynika z badania przeprowadzonego przez Oferteo.pl, aż 96 procent użytkowników fotowoltaiki jest z tego bardzo zadowolonych (a 37 proc. już rozważa rozbudowę).

Dobór ograniczników przepięć do aplikacji PV w praktyce

Dobór ograniczników przepięć do aplikacji PV w praktyce Dobór ograniczników przepięć do aplikacji PV w praktyce

Ograniczniki przepięć (SPD – popularny skrót z języka angielskiego) chronią instalację elektryczną przed przepięciami łączeniowymi (pochodzącymi od silników, falowników, styczników) i pochodzącymi od wyładowań...

Ograniczniki przepięć (SPD – popularny skrót z języka angielskiego) chronią instalację elektryczną przed przepięciami łączeniowymi (pochodzącymi od silników, falowników, styczników) i pochodzącymi od wyładowań atmosferycznych (bezpośrednich i pośrednich, np. w bliskie drzewa czy linię przesyłową).

Inteligentne rozwiązania dla domu – Legrand Netatmo

Inteligentne rozwiązania dla domu – Legrand Netatmo Inteligentne rozwiązania dla domu – Legrand Netatmo

Przy współpracy z NETATMO Legrand wprowadził na rynek nowoczesny system automatyki domowej, który może zmienić oblicze branży. To pełna kontrola nad domem, łatwy montaż, bezprzewodowa łączność, zdalne...

Przy współpracy z NETATMO Legrand wprowadził na rynek nowoczesny system automatyki domowej, który może zmienić oblicze branży. To pełna kontrola nad domem, łatwy montaż, bezprzewodowa łączność, zdalne sterowanie, a także elegancja i prestiż, które razem tworzą kompletne rozwiązania dla najbardziej wymagających klientów. To również korzyści dla instalatorów i dystrybutorów, którzy mogą poszerzyć swoją ofertę produktów i usług.

Jak kupić dobry telewizor?

Jak kupić dobry telewizor? Jak kupić dobry telewizor?

Rynek telewizorów pęka w szwach. Możemy wybierać spośród dziesiątek producentów oraz setek modeli. Który telewizor będzie optymalny dla naszych potrzeb? Czy musimy koniecznie kupować ogromy ekran w najwyższej...

Rynek telewizorów pęka w szwach. Możemy wybierać spośród dziesiątek producentów oraz setek modeli. Który telewizor będzie optymalny dla naszych potrzeb? Czy musimy koniecznie kupować ogromy ekran w najwyższej możliwej rozdzielczości?

Spotkania z klientami w trudnym czasie pandemii wciąż możliwe

Spotkania z klientami w trudnym czasie pandemii wciąż możliwe Spotkania z klientami w trudnym czasie pandemii wciąż możliwe

Mimo niesprzyjających warunków spowodowanych obostrzeniami związanymi z pandemią, stoisko Elektrometal Energetyka SA cieszyło się ogromnym zainteresowaniem podczas 33. Międzynarodowych Energetycznych Targów...

Mimo niesprzyjających warunków spowodowanych obostrzeniami związanymi z pandemią, stoisko Elektrometal Energetyka SA cieszyło się ogromnym zainteresowaniem podczas 33. Międzynarodowych Energetycznych Targów Bielskich w dniach 15-17 września 2020. Po raz pierwszy gościliśmy Państwa na dużym, przestronnym stoisku w hali A, gdzie w miłej i bezpiecznej atmosferze mogliśmy przeżyć wspólnie tę wyjątkową edycję targów, chwaląc się przy okazji nowymi certyfikatami ISO od szwajcarskiej firmy SGS SA.

Kontrola i optymalizacja spalania – czego potrzebujesz do profesjonalnych pomiarów?

Kontrola i optymalizacja spalania – czego potrzebujesz do profesjonalnych pomiarów? Kontrola i optymalizacja spalania – czego potrzebujesz do profesjonalnych pomiarów?

