elektro.info

Polskie rozwiązanie w technologii SiC - nowy napęd i system zasilania »

Polskie rozwiązanie w technologii SiC - nowy napęd i system zasilania » Polskie rozwiązanie w technologii SiC - nowy napęd i system zasilania »

Zobacz przegląd zasilaczy UPS »

Zobacz przegląd zasilaczy UPS » Zobacz przegląd zasilaczy UPS »

news Zapraszamy na bezpłatny webinar elektro.info!

Zapraszamy na bezpłatny webinar elektro.info! Zapraszamy na bezpłatny webinar elektro.info!

Zapraszamy serdecznie na pierwszy, bezpłatny webinar organizowany przez „elektro.info”! Tematem webinaru będzie elektromobilność: „Czy w roku 2025 pojazdy z napędem elektrycznym będą masowo wykorzystywane...

Zapraszamy serdecznie na pierwszy, bezpłatny webinar organizowany przez „elektro.info”! Tematem webinaru będzie elektromobilność: „Czy w roku 2025 pojazdy z napędem elektrycznym będą masowo wykorzystywane w Polsce? Prognozy i ocena szans rozwoju elektromobilności”. Spotkanie poprowadzi dr hab. inż. Paweł Piotrowski, profesor Politechniki Warszawskiej.

Wykorzystanie zespołów prądotwórczych do tymczasowego zasilania elektroenergetycznych sieci nn

Zespoły prądotwórcze mogą zostać wykorzystane do tymczasowego zasilania sieci elektroenergetycznych nn pod warunkiem przystosowania instalacji elektrycznych w zasilanych budynkach do tymczasowych warunków zasilania.

Zespoły prądotwórcze mogą zostać wykorzystane do tymczasowego zasilania sieci elektroenergetycznych nn pod warunkiem przystosowania instalacji elektrycznych w zasilanych budynkach do tymczasowych warunków zasilania.

Sieci elektroenergetyczne niskiego napięcia należą do sieci rozdzielczych przeznaczonych do zasilania w energię elektryczną
budynków lub innych obiektów budowlanych. Wykonywane są w układzie promieniowym lub magistralnym oraz bardzo rzadko w układzie dwupromieniowym. Budynki mieszkalne są do nich przyłączane za pośrednictwem przyłączy kablowych lub napowietrznych.

Zobacz także

Jak dobrać moc zespołu prądotwórczego stanowiącego awaryjne źródło zasilania?

Jak dobrać moc zespołu prądotwórczego stanowiącego awaryjne źródło zasilania? Jak dobrać moc zespołu prądotwórczego stanowiącego awaryjne źródło zasilania?

Częstym problemem, z jakim spotykają się projektanci oraz inwestorzy, jest dobór mocy zespołu prądotwórczego. W przeciwieństwie do systemu elektroenergetycznego, generator zespołu prądotwórczego jest źródłem...

Częstym problemem, z jakim spotykają się projektanci oraz inwestorzy, jest dobór mocy zespołu prądotwórczego. W przeciwieństwie do systemu elektroenergetycznego, generator zespołu prądotwórczego jest źródłem „miękkim” o parametrach obwodu zwarciowego ulegających dynamicznym zmianom. W przypadku zaniku napięcia w źródle zasilania podstawowego zespół prądotwórczy stanowiący awaryjne źródło zasilania wraz z zasilanymi odbiornikami stanowi autonomiczny system elektroenergetyczny.

Silniki stosowane w zespołach prądotwórczych

Silniki stosowane w zespołach prądotwórczych Silniki stosowane w zespołach prądotwórczych

W artykule opisano wybrane przykłady zastosowania spalinowego silnika tłokowego jako jednostki napędzającej prądnice w zespołach prądotwórczych zwanych agregatami prądotwórczymi. Ponieważ w publikacjach...

W artykule opisano wybrane przykłady zastosowania spalinowego silnika tłokowego jako jednostki napędzającej prądnice w zespołach prądotwórczych zwanych agregatami prądotwórczymi. Ponieważ w publikacjach naukowych używane są różnorodne terminy techniczne, charakterystyczne dla poszczególnych autorów subiektywnie definiujących zjawiska i używających często specyficznego słownictwa, w publikacji użyto słownictwa żargonowego, zrozumiałego dla większości eksploatatorów.

Teoria sterowania - podstawy

Teoria sterowania - podstawy Teoria sterowania - podstawy

W wielu gałęziach współczesnego przemysłu stosowane są zaawansowane układy automatyki, służące do kontroli i monitorowania procesów oraz obiektów (urządzeń, układów itp.). Najlepszym tego przykładem są...

W wielu gałęziach współczesnego przemysłu stosowane są zaawansowane układy automatyki, służące do kontroli i monitorowania procesów oraz obiektów (urządzeń, układów itp.). Najlepszym tego przykładem są sterowniki PLC (ang. Programmable Logic Controller), czyli mikroprocesorowe układy zbierające informacje na temat sygnałów w badanym systemie i podejmujących na tej podstawie decyzję o zmianie wartości sygnałów sterujących tym systemem.

Z uwagi na zaliczenie tych obiektów do III kategorii zasilania zgodnie z podziałem przyjętym w gospodarce elektroenergetycznej, nie są one wyposażane w źródła zasilania rezerwowego lub awaryjnego. Zdarzenia, jakie pojawiły się po pierwszych opadach śniegu, które spowodowały brak dostaw energii elektrycznej do szeregu gospodarstw domowych wskutek awarii sieci elektroenergetycznych spowodowanej nieprzewidywalnymi zjawiskami atmosferycznym, wymuszają potrzebę opracowania sposobów tymczasowego zapewnienia dostaw energii elektrycznej w sytuacjach awaryjnych.

Jedynym sposobem jest wykorzystanie zespołów prądotwórczych. Takie rozwiązanie wymaga przygotowania układu przyłączenia zespołu do sieci elektroenergetycznej oraz przystosowania instalacji elektrycznych do poboru mocy o wartości ograniczonej do niezbędnych potrzeb socjalnych.

