elektro.info

Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej

Distributed Generation as an Element to Increase of Power Supply Reliability in Public Utility Buildings

W artykule przedstawiono wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej. Omówiono także możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność zasilania w energię elektryczną.

W artykule przedstawiono wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej. Omówiono także możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność zasilania w energię elektryczną.

Budynki użyteczności publicznej w większości zaliczają się do obiektów o zwiększonej pewności zasilania i należą do pierwszej kategorii odbiorców energii elektrycznej. Szpitale wśród tych budynków są szczególnie ważne ze względu na funkcję, jaką pełnią – stworzone są, aby ratować ludzkie życie i zdrowie, i nawet chwilowa utrata zasilania może powodować ogromne straty i niemożliwe do cofnięcia konsekwencje.

Zobacz także

mgr inż. Jacek Katarzyński, dr hab. inż Marek Olesz Pomiar impedancji pętli zwarciowej w obwodach zasilanych z UPS-ów typu online oraz zasada oceny skuteczności ochrony przeciwporażeniowej (część 1.)

Pomiar impedancji pętli zwarciowej w obwodach zasilanych z UPS-ów typu online oraz zasada oceny skuteczności ochrony przeciwporażeniowej (część 1.) Pomiar impedancji pętli zwarciowej w obwodach zasilanych z UPS-ów typu online oraz zasada oceny skuteczności ochrony przeciwporażeniowej (część 1.)

Zasilacze UPS są obecnie najpopularniejszym środkiem przeciwdziałającym zaburzeniom w sieci energetycznej i chroniącym odbiorniki przed skutkami tych zaburzeń [1]. Wyposażone w magazyn energii elektrycznej,...

Zasilacze UPS są obecnie najpopularniejszym środkiem przeciwdziałającym zaburzeniom w sieci energetycznej i chroniącym odbiorniki przed skutkami tych zaburzeń [1]. Wyposażone w magazyn energii elektrycznej, najczęściej w postaci akumulatorów kwasowo-ołowiowych w technologii AGM VRLA (Absorbe Glass Mat Valve Regulated Lead Acid) [2], są w stanie zapewnić bezprzerwowe zasilanie odbiornikom wymagającym ciągłości zasilania. Skutki utraty danych, przerwania ciągu technologicznego czy utraty życia ludzkiego...

mgr inż. Karol Kuczyński Dobór zasilacza UPS do trudnych warunków eksploatacji

Dobór zasilacza UPS do trudnych warunków eksploatacji Dobór zasilacza UPS do trudnych warunków eksploatacji

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu...

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu danego systemu należy uwzględnić typ zasilacza, biorąc pod uwagę jego niezawodność oraz sposób przyłączenia odbiorników i ich grup. W fazie przygotowania projektu należy wziąć pod uwagę znaczenie poszczególnych odbiorników i wymagany czas podtrzymania zasilania [1, 2]. Praca niektórych z nich...

mgr inż. Karol Kuczyński, mgr inż. Julian Wiatr Ogólne wymagania dotyczące zasilania w energię elektryczną oraz stosowania nowoczesnych technologii informatycznych w służbie zdrowia

Ogólne wymagania dotyczące zasilania w energię elektryczną oraz stosowania nowoczesnych technologii informatycznych w służbie zdrowia Ogólne wymagania dotyczące zasilania w energię elektryczną oraz stosowania nowoczesnych technologii informatycznych w służbie zdrowia

Zastosowanie nowoczesnych systemów informatycznych wspomagających aparaturę medyczną stosowaną do obrazowania wymusza zapewnienie niezawodności zasilania tych systemów. Obecnie diagnostyka medyczna coraz...

Zastosowanie nowoczesnych systemów informatycznych wspomagających aparaturę medyczną stosowaną do obrazowania wymusza zapewnienie niezawodności zasilania tych systemów. Obecnie diagnostyka medyczna coraz częściej wspierana jest poprzez sieci neuronowe i uczenie głębokie, które wspomagają identyfikację zmian chorobowych oraz wymagają dużej mocy obliczeniowej procesorów i układów graficznych.