Wszędzie tam, gdzie niezbędne jest dokonanie precyzyjnych pomiarów lub monitorowanie emisji, instalatorzy wykorzystują analizatory spalin. Regularna konserwacja oraz serwisowanie kotłów i palników pozwalają...

Wszędzie tam, gdzie niezbędne jest dokonanie precyzyjnych pomiarów lub monitorowanie emisji, instalatorzy wykorzystują analizatory spalin. Regularna konserwacja oraz serwisowanie kotłów i palników pozwalają na utrzymanie instalacji spalania w dobrym stanie, zachowując jej wysoką wydajność, żywotność i bezpieczeństwo użytkowania. Sprzęt do tego przeznaczony oferuje marka MRU, której wyłącznym polskim importerem i dostawcą usług serwisowych jest Merazet – dystrybutor aparatury kontrolno-pomiarowej...

SZARM – prezentacja z uczuciem

SZARM – prezentacja z uczuciem SZARM – prezentacja z uczuciem

Podobno dobra prezentacja powinna odwoływać się do uczuć, a nie do liczb. Trzeba tylko uprzednio ustalić, do jakich uczuć będziemy się odwoływali. Wybór jest szeroki: rezygnacja i depresja z powodu braku...

Podobno dobra prezentacja powinna odwoływać się do uczuć, a nie do liczb. Trzeba tylko uprzednio ustalić, do jakich uczuć będziemy się odwoływali. Wybór jest szeroki: rezygnacja i depresja z powodu braku zamówień, niska samoocena i zazdrość wywoływane agresywną reklamą innych firm, wściekły atak na działania lub przedstawicieli konkurencji, chłodne porównanie parametrów prezentowanego produktu i wyrobów konkurencji, porównywanie z rozbawieniem i poczuciem wyższości, euforia wywołana ostatnim sukcesem...

Jak połączyć I/O z systemami IT lub chmurą informatyczną?

Jak połączyć I/O z systemami IT lub chmurą informatyczną? Jak połączyć I/O z systemami IT lub chmurą informatyczną?

Integracja sieci OT z systemami IT w krajowym przemyśle jest coraz większa, dlatego coraz większe wymagania stawia się urządzeniom ze świata OT, takim jak sterowniki PLC czy wyspy I/O. Są one wyposażane...

Integracja sieci OT z systemami IT w krajowym przemyśle jest coraz większa, dlatego coraz większe wymagania stawia się urządzeniom ze świata OT, takim jak sterowniki PLC czy wyspy I/O. Są one wyposażane w nowe funkcje i protokoły, aby zapewnić lepsze połączenie z systemami nadrzędnymi. Jednak czasami wbudowana funkcjonalność może nie wystarczać lub zwyczajnie ograniczać projektanta/integratora.

Stacje ładowania AC i DC

Stacje ładowania AC i DC Stacje ładowania AC i DC

W roku 2018 wprowadzono Ustawę o elektromobilności i paliwach alternatywnych (DzU 2018 poz.317 z późn. zm.)[1], która ma za zadanie wesprzeć rozwój infrastruktury do ładowania pojazdów elektrycznych. Ustawa...

W roku 2018 wprowadzono Ustawę o elektromobilności i paliwach alternatywnych (DzU 2018 poz.317 z późn. zm.)[1], która ma za zadanie wesprzeć rozwój infrastruktury do ładowania pojazdów elektrycznych. Ustawa wprowadza mechanizmy wspierające rozwój zeroemisyjnego transportu oraz całej infrastruktury. Jednak oprócz wsparcia, ustawa oraz rozporządzenie Ministra Energii (DzU 2019, poz.1316)[2] w sprawie wymagań technicznych dla stacji i punktów ładowania, stanowiących element infrastruktury ładowania...