Zasady obliczania mocy zapotrzebowanej w budynkach mieszkalnych

Dla mieszkań w budynkach wielorodzinnych lub budynków jednorodzinnych o podstawowym wyposażeniu, zgodnie z wymaganiami N SEP-E 002 Instalacje elektryczne w obiektach budowlanych. Instalacje elektryczne w budynkach mieszkalnych. Podstawy planowania, należy przyjmować wartości mocy zapotrzebowanej PM1 nie niższe niż*):

  • 12,5 kW, dla mieszkań posiadających zaopatrzenie w ciepłą wodę z zewnętrznej centralnej sieci grzewczej,
  • 30 kW, dla mieszkań nieposiadających zaopatrzenia w ciepłą wodę z zewnętrznej sieci grzewczej,
  • 7 kW w przypadku instalacji modernizowanych.

Oprócz mocy zapotrzebowanej przez mieszkania występuje zapotrzebowane mocy przez odbiorniki administracyjne (do tych odbiorników należy również zaliczyć urządzenia ppoż. instalowane w budynku).

Moc zapotrzebowana przez wielorodzinny budynek mieszkalny, zgodnie z N SEP-E-002 Instalacje elektryczne w obiektach budowlanych. Instalacje elektryczne w budynkach mieszkalnych. Podstawy planowania, należy obliczyć ze wzoru:

b wykorzystanie zespolow sieci nn wz01

Wzór 1

gdzie:

PM1 – moc zapotrzebowana przez pojedyncze mieszkanie, w [kW],

n – liczba mieszkań zasilanych z jednego WLZ-tu, w [-],

kj – współczynnik jednoczesności określony w N SEP-E 002 lub odczytany z rys. 1., w [-],

PA – moc zapotrzebowana przez odbiorniki administracyjne, ustalona w uzgodnieniu z inwestorem (administratorem budynku), w [kW].

W praktyce nie zawsze spełnienie wymagań normy jest możliwe.

Norma dotyczy budynków wznoszonych po 2002 roku. Jej zalecenia są stosowane w praktyce projektowej, mimo że nie jest normą przeznaczoną do obowiązkowego stosowania.

Rozbieżności w mocach przyjmowanych w praktyce wynikają głównie z możliwości technicznych eksploatowanych sieci elektroenergetycznych.

b wykorzystanie zespolow sieci nn rys01

Rys. 1. Wartości współczynnika jednoczesności kj’ dla wybranych grup odbiorników energii elektrycznej w budynkach mieszkalnych, w zależności od liczby mieszkań wg przepisów niemieckich [H. Markiewicz; A. Klajn – Instalacje elektryczne w budynkach mieszkalnych. Podstawy planowania i obliczeń – podręczniki INPE dla elektryków – zeszyt 7 – 2005 r.], gdzie: 1 – ogrzewanie akumulacyjne, 2 – ogrzewanie bezpośrednie, 3 – odbiorniki ogólnego przeznaczenia, 4 – przepływowe ogrzewacze wody

W przypadku sieci znajdujących się w eksploatacji najbardziej wiarygodne wyniki dają pomiary obciążeń, które są wykonywane przez spółki dystrybucyjne.

W warunkach awaryjnych moce zapotrzebowane muszą zostać zmniejszone do niezbędnych potrzeb socjalnych pozwalających na korzystanie z oświetlenia, lodówki oraz telewizora lub radia. Skutkuje to zmniejszeniem mocy szczytowej możliwej do pobrania przez pojedyncze mieszkanie lub budynek jednorodzinny do wartości (2–3) kW.

Przy takim założeniu, należy korzystając z charakterystyki odzwierciedlającej współczynnik jednoczesności funkcji liczby odbiorców przedstawionej na rys. 1. dla odbiorników ogólnego przeznaczenia wyznaczyć wartość mocy zapotrzebowanej dla sieci elektroenergetycznej objętej tymczasowym zasilaniem realizowanym z wykorzystaniem zespołu prądotwórczego.

W kwestii odbiorników administracyjnych minimalną moc niezbędną przy zasilaniu tymczasowym należy uzgodnić z administratorem budynku.

Układy sieci elektroenergetycznych nn, zasilające odbiory komunalne

Stosowane w praktyce układy sieci elektroenergetycznych nn umożliwiają przyłączenie generatora zespołu prądotwórczego do szyn rozdzielnicy niskiego napięcia stacji transformatorowej. Układ współpracy zespołu prądotwórczego z siecią elektroenergetyczną musi uniemożliwiać:

  • równoległą pracę zespołu prądotwórczego z systemem elektroenergetycznym (SEE),
  • wsteczne podanie napięcia z generatora zespołu prądotwórczego do SEE.

Na rys. 2, rys. 3 i rys. 4 zostały przedstawione schematy sieci elektroenergetycznych nn, stosowane w prak­tyce.

Sposób przyłączenia zespołu prądotwórczego przedstawia rys. 5.

W takim przypadku instalacje elektryczne przyłączonych budynków muszą zostać przygotowane do zasilania tymczasowego. W tym celu w instalacjach elektrycznych budynków należy wykonać układ automatyki umożliwiającej przełączenie zasilania poszczególnych odbiorców na tor zasilania tymczasowego, w którym należy zainstalować aparat ograniczający moc do wartości minimum socjalnego.

b wykorzystanie zespolow sieci nn rys02

Rys. 2. Schemat sieci promieniowej; rys. J. Wiatr

b wykorzystanie zespolow sieci nn rys03

Rys. 3. Schemat sieci magistralnej: a) kablowej, b) napowietrznej; rys. J. Wiatr

b wykorzystanie zespolow sieci nn rys04

Rys. 4. Schemat sieci dwupromieniowej; rys. J. Wiatr

Przykładowe rozwiązanie układu zasilania odbiorców umożliwiające automatyczne przejście na warunki zasilania tymczasowego przedstawia rys. 6.

b wykorzystanie zespolow sieci nn rys05

Rys. 5. Sposób przyłączenia zespołu prądotwórczego do tymczasowego zasilania sieci elektroenergetycznej nn; rys. J. Wiatr

b wykorzystanie zespolow sieci nn rys06

Rys. 6. Przykład układu sterowania umożliwiającego automatyczne przełączenie odbiorników mieszkaniowych na warunki zasilania tymczasowego; rys. J. Wiatr

Generator zespołu prądotwórczego należy uziemić. Można do tego celu wykorzystać istniejące uziemienie transformatora, pod warunkiem spełniania przez nie warunku R ≤ 5 Ω.