Zasilanie szpitali odbywa się głównie poprzez sieć elektroenergetyczną, a pewność zasilania uzyskuje się, stosując dwie, niezależne od siebie linie zasilające – z dwóch różnych GPZ-ów lub dwóch różnych sekcji tego samego GPZ-u.

Odpowiednie współdziałanie zasilania z linii uzyskuje się poprzez zastosowanie systemów sterowania automatycznego, w tym układy automatyki SZR – samoczynnego załączenia rezerwy.

Dodatkowym źródłem energii w szpitalach są spalinowe agregaty prądotwórcze, które stosuje się w przypadku całkowitego zaniku napięcia spowodowanego poważniejszą awarią w dostawie energii.

Szczególnym elementem w szpitalu są też UPS-y zapewniające bezprzerwowe zasilanie [1, 2, 17].

Uwarunkowania prawne zasilania obiektów szpitalnych

Warunki, jakie muszą być spełnione przy zasilaniu szpitali, są określone w dokumentach normalizacyjnych oraz rozporządzeniach ministra gospodarki.

Jedną z najważniejszych norm w tym zakresie jest polska norma PN-EN 50160 Parametry napięcia zasilającego w publicznych sieciach rozdzielczych opublikowana w 2002 r. [3].

Jest ona tłumaczeniem angielskiej normy EN 50160:1999 i zawiera podstawowe informacje na temat standardów jakościowych energii elektrycznej. Określone w niej przepisy dotyczą zapewnienia przez dostawcę odpowiednich parametrów jakościowych energii elektrycznej w celu poprawnej pracy urządzeń w budynkach użytku publicznego.

Natomiast wymagania stawiane budynkom opieki zdrowotnej zawarte są w Rozporządzeniu Ministra Zdrowia z dnia 26 czerwca 2012 r. w sprawie wymagań, jakim powinny odpowiadać pod względem fachowym i sanitarnym pomieszczenia i urządzenia zakładu opieki zdrowotnej.

Najważniejszymi informacjami dotyczącymi wymagań instalacji elektrycznych jest konieczność posiadania przez szpital rezerwowego źródła zasilania: § 41. Rezerwowym źródłem zaopatrzenia szpitala w energię elektryczną powinny być agregat prądotwórczy wyposażony w funkcję autostartu, zapewniający co najmniej 30% potrzeb mocy szczytowej, a także urządzenie zapewniające odpowiedni poziom bezprzerwowego podtrzymania zasilania.

Pewność zasilania obiektów szpitalnych

Jednym z parametrów służących do oceny jakości dostarczanej energii elektrycznej jest niezawodność zasilania. Jest to podstawowy parametr, który odnosi się do przerw w zasilaniu, czyli do sytuacji, kiedy odbiorca jest pozbawiony dostawy energii.

Zróżnicowane wymagania dotyczące niezawodności zasilania są powodem wprowadzenia określonych klasyfikacji odbiorców w tym zakresie, przy czym odrębne klasyfikacje istnieją dla odbiorców: przemysłowych oraz komunalnych, czyli odbiorców zasilanych z publicznych sieci rozdzielczych, zwykle na napięciu nie wyższym od 1 kV.

Odbiorniki przemysłowe dzieli się na trzy kategorie, w zależności od skutków, jakie może powodować przerwa w pracy tych urządzeń, są to:

  • kategoria I – o najwyższej pewności zasilania,
  • kategoria II – o zwiększonej pewności zasilania,
  • kategoria III – o zwykłej pewności zasilania.

Natomiast w tab. 1. zamieszczono podział kategorii odbiorców energii elektrycznej w zależności od stopnia niezawodności zasilania na podstawie [6].

b generacja rozproszona tab

Tab. 1. Kategorie odbiorców energii elektrycznej w zależności od stopnia niezawodności zasilania [6]

Instalacje elektryczne w szpitalach muszą spełniać specjalne wymagania, aby zapewnić pewne i bezpieczne zasilanie, m.in. zasilanie powinno być niezawodne i bezprzerwowe, uszkodzenie izolacji nie może powodować przerw w zasilaniu, prądy upływu muszą być jak najmniejsze i nie mogą przekraczać określonych poziomów dopuszczalnych, konieczny jest stały monitoring układów zasilających w celu sprawdzania poprawności ich działania.