Bezpieczniki firmy SIBA do zabezpieczeń systemów fotowoltaicznych

Bezpieczniki firmy SIBA do zabezpieczeń systemów fotowoltaicznych Bezpieczniki firmy SIBA do zabezpieczeń systemów fotowoltaicznych

Napięcie pojedynczego ogniwa fotowoltaicznego jest niewielkie i wynosi od 0,3 V do 1,2 V. Aby zwiększyć uzyskiwane napięcie, ogniwa fotowoltaiczne łączy się szeregowo w panelach fotowoltaicznych, stanowiących...

Napięcie pojedynczego ogniwa fotowoltaicznego jest niewielkie i wynosi od 0,3 V do 1,2 V. Aby zwiększyć uzyskiwane napięcie, ogniwa fotowoltaiczne łączy się szeregowo w panelach fotowoltaicznych, stanowiących najmniejsze zintegrowane jednostki systemu. W celu dalszego zwiększenia napięcia, panele fotowoltaiczne łączy się szeregowo w łańcuchy, a w celu zwiększenia prądu, łańcuchy łączy się równolegle w zespoły.

Fotowoltaika – Twój krok w proekologiczną przyszłość

Fotowoltaika – Twój krok w proekologiczną przyszłość Fotowoltaika – Twój krok w proekologiczną przyszłość

Polska przeżywa właśnie fotowoltaiczny boom – moc zainstalowana elektrowni słonecznych przekroczyła już 2 GW. Jak skorzystać z tego trendu i zarabiać na słońcu?

Polska przeżywa właśnie fotowoltaiczny boom – moc zainstalowana elektrowni słonecznych przekroczyła już 2 GW. Jak skorzystać z tego trendu i zarabiać na słońcu?

Jaką rezystancję akumulatora w rzeczywistości mierzy tester METRACELL BT PRO?

Jaką rezystancję akumulatora w rzeczywistości mierzy tester METRACELL BT PRO? Jaką rezystancję akumulatora w rzeczywistości mierzy tester METRACELL BT PRO?

Testowanie akumulatorów polega przede wszystkim na poszukiwaniu symptomów wskazujących na ich przyspieszone starzenie się, w celu określenia stopnia ich zużycia, a tym samym sprawności. Jednak taka kontrola...

Testowanie akumulatorów polega przede wszystkim na poszukiwaniu symptomów wskazujących na ich przyspieszone starzenie się, w celu określenia stopnia ich zużycia, a tym samym sprawności. Jednak taka kontrola nie jest tak łatwa, jak się wydaje. Doskonałą analogią będzie w tym przypadku nasze ciało. Badając wydolność organizmu, nie ma większego sensu szukanie wyłącznie zakrzepów w tętnicach (podobnie jak korozji w ogniwach akumulatora). Wskazane jest także sprawdzenie, czy zawartość tlenu we krwi jest...

WARSZTATY ONLINE: Zautomatyzowana identyfikacja kabli i komponentów

WARSZTATY ONLINE: Zautomatyzowana identyfikacja kabli i komponentów WARSZTATY ONLINE: Zautomatyzowana identyfikacja kabli i komponentów

Obróbka, etykietowanie oraz znakowanie przewodów dzięki integracji urządzeń Brady i Schleuniger. Zarejestruj się już teraz! Zapraszamy serdecznie!

Obróbka, etykietowanie oraz znakowanie przewodów dzięki integracji urządzeń Brady i Schleuniger. Zarejestruj się już teraz! Zapraszamy serdecznie!

Inteligentne auto – czym jest usługa Smart Car firmy T-Mobile?

Inteligentne auto – czym jest usługa Smart Car firmy T-Mobile? Inteligentne auto – czym jest usługa Smart Car firmy T-Mobile?

Szybka lokalizacja samochodu poprzez aplikację w telefonie, precyzyjne raporty dotyczące każdej podróży, powiadomienia o próbie kradzieży czy wysyłanie wiadomości o wykrytych usterkach. To wszystko brzmi...