Przyłączenie zespołu prądotwórczego należy wykonać w sposób gwarantujący niemożliwość podania napięcia z dwóch źródeł jednocześnie oraz podania napięcia z generatora zespołu prądotwórczego do Systemu Elektroenergetycznego (SEE).

Dobór mocy zespołu prądotwórczego

Bardzo istotnym problemem jest dobór mocy zespołu prądotwórczego tak, by zagwarantować pokrycie mocy zapotrzebowanej przez zasilane odbiorniki.

Za podstawę doboru mocy zespołu prądotwórczego należy przyjąć wartość mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej przez zasilane odbiorniki.

Moc czynną zapotrzebowaną należy wyznaczyć z następującego wzoru:

b wykorzystanie zespolow sieci nn wz02

Wzór 2

gdzie:

PZ – moc czynna zapotrzebowana czynna, w [kW],

kj – współczynnik jednoczesności, w [-],

Pi – moc czynna i-tego odbiornika objętego systemem zasilania awaryjnego, w [kW].

Kolejnym krokiem jest obliczenie mocy biernej zapotrzebowanej, którą należy wyznaczyć w następujący sposób:

b wykorzystanie zespolow sieci nn wz03

Wzór 3

gdzie:

QZ– moc bierna zapotrzebowana, w [kvar],

cos φi – współczynnik mocy i-tego odbiornika objętego systemem zasilania gwarantowanego, w [-].

Na podstawie obliczonej wartości mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej należy obliczyć współczynnik mocy cos φZ:

b wykorzystanie zespolow sieci nn wz04

Wzór 4

gdzie:

cos φZ– współczynnik mocy obliczony na podstawie mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej, w [-].

Kolejnym krokiem jest obliczenie minimalnej mocy czynnej, jaką musi dysponować generator zespołu prądotwórczego.

Wyznaczenie mocy pozornej na podstawie mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej ze wzoru:

b wykorzystanie zespolow sieci nn wz05

Wzór 5

może prowadzić do błędnych wyników.

Względne obciążenie generatora mocą czynną można określić współczynnikiem wykorzystania, który należy obliczyć z poniższego wzoru:

b wykorzystanie zespolow sieci nn wz06

Wzór 6

Wymagana minimalna moc czynna zespołu prądotwórczego musi spełniać następującą nierówność:

b wykorzystanie zespolow sieci nn wz07

Wzór 7

Obliczony ze wzoru (6) współczynnik wykorzystania p należy podstawić do wzoru (7). W przypadku gdy p ≤ 1, do wzoru (7) należy wstawić wartość 1.

Wartość współczynnika mocy cos φnG należy przyjąć zgodnie z DTR zespołu prądotwórczego.

W przypadku braku informacji w tym zakresie można przyjmować cos φnG = 0,8.

Moc pozorna zespołu prądotwórczego musi spełniać następującą nierówność:

b wykorzystanie zespolow sieci nn wz08

Wzór 8

gdzie:

PGmin – minimalna mocy czynna, jaką musi pokryć generator zespołu prądotwórczego, w [kW].

Mała wartość współczynnika mocy powoduje zmniejszenie siły elektromotorycznej generatora wskutek rozmagnesowującego działania składowej biernej prądu obciążenie.

Jeżeli generator oddaje większą moc bierną niż znamionowa, ze względu na konieczność utrzymania napięcia znamionowego i nieprzeciążanie wirnika należy zmniejszyć moc czynną obciążenia. W dopuszczalnych dla prądów wirnika granicach, automatyka zespołu prądotwórczego reguluje wartość prądu wzbudzenia utrzymując na stałym poziomie wartość napięcia wyjściowego generatora.

Zatem wytwarzanie energii elektrycznej przez generator zespołu prądotwórczego przy współczynniku mocy cos φZ  < cos φnG skutkuje koniecznością zwiększenia jego mocy pozornej (S) do wartości umożliwiającej pełne pokrycie mocy czynnej ­zapotrzebowanej oraz mocy biernej zapotrzebowanej QZ.

Wprowadzanie układów kompensacji mocy biernej (szczególnie indukcyjnej) jest niewskazane ze względu na charakter pracy źródła zasilającego. W konsekwencji może doprowadzić do przedwczesnego zniszczenia kondensatorów.

Ponieważ projektowane zasilanie tymczasowe dotyczy istniejących sieci nn, istnieje możliwość wykonania pomiarów po wymuszeniu przejścia przez przełączane odbiory na warunki zasilania tymczasowego. Pozwoli to na bardzo precyzyjne oszacowanie mocy zespołu prądotwórczego niezbędnego do zasilania tymczasowego określonej sieci elektroenergetycznej nn. Uzyskane w wyniku pomiarów wartości mocy czynnej oraz mocy biernej i współczynnika mocy posłużą wówczas do obliczenia wymaganej mocy zespołu z wykorzystaniem wzorów (4) – (8).

Ochrona przeciwporażeniowa w warunkach zasilania z generatora zespołu prądotwórczego

Oprócz problemów z mocą, która może zostać pobrana w czasie funkcjonowania układu zasilania tymczasowego, pojawiają się problemy z zachowaniem skutecznej ochrony przeciwporażeniowej zgodnie z wymaganiami normy PN HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Ochrona dla zapewnienia bezpieczeństwa. Część 4-41: Ochrona przed porażeniem elektrycznym.

Problemy te wynikają z fizyki pracy generatora zespołu prądotwórczego, w którym podczas zwarć występuje zmienność drogi strumieni magnetycznych, skutkująca zamiennością parametrów obwodu zwarciowego w znacznych graniach.

Zespół prądotwórczy w stosunku do systemu elektroenergetycznego jest źródłem „miękkim”, w którym impedancja obwodu zwarciowego ulega szybkim zmianom w czasie zwarcia (przyjmuje się, że system elektroenergetyczny charakteryzuje się stałą impedancją obwodu zwarciowego z uwagi na dużą wartość mocy zwarciowej).

W chwili wystąpienia zwarcia ulega zmianie rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego. Rozpływy strumieni w generatorze podczas zwarcia przedstawia rys. 7.