Dla zapewnienia bezpieczeństwa elektrycznego w szpitalach i innych obiektach opieki zdrowotnej stosuje się niezależne źródła zasilania z sieci miejskiej oraz źródła bezpiecznego zasilania – agregaty prądotwórcze oraz UPS-y. Dzięki tym rozwiązaniom w przypadku awarii głównego źródła zasilania systemy automatyki przełączą odbiorniki na zasilanie ze źródła bezpiecznego zasilania, które pokryje niezbędne obciążenie.

Zasady te określone są w normie PN-HD 60364-7-710, rozdział 556.5.2.1.1: „W pomieszczeniach medycznych wymaga się, aby w przypadku awarii zasilania podstawowego zostało uruchomione źródło bezpiecznego zasilania dla zasilenia urządzeń w określonym przedziale czasu i określonym czasie przełączenia” [5].

Wysoki poziom niezawodności zasilania szpitala w energię elektryczną jest warunkiem bezpieczeństwa wszystkich pacjentów, a w szczególności tych, którzy poddawani są zabiegom medycznym.

Uzyskanie takiego poziomu niezawodności możliwe jest poprzez zastosowanie zasilania elektrycznego z wielu źródeł. W praktyce realizowane jest to poprzez stosowanie kombinacji kilku rozwiązań zasilania (rys. 1.):

  • podwójne zasilanie z sieci energetycznej (zasilanie dwustronne),
  • stosowanie zasilania własnego szpitala (generator spalinowy),
  • zasilanie krytycznych odbiorników z wykorzystaniem zasilaczy UPS (bezprzerwowych),
  • zasilania wybranych obwodów elektrycznych z użyciem baterii akumulatorów (np. lampy operacyjne).
b generacja rozproszona rys

Rys. 1. Uproszczony schemat zasilania odbiorów w szpitalu (odbiory według kategorii odbiorów przemysłowych)

Układy zasilania awaryjnego powinny cechować określone właściwości, które mogą być mniej lub bardziej ważne, w zależności od zastosowania.

Idealny system powinien spełniać wszystkie poniższe wymagania:

  • zakres mocy – system zasilania awaryjnego musi być w stanie dostarczyć wymaganą ilość energii, szczególnie do odbiorników krytycznych. Ważne jest również, aby był tak dobrany, żeby nie następowało jego przeciążanie,
  • wydajność systemu – musi być wystarczająco duża, tak aby można było zapewnić odpowiednią ilość energii przez długi okres czasu,
  • możliwość natychmiastowego przejęcia pełnego obciążenia w przypadku zaniku zasilania z sie­ci elektroenergetycznej,
  • niezawodność,
  • trwałość, akceptowalny koszt inwestycyjny oraz stosunkowo niskie koszty eksploatacji. Chociaż w przypadku zapasowych jednostek, które pracują czasem tylko kilka godzin w roku, zarówno jeden, jak i drugi koszt może być bardzo wysoki,
  • elastyczność i skalowalność – czyli możliwość rozbudowy o nowe jednostki z zapewnieniem ich wzajemnej współpracy.

Niezależna linia zasilająca – rezerwowe zasilanie za pomocą linii elektroenergetycznej. Przez taką linię rozumie się rozwiązanie, w którym awaria, np. zwarcie na jednej linii, nie powoduje równoczesnego wyłączenia drugiej linii, tylko przejęcie przez nią obciążenia obu linii. Natomiast sytuacja wyłączenia obu linii jest bardzo mało prawdopodobna – powinny one być zasilane z osobnych GPZ-ów lub różnych sekcji tego samego GPZ-u.

Zasadniczo rezerwowa linia zasilająca służy do przejęcia obciążenia na dłuższy okres czasu w przypadku awarii zasilania podstawowego z pierwszej linii zasilającej. Dodatkowo należy stosować również inne urządzenia rezerwowego zasilania, które powodują poprawę jakości napięcia zasilającego, niwelując skutki zapadów spowodowanych zwarciami w systemie wewnętrznym lub krótkotrwałymi zakłóceniami w sieci.