Szybka lokalizacja samochodu poprzez aplikację w telefonie, precyzyjne raporty dotyczące każdej podróży, powiadomienia o próbie kradzieży czy wysyłanie wiadomości o wykrytych usterkach. To wszystko brzmi nierealnie i masz wrażenie, że bardziej pasuje do filmów science fiction niż do prawdziwego życia? Nic z tego - taką rzeczywistość kreuje właśnie marka T-Mobile, która wychodzi naprzeciw polskim kierowcom, oferując usługę Smart Car. Na czym polega i jakie są jej możliwości?

Ochrona przeciwpożarowa instalacji elektrycznej

Ochrona przeciwpożarowa instalacji elektrycznej Ochrona przeciwpożarowa instalacji elektrycznej

W Polsce co roku odnotowuje się około 40 000 pożarów obiektów mieszkalnych, hal produkcyjnych czy magazynów w których ginie około 5 000 osób a 70 000 osób zostaje rannych. Straty wynikające z pożarów w ciągu...

W Polsce co roku odnotowuje się około 40 000 pożarów obiektów mieszkalnych, hal produkcyjnych czy magazynów w których ginie około 5 000 osób a 70 000 osób zostaje rannych. Straty wynikające z pożarów w ciągu roku to ponad 1,6 miliarda złotych. Niestety ilość odnotowywanych pożarów z roku na rok rośnie, dlatego ochrona przeciwpożarowa w budynkach staje się kluczowym zagadnieniem.

Nowa marka w branży PV

Nowa marka w branży PV Nowa marka w branży PV

Wyposażenie wnętrz i fotowoltaika – na ten mariaż zdecydowała się firma RUCKZUCK, która stworzyła markę AS ENERGY i ambitnie wkracza w branżę PV. O szczegółach mówi Prezes Zarządu Anna Górecka.

Wyposażenie wnętrz i fotowoltaika – na ten mariaż zdecydowała się firma RUCKZUCK, która stworzyła markę AS ENERGY i ambitnie wkracza w branżę PV. O szczegółach mówi Prezes Zarządu Anna Górecka.

Motopompy – jaki sprzęt warto wybrać i na co zwrócić uwagę?

Motopompy – jaki sprzęt warto wybrać i na co zwrócić uwagę? Motopompy – jaki sprzęt warto wybrać i na co zwrócić uwagę?

Motopompy to urządzenia stanowiące zespół silnika spalinowego z pompą do przepompowywania, pompowania lub wypompowywania różnego rodzaju cieczy – od wody czystej, przez brudną, szlam, aż po środki chemiczne....

Motopompy to urządzenia stanowiące zespół silnika spalinowego z pompą do przepompowywania, pompowania lub wypompowywania różnego rodzaju cieczy – od wody czystej, przez brudną, szlam, aż po środki chemiczne. Sprawdź, jak prawidłowo wybrać motopompę.

Wybieramy najlepsze oczyszczacze powietrza Sharp

Wybieramy najlepsze oczyszczacze powietrza Sharp Wybieramy najlepsze oczyszczacze powietrza Sharp

Ilość oczyszczaczy powietrza na rynku stale rośnie, a wraz z nią pojawiają się nowi producenci oraz wymyślne funkcjonalności. Obecnie możemy kupić oczyszczacz odpowiednio dostosowany do potrzeb użytkownika...

Ilość oczyszczaczy powietrza na rynku stale rośnie, a wraz z nią pojawiają się nowi producenci oraz wymyślne funkcjonalności. Obecnie możemy kupić oczyszczacz odpowiednio dostosowany do potrzeb użytkownika np. zmagającego się z alergią na pyłki, kurz czy borykającego się ze skutkami ubocznymi suchego powietrza. Często zapominamy jednak, że najważniejszym elementem oczyszczaczy jest to, aby oczyszczać – nie tylko z alergenów, ale przede wszystkim zanieczyszczeń powietrza (PM2.5 i PM10). Renomą cieszą...

Dom bliźniak, czy warto zainwestować?

Dom bliźniak, czy warto zainwestować? Dom bliźniak, czy warto zainwestować?