W początkowej fazie zwarcia nazywanej stanem podprzejściowym, wskutek działania klatki tłumiącej, strumień główny wytwarzany przez prądy płynące w uzwojeniu stojana jest wypychany poza wirnik (rys. 7a). W stanie tym reaktancja generatora charakteryzuje się małą wartością, wynoszącą przeciętnie (10–15)% wartości znamionowej. Stan ten trwa bardzo krótko ze względu na małą wartość elektromagnetycznej stałej czasowej T, wynoszącej dla generatorów nn średnio 0,01 s.

b wykorzystanie zespolow sieci nn rys07

Rys. 7. Przebieg wypychanego poza wirnik strumienia stojana w czasie zwarcia: a) stan podprzejściowy, b) stan przejściowy, c) stan ustalony [2]; rys. J. Wiatr

Działanie klatki tłumiącej ze względu na małą wartość jej rezystancji szybko ustaje, co skutkuje powolnym wchodzeniem strumienia głównego w wirnik. Stan ten nazywany stanem przejściowym charakteryzuje wzrost reaktancji generatora, która dla generatorów nn wynosi średnio (30–40)% wartości znamionowej generatora.

Generator w krótkim czasie przechodzi w stan ustalony zwarcia, co objawia się dalszym wzrostem reaktancji obwodu zwarciowego. W stanie ustalonym zwarcia strumień główny oraz strumień wzbudzenia zamykają się przez wirnik generatora. Ponieważ kierunki tych strumieni są przeciwne, strumień wypadkowy ulega silnemu zmniejszeniu. Zjawisko to prowadzi do gwałtownego wzrostu reaktancji generatora, która dla generatorów nn wynosi (200–300)% wartości reaktancji znamionowej generatora.

unormowane charakterystyki

Rys. 8. Unormowane charakterystyki: a) zmienności reaktancji zwarciowej generatora , b) zmienności prądu zwarciowego generatora, przy zwarciu na jego zaciskach - patrz: opis po prawej; rys. J. Wiatr

W zespołach prądotwórczych konstruowanych obecnie, instalowany jest regulator prądu wzbudzenia wyposażony w układ forsowania, który pozwala podczas zwarcia na utrzymanie określonej wartości reaktancji generatora. Wartość ta charakteryzowana jest krotnością prądu znamionowego generatora, utrzymywaną przez czas nie dłuższy niż 10 s.

Ograniczenie czasowe utrzymywania określonej wartości reaktancji generatora podczas zwarcia wynika z warunku wytrzymałości izolacji uzwojeń generatora. Wydłużenie tego czasu może skutkować zniszczeniem izolacji uzwojeń generatora.

Na rys. 8. przedstawiono uproszczone charakterystyki zmienności reaktancji zwarciowej w generatorze nowoczesnego zespołu prądotwórczego oraz zmienności prądu zwarciowego na jego zaciskach. Parametry obwodu zwarciowego ulegają szybkim zmianom, co powoduje trudności w uzyskaniu skutecznej ochrony przeciwporażeniowej w odległej instalacji odbiorczej.

W nowoczesnych zespołach prądotwórczych producent zapewnia (wskutek działania układów automatyki) utrzymanie prądu zwarciowego na zaciskach generatora o wartości 3·In przez 10 s (dłuższe utrzymywanie takiego stanu grozi zniszczeniem izolacji uzwojeń). Dzięki czemu do obliczeń skuteczności samoczynnego wyłączenia można przyjmować wartość reaktancji zwarciowej generatora Xk1G (na jego zaciskach) wyliczoną ze wzoru (9):

b wykorzystanie zespolow sieci nn wz09

Wzór 9

gdzie:

UnG – napięcie znamionowe generatora zespołu prądotwórczego, w [kV],

SnG – moc znamionowa generatora zespołu prądotwórczego, w [MVA],

XnG – znamionowa reaktancja generatora, w [Ω].

Pomimo to reaktancja obwodu zwarcia generatora zespołu prądotwórczego jest znacznie większa od impedancji zwarciowej transformatora przyłączonego do SEE o takiej samej mocy.

Dla porównania tych wartości w tab. 1. zostały przedstawione impedancje wybranych transformatorów oraz generatorów.

Przez 10 s, kiedy działa układ forsowania wzbudzenia, reaktancja ta jest większa ponad siedmiokrotnie od impedancji transformatora, a po ustaniu działania układu forsowania wzbudzenia – ponad dwudziestokrotnie.

W przypadku gdy zespół prądotwórczy jest oddalony o kilkanaście metrów od zasilanej rozdzielnicy, wartość impedancji obwodu zwarciowego w dalszym ciągu rośnie i powoduje dalsze zmniejszanie się prądów zwarciowych.

Znaczna wartość reaktancji obwodu zwarciowego zasilanego przez generator zespołu prądotwórczego może być powodem nieskutecznej ochrony przeciwporażeniowej w instalacji, w której zastosowano samoczynne wyłączenie zasilania. Obwód zwarciowy dla potrzeb ochrony przeciwporażeniowej przedstawia rys. 9.

Odmienność warunków zasilania z zespołu prądotwórczego w odniesieniu do Systemu Elektroenergetycznego

System Elektroenergetyczny (SEE) jest zasilany przez kilkadziesiąt generatorów przyłączonych za pośrednictwem transformatorów blokowych do sieci elektroenergetycznych WN pracujących w układzie zamkniętym.

Moc zwarciowa SEE w uproszczeniu jest określana jako nieskończona, podczas gdy w odniesieniu do zespołu prądotwórczego posiada ona wartość ograniczoną (patrz: rys. 5.). Wartość jej w różnych punktach sieci przyłączonych do SEE ma wartości skończone, ale wartości ich są duże.

Przeciętnie wartość mocy zwarciowej odniesiona do strony SN w GPZ, kształtuje się na poziomie (150–250) MVA. Zespół prądotwórczy po przejęciu zasilania stanowi jedyne źródło zasilania odbiorników objętych systemem zasilania awaryjnego.

Dysponowana przez jego generator moc zwarciowa zależy od mocy generatora i ma wartość skończoną. Dla przykładu dla wybranych generatorów niskiego napięcia, moc zwarciowa została przedstawiona w tab. 2.

b wykorzystanie zespolow sieci nn tab2

Tab. 2. Moc zwarciowa na zaciskach wybranych generatorów zespołów prądotwórczych.