Systemy gwarantowanego zasilania składają się z dwóch systemów: UPS (zespołu statycznego) i agregatu prądotwórczego (zespołu dynamicznego). Są one niezależne od siebie, co powoduje, że tworzą tzw. układ nadmiarowy, inaczej redundantny – gwarantują pewność dostaw energii elektrycznej.

Te redundantne źródła zasilania są podłączone do systemu zasilania obiektu przez układ samoczynnego załączenia rezerwy (SZR), który przełącza źródła zasilania w przypadku awarii. Energia elektryczna jest dystrybuowana do poszczególnych obwodów odbiorczych w zależności od ich ważności.

Zespoły prądotwórcze stosowane w szpitalach są rezerwowym źródłem zasilania – składają się z jednego lub większej liczby wysokoprężnych silników spalinowych produkujących energię elektryczną mogącą zasilić potrzebne układy szpitala. Są one przystosowane do dość długiego okresu pracy – od kilku godzin do kilku, kilkunastu dni w przypadku większych awarii zewnętrznych.

Ich moc jest różna w zależności od wymagań poszczególnych jednostek szpitalnych. Są załączane automatycznie, w przypadku wystąpienia awarii, przy czym ich rozruch trwa kilka sekund dla małych jednostek do kilkudziesięciu dla większych agregatów.

Agregaty prądotwórcze są zazwyczaj drugim rezerwowym źródłem zasilania i włączają się samoczynnie w przypadku braku lub znacznego obniżenia się napięcia w liniach zasilających budynek szpitalny.

Układy UPS z baterią akumulatorów są powszechnie stosowane jako źródła zasilania rezerwowego – dają one pewność przełączenia bezprzerwowego (nie powstają chwilowe zapady napięcia). Układy te mają wysoką sprawność oraz są produkowane w bardzo szerokim zakresie mocy, przez co można dobrać odpowiedni UPS do potrzeb szpitala.

Często zdarza się również, że stosowane są dwa UPS-y – w normalnym stanie są obciążone po ok. 40%, a w razie potrzeby (np. awarii jednego z nich), drugi może przejąć całe obciążenie. Są sterowane mikroprocesorami, przez co zabezpieczają przed przerwami w dostawie energii, ale także poprawiają jakość energii elektrycznej podczas normalnej pracy.

UPS-y współpracują z bateriami akumulatorów, które są stale doładowywane w normalnym stanie pracy, a w przypadku awarii są przełączane na zasilanie bateryjne.

Dla zapewnienia odpowiedniego zadziałania zabezpieczeń i załączenia rezerwowych źródeł energii stosowane są układy samoczynnego załączenia rezerwy (SZR), a często nawet kombinacje układów rezerwowego zasilania, aby zapewnić niezawodność działania zasilania. Odbiorniki w danym obiekcie są podzielone na grupy w zależności od priorytetu zasilania i w przypadku awarii najważniejsze jest załączenie odbiorników z pierwszej grupy przez samoczynne przełączenie na rezerwowe źródło zasilania bez jakiejkolwiek przerwy w zasilaniu.

Źródła zasilania rezerwowego

Źródłem zasilania rezerwowego zgodnie z przepisami powinien być zespół prądotwórczy składający się z silnika spalinowego i prądnicy o rozruchu automatycznym, którego czas pełnego przejęcia obciążenia jest mniejszy niż 15 s.

Moc zespołu powinna zapewnić pokrycie zapotrzebowania umożliwiającego normalną pracę szpitala w warunkach awaryjnych, co stanowi około 35% mocy szczytowej. Zadziałanie zespołu prądotwórczego powinno nastąpić przy zaniku napięcia lub jego obniżeniu o 10% w czasie ponad 3 s. Zbiorniki paliwa powinny mieć pojemność zapewniającą nieprzerwaną pracę zespołu pod pełnym obciążeniem przez minimum 24 h.

Agregaty prądotwórcze są stosowane jako rezerwowe źródło zasilania wszędzie tam, gdzie wymagany czas podtrzymania przekracza 40 min.