Własny domek wybudowany według konkretnego projektu, który przypadł nam do gustu, to niewątpliwie powód do radości i często zrealizowanie życiowych planów. Dlatego warto przemyśleć wszystkie decyzje, które...

Własny domek wybudowany według konkretnego projektu, który przypadł nam do gustu, to niewątpliwie powód do radości i często zrealizowanie życiowych planów. Dlatego warto przemyśleć wszystkie decyzje, które wiążą się z budową domu. Często dobrym rozwiązaniem okazuje się zabudowa bliźniacza i kupno projektu domu bliźniaczego.

HOCHIKI i NSC nowe systemy detekcji pożaru w ofercie MIWI URMET

HOCHIKI i NSC nowe systemy detekcji pożaru w ofercie MIWI URMET HOCHIKI i NSC nowe systemy detekcji pożaru w ofercie MIWI URMET

Firma MIWI URMET Sp. z o.o. jest wyłącznym dystrybutorem w Polsce systemów sygnalizacji pożarowej firm Hochiki oraz NSC. Hochiki Corporation to firma założona w 1918r. w Japonii. Jest jednym ze światowych...

Firma MIWI URMET Sp. z o.o. jest wyłącznym dystrybutorem w Polsce systemów sygnalizacji pożarowej firm Hochiki oraz NSC. Hochiki Corporation to firma założona w 1918r. w Japonii. Jest jednym ze światowych liderów w produkcji systemów sygnalizacji pożaru i oświetlenia awaryjnego. Podczas ponad 100 lat działalności firma wprowadziła na światowy rynek szereg innowacyjnych rozwiązań i nowoczesnych technologii, dzięki czemu produkty Hochiki stały się wyznacznikiem wysokiej funkcjonalności oraz najwyższej...

MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa...

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa wykazują dużą determinację do zmian prowadzących do optymalizacji kosztów, co zapewnić ma im zachowanie przewagi konkurencyjnej, wynikającej np. z przyjętej strategii przewagi kosztowej.

Nowe rozdzielnice Practibox S - wysoka jakość i nagrodzony design w przystępnej cenie

Nowe rozdzielnice Practibox S - wysoka jakość i nagrodzony design w przystępnej cenie Nowe rozdzielnice Practibox S - wysoka jakość i nagrodzony design w przystępnej cenie

W portfolio produktowym firmy Legrand pojawiła się nowa gama rozdzielnic izolacyjnych o nazwie Practibox S. Oferta dedykowana jest przede wszystkim dla budownictwa mieszkaniowego (prywatnego jak i deweloperskiego),...

W portfolio produktowym firmy Legrand pojawiła się nowa gama rozdzielnic izolacyjnych o nazwie Practibox S. Oferta dedykowana jest przede wszystkim dla budownictwa mieszkaniowego (prywatnego jak i deweloperskiego), hoteli i obiektów biurowych. Rozdzielnice otrzymały prestiżową nagrodę IF DESIGN AWARD 2019 w kategorii produkt, za elegancki i lekki wygląd oraz dbałość o środowisko naturalne podczas procesu produkcji.

Taśmy TZe synonimem trwałości

Taśmy TZe synonimem trwałości Taśmy TZe synonimem trwałości

Mimo warstwowej budowy są niezwykle cienkie. Grubość 160 mikrometrów nie przeszkadza im jednak w osiągnięciu zaskakująco dobrych parametrów wytrzymałościowych. Taśmy TZe są odporne na ścieranie, zarysowania,...

Mimo warstwowej budowy są niezwykle cienkie. Grubość 160 mikrometrów nie przeszkadza im jednak w osiągnięciu zaskakująco dobrych parametrów wytrzymałościowych. Taśmy TZe są odporne na ścieranie, zarysowania, promieniowania UV i ekstremalne temperatury.

Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Drukarki etykiet dla elektryków i elektroinstalatorów Brother Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch...