Zasady projektowania ochrony przeciwporażeniowej

Spośród trzech układów sieci: TT, IT i TN (TN-C; TN-C-S i TN-S), przy zasilaniu obiektów budowlanych najbardziej nadaje się układ TN-S lub TN-C-S.

Układ IT może być stosowany tylko w ograniczonym zakresie, po spełnieniu określonych warunków.

Warunek samoczynnego wyłączenia w sieci TN, należy uznać za spełniony jeżeli:

b wykorzystanie zespolow sieci nn wz10

Wzór 10

b wykorzystanie zespolow sieci nn wz11

Wzór 11

W praktyce korzysta się z innej postaci tego wzoru:

b wykorzystanie zespolow sieci nn wz12

Wzór 12

w którym został uwzględniony wzrost rezystancji przewodów pętli zwarciowej wynikający z prawa Wiedemanna-Franza oraz trudne do analitycznego oszacowania rezystancje łączeń występujących w obwodzie zwarciowym, gdzie:

Zs – impedancja pętli zwarciowej obejmującej źródło zasilania, przewód roboczy, aż do punktu zwarcia i przewód ochronny między punktem zwarcia a źródłem, w [Ω],

Ia – prąd powodujący samoczynne zadziałanie urządzenia wyłączającego, w czasie zależnym od napięcia znamionowego Uo podanego w tab. 3.,

RkG – rezystancja uzwojeń generatora, w [Ω],

Xk1G – reaktancja generatora dla zwarć jednofazowych, w [Ω],

RL – rezystancja kabla zasilającego oraz przewodów instalacji odbiorczej, w [Ω],

XL – reaktancja kabla zasilającego oraz przewodów instalacji odbiorczej, w [Ω],

Uo – napięcie pomiędzy przewodem fazowym a uziemionym przewodem ochronnym (PE) lub ochronno-neutralnym (PEN), w [V].

b wykorzystanie zespolow sieci nn tab3

Tab. 3. Maksymalne czasy wyłączenia dla normalnych warunków środowiskowych [10]

Uwagi

  1. Dłuższe czasy wyłączenia mogą być dopuszczone w sieciach rozdzielczych oraz elektrowniach i w sieciach przesyłowych systemów.
  2. Krótsze czasy wyłączenia mogą być wymagane dla specjalnych instalacji lub lokalizacji objętych arkuszami normy PN-IEC (HD) 60364 grupy 700.
  3. Dla układu sieci IT samoczynne wyłączenie zasilania nie jest zwykle wymagane po pojawieniu się pojedynczego zwarcia z ziemią.
  4. Maksymalne czasy wyłączenia podane w tab. 3. powinny być stosowane do obwodów odbiorczych o prądzie znamionowym nieprzekraczającym 32 A.
  5. Jeżeli w układzie sieci TT wyłączenie jest realizowane przez zabezpieczenia nadprądowe, a połączenia wyrównawcze ochronne są przyłączone do części przewodzących obcych znajdujących się w instalacji, to mogą być stosowane maksymalne czasy wyłączenia przewidywane dla układu sieci TN.
  6. W układach sieci TN czas wyłączenia nieprzekraczający 5 s jest dopuszczony w obwodach rozdzielczych i w obwodach niewymienionych w pkt 4.
  7. W układach sieci TT czas wyłączenia nieprzekraczający 1 s jest dopuszczony w obwodach rozdzielczych i w obwodach niewymienionych w pkt 4.
  8. Jeżeli samoczynne wyłączenie zasilania nie może być uzyskane we właściwym czasie, to powinny być zastosowane dodatkowe połączenia wyrównawcze ochronne.
b wykorzystanie zespolow sieci nn tab4

Tab. 4. Maksymalne czasy wyłączenia dla warunków środowiskowych o zwiększonym zagrożeniu w układzie sieci TN [11]

W normie PN-HD 60364-4-481: 1994 podane są maksymalne czasy wyłączenia dla warunków środowiskowych o zwiększonym zagrożeniu. Dotyczą one specjalnych instalacji lub lokalizacji objętych arkuszami normy PN-IEC (HD) 60364 grupy 700. Czasy te podano w tab. 4.

W układach ac powinna być zastosowana ochrona uzupełniająca za pomocą urządzeń ochronnych różnicowoprądowych o znamionowym prądzie różnicowym nieprzekraczającym 30 mA:

  • w obwodach odbiorczych gniazd wtyczkowych o prądzie znamionowym nieprzekraczającym 20 A, które są przewidziane do powszechnego użytkowania i do obsługiwania przez osoby niewykwalifikowane, oraz
  • w obwodach zasilających urządzenia ruchome o prądzie znamionowym nieprzekraczającym 32 A, używane na zewnątrz.

W przypadku gdy spełnienie warunku samoczynnego wyłączenia w instalacji zasilanej z zespołu prądotwórczego jest niemożliwe, należy przeprowadzi ocenę skuteczności ochrony przeciwporażeniowej przy uszkodzeniu (przed dotykiem pośrednim) przez sprawdzenie, czy w czasie zwarcia doziemnego o prądzie zwarciowym równym Ia wystąpiłoby na częściach przewodzących dostępnych napięcie dotykowe o wartości nieprzekraczającej napięcia dotykowego, dopuszczalnego długotrwale w danych warunkach środowiskowych (UL).

Sprawdzenie to można wykonać przez obliczenie spodziewanych wartości napięć dotykowych, jakie wystąpią na objętych ochroną częściach przewodzących dostępnych.

Największa spodziewana wartość napięcia dotykowego UST będzie równa:

b wykorzystanie zespolow sieci nn wz13

Wzór 13

Zależność określona wzorem (13) wynika bezpośrednio z rys. 10.

Zgodnie z wymaganiami określonymi w PN-HD 60364-4-41 uważa się, że ochrona jest skuteczna, jeżeli napięcie dotykowe UST jest mniejsze od dopuszczalnego długotrwale w danych warunkach środowiskowych, czyli:

b wykorzystanie zespolow sieci nn wz14

Wzór 14

gdzie:

Ia– prąd wyłączający głównego urządzenia zabezpieczającego w zespole prądotwórczym, w czasie określonym w tab. 3., w [A],

ZPE – wartość impedancji przewodu ochronnego PE między rozpatrywaną częścią przewodzącą dostępną a głównym połączeniem wyrównawczym, w [Ω],

UL – dopuszczalna długotrwale w danych warunkach środowiskowych wartość napięcia dotykowego, w [V].