Agregaty prądotwórcze, czyli prądnice napędzane są najczęściej silnikiem spalinowym wysokoprężnym, rzadziej turbiną gazową, powinny być gotowe przejąć obciążenie na czas od kilku godzin nawet do kilku dni. Układy te wyposażone są zwykle w autonomiczny system automatycznej regulacji prędkości obrotowej i synchronizacji z zewnętrzną siecią zasilającą lub z innymi jednostkami prądotwórczymi. Produkowane są w bardzo szerokim zakresie swych mocy znamionowych, od kilkunastu kW do kilku MW. Źródłem zasilania zapasowego mogą być baterie akumulatorów lub UPS. W przypadku baterii akumulatorów czas przerwy nie może przekroczyć 0,5 s przy natychmiastowym działaniu załączenia, a stosując odpowiednio dobrany UPS, można zapewnić działanie bezprzerwowe o zasilaniu ciągłym.

Zadaniem źródła zasilania zapasowego jest zasilanie lamp bezcieniowych w salach operacyjnych i opraw oświetlenia ewakuacyjnego, a także aparatów elektromedycznych służących do podtrzymania ważnych funkcji życiowych.

Do głównych zalet zasilaczy UPS należy zaliczyć takie cechy, jak:

  • izolowanie zakłóceń pochodzących z sieci energetycznej,
  • utrzymywanie stałej wartości napięcia oraz
  • w razie potrzeby izolowanie podłączonych do niego urządzeń od sieci energetycznej.

Wyróżnia się następujące podstawowe rodzaje zasilaczy UPS:

  • pracujące w trybie VFD, czyli Voltage, Frequency Dependent (układy o biernej gotowości),
  • pracujące w trybie VI, czyli Output Voltage Independent (układy liniowo interaktywne),
  • pracujące w trybie VFI, czyli Voltage, Frequency Independent (układy o podwójnej konwersji).

Układy o biernej gotowości są najprostszymi zasilaczami, w których podczas normalnych warunków zasilania bateria akumulatorów jest stale doładowywana, natomiast w przypadku konieczności zasilania rezerwowego odbiory są przełączane na zasilanie z baterii poprzez falownik. Typowy czas zasilania rezerwowego przewidziany jest na ok. 3 godzin, przy czym czas poprzedniego ładowania baterii akumulatorów jest dwukrotnie dłuższy, czyli ok. 6 godzin.

Układy liniowo interaktywne są zasilane z sieci podczas normalnej pracy w ten sposób, że część pobieranej energii zużywana jest na stałe doładowywanie baterii akumulatorów, która z kolei dostarcza energię do odbiornika, wspomagając w ten sposób ciągły podstawowy układ zasilania.

W przypadku przerwy w zasilaniu podstawowym odbiory zasilane są w sposób ciągły z baterii akumulatorów poprzez przekształtnik, pracujący teraz jako falownik.

Układy UPS o podwójnej konwersji to najbardziej rozbudowane układy zasilania bezprzerwowego. W czasie normalnej pracy energia jest przetwarzana dwukrotnie: raz z prądu przemiennego na prąd stały, a następnie z prądu stałego na prąd przemienny.

Zaletą tych układów jest płynne i zupełnie nieodczuwalne dla odbiornika przejście z zasilania podstawowego na rezerwowy [7].

Nowoczesne i niekonwencjonalne źródła zasilania

Systemy kogeneracyjne, zwane również systemami CHP (Combined Heat and Power) o mocy od kilku kilowatów do kilkudziesięciu kilowatów stosowane są także jako jednostki zasilające w budynkach użyteczności publicznej.

Urządzenia kogeneracyjne stosuje się tam, gdzie ma miejsce stałe zapotrzebowanie na ciepło i energię elektryczną, np. w szkołach, szpitalach, sanatoriach, hotelach i małych osiedlach i zakładach przemysłowych.

Występowanie przez określony czas w roku odpowiedniego, w miarę stałego, zapotrzebowania na ciepło i energię elektryczną (co ma miejsce np. w szpitalach), ma zasadnicze znaczenie dla opłacalności takich inwestycji.