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch E550WVP to przenośne i szybkie urządzenia, które oferują specjalne funkcje do druku najpopularniejszych typów etykiet. Urządzenia pozwalają na szybkie i bezproblemowe drukowanie oznaczeń kabli, przewodów, gniazdek elektrycznych, przełączników oraz paneli krosowniczych.

Produkcja energii ze słońca - jak to działa?

Produkcja energii ze słońca - jak to działa? Produkcja energii ze słońca - jak to działa?

Prawdopodobnie już nie raz miałeś okazję dostrzec panele fotowoltaiczne umieszczone na dachach gospodarstw domowych. Czy zastanawiałeś się, jak faktycznie działają w celu generowania energii elektrycznej?...

Prawdopodobnie już nie raz miałeś okazję dostrzec panele fotowoltaiczne umieszczone na dachach gospodarstw domowych. Czy zastanawiałeś się, jak faktycznie działają w celu generowania energii elektrycznej? Produkcja energii ze słońca to proces złożony, do którego zrozumienia niezbędna jest znajomość zasad fizyki. Dzisiaj postaramy się w prosty sposób wytłumaczyć, jak właściwie działa instalacja fotowoltaiczna, a także odpowiedzieć na pytanie, czy warto rozważyć inwestycję w fotowoltaikę.

Yesly - komfort sterowania w obiektach budowlanych

Yesly - komfort sterowania w obiektach budowlanych Yesly - komfort sterowania w obiektach budowlanych

W obecnych czasach od automatyki budynkowej nie da się uciec. Chcąc nie chcąc znajdzie się ona w naszych domach. Finder, wychodząc naprzeciw oczekiwaniom ludzi budujących nowe domy czy też modernizujących...

W obecnych czasach od automatyki budynkowej nie da się uciec. Chcąc nie chcąc znajdzie się ona w naszych domach. Finder, wychodząc naprzeciw oczekiwaniom ludzi budujących nowe domy czy też modernizujących stare prezentuje system Yesly, czyli niewidzialne elementy wykonawcze, które zapewnią automatyzację pewnych urządzeń w naszych domach.

Pomiar napięcia w sieciach dystrybucyjnych. Poprawa funkcjonalności w węzłach rozdzielczych dzięki inteligentnym adapterom

Pomiar napięcia w sieciach dystrybucyjnych. Poprawa funkcjonalności w węzłach rozdzielczych dzięki inteligentnym adapterom Pomiar napięcia w sieciach dystrybucyjnych. Poprawa funkcjonalności w węzłach rozdzielczych dzięki inteligentnym adapterom

Sieci elektroenergetyczne stają się coraz bardziej złożone i skomplikowane ze względu na rosnącą w bardzo szybkim tempie liczbę przyłączeń zdecentralizowanych systemów produkcji energii elektrycznej. Coraz...

Sieci elektroenergetyczne stają się coraz bardziej złożone i skomplikowane ze względu na rosnącą w bardzo szybkim tempie liczbę przyłączeń zdecentralizowanych systemów produkcji energii elektrycznej. Coraz bardziej wyraziste cele w zakresie ochrony środowiska i prowadzą do dodatkowych i zmiennych obciążeń w nowoczesnych sieciach dystrybucyjnych.

Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

Nowość NIVELCO: przetwornik różnicy ciśnień NIPRESS DD-600

Nowość NIVELCO: przetwornik różnicy ciśnień NIPRESS DD-600 Nowość NIVELCO: przetwornik różnicy ciśnień NIPRESS DD-600

Rodzina przetworników różnicy ciśnień NIVELCO została wzbogacona o nową wersję – NIPRESS DD-600. Przetwornik dostępny jest od niedawna i zastępuje dotychczasowy model DD-100. Zawiera udoskonalone funkcje...

Rodzina przetworników różnicy ciśnień NIVELCO została wzbogacona o nową wersję – NIPRESS DD-600. Przetwornik dostępny jest od niedawna i zastępuje dotychczasowy model DD-100. Zawiera udoskonalone funkcje i cechy, przy czym konstrukcja zewnętrzna pozostaje niezmieniona.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.