Jeżeli określony wzorem warunek nie może zostać spełniony, to należy wykonać połączenie wyrównawcze dodatkowe (miejscowe), łączące części przewodzące jednocześnie dostępne.

Skuteczność wykonanego połączenia wyrównawczego dodatkowego sprawdza się przez obliczenie spodziewanej wartości napięcia dotykowego zgodnie ze wzorem (PN‑HD 60364 4-41):

b wykorzystanie zespolow sieci nn wz15

Wzór 15

gdzie:

Ia – prąd wyłączający urządzenia zabezpieczającego (w obwodzie zasilania zespołu prądotwórczego lub urządzenia odbiorczego) w czasie określonym w tabeli 3., w [A],

RPE – wartość rezystancji przewodu połączenia wyrównawczego miejscowego PE pomiędzy częściami przewodzącymi dostępnymi jednocześnie, w [Ω],

UL – dopuszczalna długotrwale w danych warunkach środowiskowych wartość napięcia dotykowego, w [V].

Wartość rezystancji RPE należy ustalić na drodze obliczeniowej zgodnie ze wzorem:

b wykorzystanie zespolow sieci nn wz16

Wzór 16

gdzie:

L – długość przewodu wyrównawczego, w [m],

γ – przewodność elektryczna materiału żyły przewodu wyrównawczego, w [m/(Ω·mm2)],

S – przekrój żyły przewodu wyrównawczego, w [mm2].

Prowadzi to przy znanych odległościach części przewodzących jednocześnie dostępnych do określenia następującego warunku dotyczącego minimalnego przekroju przewodu wyrównawczego, przy określonej wartości napięcia dopuszczalnego długotrwale (UL):

Wnioski

  • Zespoły prądotwórcze mogą zostać wykorzystane do tymczasowego zasilania sieci elektroenergetycznych nn pod warunkiem przystosowania instalacji eklektrycznych w zasilanych budynkach do tymczasowych warunków zasilania. Należy również przystosować układ przyłączenia zespołu prądotwórczego do sieci elektroenergetycznej, tak by niemożliwe było dostarczanie energii z SEE oraz generatora zespołu prądotwórczego jednocześnie oraz podanie napięcia z generatora ZP do SEE.
  • W przypadku występowania obiektów użyteczności publicznej przyłączonych do wspólnej sieci, należy zablokować możliwość poboru energii z zespołu prądotwórczego instalowanego doraźnie. Budynki użyteczności publicznej należy wyposażyć w indywidualne zespoły prądotwórcze o mocy dobranej do potrzeb.
  • W instalacjach elektrycznych objętych układem zasilania tymczasowego należy zapewnić ochronę przeciwporażeniową gwarantującą spełnienie warunków określonych w normie [10] w warunkach normalnych oraz w warunkach zasilania tymczasowego z generatora zespołu prądotwórczego.

Przykładowy projekt stanowiący praktyczną realizację treści artykułu opublikujemy w nr. 1–2/2017.

Literatura

  1. J. Wiatr; M. Orzechowski, Poradnik projektanta elektryka, DW Medium 2012
  2. J. Wiatr, Zespoły prądotwórcze w układach zasilania awaryjnego, DW Medium 2008
  3. R. Kacejko; J. Machowski, Zwarcia w systemach elektroenergetycznych, WNT 2001
  4. Ochrona przeciwporażeniowa w warunkach polowych – MON Inż. 349/72
  5. Praca zbiorowa pod redakcją J. Wiatr, Poradnik Projektanta systemów zasilania awaryjnego i gwarantowanego – EATON POWER QUALITY 2008
  6. J. Wiatr; M. Miegoń, Zasilacze UPS i baterie akumulatorów w układach zasilania gwarantowanego, DW Medium 2008
  7. L. Danielski; R. Zacirka, Badanie ochrony przeciwporażeniowej w obiektach z przemiennikami częstotliwości, elektro.info nr 12/2005
  8. R. Matla – Gospodarka elektroenergetyczna, OW PW 1988
  9. J. Marzecki – Miejskie sieci rozdzielcze, OWPW
  10. PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41: Ochrona dla zapewnienia bezpieczeństwa. Ochrona przeciwporażeniowa
  11. J. Wiatr, A. Boczkowski, M. Orzechowski, Ochrona przeciwporażeniowa i dobór przewodów w instalacjach elektrycznych niskiego napięcia oraz ich zabezpieczeń, DW MEDIUM 2010
  12. J. Wiatr, M. Orzechowski, Dobór przewodów i kabli elektrycznych niskiego napięcia (zagadnienia wybrane), Dom Wydawniczy MEDIUM 2011, wydanie II.

Zasilacze UPS i zespoły prądotwórcze - pobierz bezpłatny e-book >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!


*) Norma N SEP‑E 002 określa wartości mocy zapotrzebowanej w kVA, dopuszcza posługiwanie się jednostkami mocy czynnej

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Dobór mocy źródeł zasilania awaryjnego i gwarantowanego

Dobór mocy źródeł zasilania awaryjnego i gwarantowanego Dobór mocy źródeł zasilania awaryjnego i gwarantowanego

W artykule zostały przedstawione podstawowe zasady doboru mocy zespołu prądotwórczego oraz zasilacza UPS, pracujących w układach zasilania budynków. Opisana została metodyka projektowania ochrony przeciwporażeniowej...

W artykule zostały przedstawione podstawowe zasady doboru mocy zespołu prądotwórczego oraz zasilacza UPS, pracujących w układach zasilania budynków. Opisana została metodyka projektowania ochrony przeciwporażeniowej przez samoczynne wyłączenie oraz sterowanie napięciem dotykowym do wartości dopuszczalnej długotrwale w instalacjach zasilanych z zespołu prądotwórczego oraz zasilacza UPS. Przedstawiona metodyka jest zgodna z wymaganiami normy PN-HD 60364-4-41:2009 Instalacje eklektyczne niskiego napięcia....

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania...

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania energii

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2) Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

W artykule przedstawiono porównanie akumulatorów litowo-jonowych z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej.

W artykule przedstawiono porównanie akumulatorów litowo-jonowych z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej.

Przewody szynowe w układach zasilania gwarantowanego

Przewody szynowe w układach zasilania gwarantowanego Przewody szynowe w układach zasilania gwarantowanego

W artykule piszemy m.in. o specyfice instalacji układów gwarantowanego zasilania, prądach znamionowych przewodów szynowych, spadkach napięcia, sprawdzeniu parametrów zwarciowych, nadto zestawienie najważniejszych...

W artykule piszemy m.in. o specyfice instalacji układów gwarantowanego zasilania, prądach znamionowych przewodów szynowych, spadkach napięcia, sprawdzeniu parametrów zwarciowych, nadto zestawienie najważniejszych cech instalacji przewodów szynowych w układach zasilania gwarantowanego.

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności...

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe.

Wymagania stawiane pomieszczeniom przeznaczonym do instalacji zespołów prądotwórczych i zasilaczy UPS

Wymagania stawiane pomieszczeniom przeznaczonym do instalacji zespołów prądotwórczych i zasilaczy UPS Wymagania stawiane pomieszczeniom przeznaczonym do instalacji zespołów prądotwórczych i zasilaczy UPS

Autor przedstawia niezbędne informacje związane z projektem budowlanym w zakresie instalacji zespołu prądotwórczego, jego warunkach, kwestii związanych z tłumieniem drgań, układu chłodzenia i wentylacji...

Autor przedstawia niezbędne informacje związane z projektem budowlanym w zakresie instalacji zespołu prądotwórczego, jego warunkach, kwestii związanych z tłumieniem drgań, układu chłodzenia i wentylacji oraz dodatkowych wymagać, w tym wymagań dla pomieszczeń z akumulatorami oraz odnoszących się do w zakresie wentylacji.

Źródła rozproszone jako element zapewnienia niezawodności zasilania w obiektach użyteczności publicznej

Źródła rozproszone jako element zapewnienia niezawodności zasilania w obiektach użyteczności publicznej Źródła rozproszone jako element zapewnienia niezawodności zasilania w obiektach użyteczności publicznej

Autor publikacji przedstawił wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej oraz omówił możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność...

Autor publikacji przedstawił wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej oraz omówił możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność zasilania w energię elektryczną.

Definicje mocy elektrycznych a nowoczesne odbiorniki energii

Definicje mocy elektrycznych a nowoczesne odbiorniki energii Definicje mocy elektrycznych a nowoczesne odbiorniki energii

Autor artykułu zajął się problematyką precyzyjnego zdefiniowania mierzonych wielkości mocy pod kątem rozliczeń finansowych z tytułu jej poboru. Kolejno przedstawia zagadnienia definicji mocy, jej fizycznych...

Autor artykułu zajął się problematyką precyzyjnego zdefiniowania mierzonych wielkości mocy pod kątem rozliczeń finansowych z tytułu jej poboru. Kolejno przedstawia zagadnienia definicji mocy, jej fizycznych wielkości i bilansu, a także nowoczesnych odbiorników energii elektrycznej oraz nowoczesnych układów przetwarzania energii elektrycznej.

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia...

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia dla 2 obiektów data center (duży oraz średni), każdy w trzech wariantach. Sformułowano wnioski końcowe.

Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej

Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej

W artykule przedstawiono wymagania dotyczące pewności zasilania obiektów szpitalnych. Omówiono uwarunkowania prawne ich zasilania, gwarancje spełnienia takich warunków, opisano źródła zasilania rezerwowego,...

W artykule przedstawiono wymagania dotyczące pewności zasilania obiektów szpitalnych. Omówiono uwarunkowania prawne ich zasilania, gwarancje spełnienia takich warunków, opisano źródła zasilania rezerwowego, w tym nowoczesne i niekonwencjonalne, podano też przykłady nowoczesnych rozwiązań.

Pomieszczenia z zespołami prądotwórczymi - podstawowe wymagania

Pomieszczenia z zespołami prądotwórczymi - podstawowe wymagania Pomieszczenia z zespołami prądotwórczymi - podstawowe wymagania

W artykule autor przestawił uwagi odnoszące się do kwestii dotyczących sporządzenia projektu instalacji zespołu prądotwórczego, warunków jego instalowania, spraw związanych z tłumieniem drgań, układu chłodzenia...

W artykule autor przestawił uwagi odnoszące się do kwestii dotyczących sporządzenia projektu instalacji zespołu prądotwórczego, warunków jego instalowania, spraw związanych z tłumieniem drgań, układu chłodzenia oraz dodatkowych wymagań.

Układy samoczynnego załączania rezerwy, czyli „SZybki Ratunek” na czarną godzinę

Układy samoczynnego załączania rezerwy, czyli „SZybki Ratunek” na czarną godzinę Układy samoczynnego załączania rezerwy, czyli „SZybki Ratunek” na czarną godzinę

Układy samoczynnego załączania rezerwy, zwane w skrócie SZR, pozwalają na automatyczne załączanie odbiorników do toru rezerwowego w przypadku, gdy w torze zasilania podstawowego nastąpi zanik zasilania....

Układy samoczynnego załączania rezerwy, zwane w skrócie SZR, pozwalają na automatyczne załączanie odbiorników do toru rezerwowego w przypadku, gdy w torze zasilania podstawowego nastąpi zanik zasilania. Bez układów samoczynnego załączania rezerwy nie mogłyby funkcjonować szpitale, ale i pracownicy rozmaitych urzędów czy centrów przetwarzania danych tzw. data center, nie mogliby spokojnie pracować.

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Autorzy porównali akumulatory litowo-jonowe z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej oraz omówili wymagania dla akumulatorów wykorzystywanych w zasobnikach. Opisali też zasadę...

Autorzy porównali akumulatory litowo-jonowe z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej oraz omówili wymagania dla akumulatorów wykorzystywanych w zasobnikach. Opisali też zasadę działania ogniw litowo-jonowych i najważniejsze rodzaje ogniw oraz porównali ich parametry i skonfrontowali z parametrami ogniw ołowiowych. Szczególną uwagę zwrócili na żywotność cykliczną, odporność na temperaturę i małe wymagania eksploatacyjne, w tym możliwość stosowania w pomieszczeniach ogólnego...

Odporność systemów zasilania gwarantowanego na awarie (część 2.) - problemy z niezawodnością

Odporność systemów zasilania gwarantowanego na awarie (część 2.) - problemy z niezawodnością Odporność systemów zasilania gwarantowanego na awarie (część 2.) - problemy z niezawodnością

W drugiej części publikacji Autor zajmuje się kwestiami dotyczącymi niezawodności instalacji gwarantowanego zasilania pod kątem ich wydajności, w tym także w aspektach konieczności chłodzenia, zarządzania...

W drugiej części publikacji Autor zajmuje się kwestiami dotyczącymi niezawodności instalacji gwarantowanego zasilania pod kątem ich wydajności, w tym także w aspektach konieczności chłodzenia, zarządzania bateriami akumulatorów, odpornością i dostępnością.

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (cześć 2.)

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (cześć 2.) Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (cześć 2.)

Artykuł przedstawia wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności,...

Artykuł przedstawia wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności, a ponadto omawia aspekty techniczne i ekonomiczne związane z niezawodnością i formułuje wnioski końcowe.

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.) Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności,...

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności, omawia aspekty techniczne i ekonomiczne związane z niezawodnością oraz formułuje wnioski końcowe.

Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji

Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji

W artykule zostały przedstawione podstawowe wymagania eksploatacyjne dla baterii akumulatorów stosowanych w zasilaczach UPS, jako magazyny energii, których spełnienie gwarantuje utrzymanie sprawności przez...

W artykule zostały przedstawione podstawowe wymagania eksploatacyjne dla baterii akumulatorów stosowanych w zasilaczach UPS, jako magazyny energii, których spełnienie gwarantuje utrzymanie sprawności przez zakładany okres eksploatacji.

Zasady doboru klimatyzacji dla pomieszczeń biurowych i małych serwerowni

Zasady doboru klimatyzacji dla pomieszczeń biurowych i małych serwerowni Zasady doboru klimatyzacji dla pomieszczeń biurowych i małych serwerowni

Zastosowanie klimatyzacji umożliwia utrzymanie właściwych warunków środowiskowych w pomieszczeniach, które zapewniają komfort pracy ludzi oraz odbierają zyski ciepła od urządzeń elektronicznych. Urządzenia...

Zastosowanie klimatyzacji umożliwia utrzymanie właściwych warunków środowiskowych w pomieszczeniach, które zapewniają komfort pracy ludzi oraz odbierają zyski ciepła od urządzeń elektronicznych. Urządzenia klimatyzacyjne mają znaczący wpływ na składniki klimatu pomieszczenia: temperaturę, wilgotność powietrza, jego czystość oraz ruch (cyrkulację powietrza).

Podstawowe wymagania przy instalacji zespołu prądotwórczego

Podstawowe wymagania przy instalacji zespołu prądotwórczego Podstawowe wymagania przy instalacji zespołu prądotwórczego

Stale rośnie liczba obiektów wymagających zwiększonej niezawodności zasilania, jak np. centra handlowe, banki, centra przetwarzania danych, szpitale, obiekty telekomunikacyjne oraz kompleksy biurowe w...

Stale rośnie liczba obiektów wymagających zwiększonej niezawodności zasilania, jak np. centra handlowe, banki, centra przetwarzania danych, szpitale, obiekty telekomunikacyjne oraz kompleksy biurowe w pełni sterowane przez układy automatyki budynkowej. Obiekty te wymagają zastosowania źródeł zasilania o mocy od kilkuset kW do kilku MW. Większe jednostki, o mocach kilku MW i większych, mogą być napędzane turbinami gazowymi i są stosowane również do pokrywania dobowych szczytów obciążenia w systemie...

Odporność systemów zasilania gwarantowanego na awarie (część 1.)

Odporność systemów zasilania gwarantowanego na awarie (część 1.) Odporność systemów zasilania gwarantowanego na awarie (część 1.)

Działanie w ponadprzeciętnie konkurencyjnej branży oznacza, że operatorzy centrów przetwarzania danych znajdują się pod ogromną presją, aby utrzymać niskie koszty operacyjne, a jednocześnie w czasach dużego...

Działanie w ponadprzeciętnie konkurencyjnej branży oznacza, że operatorzy centrów przetwarzania danych znajdują się pod ogromną presją, aby utrzymać niskie koszty operacyjne, a jednocześnie w czasach dużego nacisku proekologicznego są również rozliczani z ograniczania wpływu oddziaływania prowadzonego biznesu na środowisko naturalne. Nie jest trudno zauważyć, że efektywność energetyczna jest kluczem do skutecznego reagowania na te naciski, ale efektywność energetyczna nie jest i nigdy nie może być...

Zasilacze bezprzerwowe (UPS)

Zasilacze bezprzerwowe (UPS) Zasilacze bezprzerwowe (UPS)

Zasilacz UPS to urządzenie przeznaczone do zapewnienia bezprzerwowej pracy urządzeń komputerowych, łączności oraz innych urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia i inne zakłócenia występujące...

Zasilacz UPS to urządzenie przeznaczone do zapewnienia bezprzerwowej pracy urządzeń komputerowych, łączności oraz innych urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia i inne zakłócenia występujące w sieci zasilającej. Jest on urządzeniem energoelektronicznym, umożliwiającym zasilanie odbiorników z baterii lub innego magazynu energii elektrycznej, w przypadku zaniku napięcia w sieci zasilającej.

Jakość energii elektrycznej w mikrosieciach

Jakość energii elektrycznej w mikrosieciach Jakość energii elektrycznej w mikrosieciach

Stosowanie zespołów prądotwórczych jako rezerwowego źródła zasilania oraz współpracujących z nimi zasilaczy UPS stało się zjawiskiem powszechnym i dotyczy coraz większej liczby obiektów, w których ciągłość...

Stosowanie zespołów prądotwórczych jako rezerwowego źródła zasilania oraz współpracujących z nimi zasilaczy UPS stało się zjawiskiem powszechnym i dotyczy coraz większej liczby obiektów, w których ciągłość zasilania jest priorytetem.

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.