Małe układy skojarzone zasilane są głównie gazem zimnym, biogazem, a rzadziej olejem opałowym.

Energia elektryczna generowana w skojarzeniu może być w całości zużyta w obiekcie, jak również w całości lub części sprzedana do sieci, lub innym odbiorcom.

Coraz częściej wskazuje się też na duże możliwości i korzyści wykorzystania układów trigeneracyjnych o małych mocach.

Układy kogeneracyjne z silnikami spalinowymi mają moc od 5 kW do 6 MW energii elektrycznej i dostarczają ciepło o temp. 70÷120°C. Ich sprawność całkowita waha się od 80 do ponad 90%.

Mikroturbiny gazowe o mocy od kilku do kilkuset kilowatów dzięki zaawansowanym systemom sterowania pracują bezobsługowo, a automatyczny rozruch odbywa się z synchronizacją do sieci dystrybucji energii elektrycznej.

Mikroturbiny mogą być zasilane gazem ziemnym, płynnym, biogazem lub olejem napędowym. Zbudowane są zwykle jako zespół jednostopniowej sprężarki promieniowej i jednostopniowej turbiny promieniowej z rekuperatorem stanowiącym wymiennik regeneracyjny. Osiągają sprawność wytwarzania energii elektrycznej na poziomie 20÷35%, a ciepła w zakresie 40÷60%, całkowita sprawność w układzie kogeneracyjnym wynosi ponad 80%.

Ogniwa paliwowe są to urządzenia elektrochemiczne, które wytwarzają energię elektryczną i ciepło bezpośrednio z zachodzącej w nich reakcji chemicznej, w wyniku stale dostarczanego do nich z zewnątrz paliwa. Ich największą zaletą jest bardzo niska emisja zanieczyszczeń do atmosfery.

Technologia ogniw paliwowych jest intensywnie rozwijana w krajach UE, Japonii oraz USA.

Większość ogniw paliwowych do produkcji energii elektrycznej i ciepła wykorzystuje wodór (ogniwa wodorowe). Ogniwa paliwowe używane są zarówno w małych, domowych jednostkach produkujących energię elektryczną i ciepło (systemy CHP) lub pomocniczych źródłach prądu o mocach kilkudziesięciu kilowatów, jak i w dużych elektrowniach o mocy kilku megawatów. Urządzenia takie są stosowane w miejscach, gdzie ważna jest ciągła i pewna dostawa energii elektrycznej i ciepła: w szpitalach, bazach wojskowych, budynkach biurowych i w przemyśle.

Do niekonwencjonalnych źródeł energii w układach rezerwowego zasilania należy zaliczyć także: koła zamachowe, superkondensatory, nadprzewodnikowe magnetyczne zasobniki energii (SMES). Źródła te w większości znajdują się w początkowej fazie rozwoju i nie są stosowane komercyjnie.

Podejmowane są także próby wykorzystania energii wiatru oraz promieniowania słonecznego do zasilania budynków użyteczności publicznej. Jednakże ze względu na stochastyczny charakter pracy tych źródeł trudno je uznać za źródła pełniące funkcje zwiększające pewność zasilania. Natomiast z powodzeniem mogą być one stosowane jako jednostki, które uzupełniają źródła podstawowe, obniżają zapotrzebowanie na moc dostarczoną z systemu.

Zarówno elektrownie wiatrowe, jak i panele fotowoltaiczne mogą także współpracować z lokalnymi magazynami energii i wtedy takie hybrydowe układy wytwórcze mogą spełniać funkcję zwiększania niezawodności zasilania budynków.

Przykłady nowoczesnych rozwiązań

Coraz popularniejsze staje się także instalowanie własnych systemów zasilania takich jak odnawialne źródła energii, np. instalacja paneli fotowoltaicznych lub układy kogeneracyjne CHP.

Poniżej podano przykłady placówek medycznych, które wyposażone są w instalacje źródeł rozproszonych.

W szpitalu Rhön-Klinikum w Bad Neustadt w 2000 r. zainstalowane zostało jedno z najdłużej pracujących ogniw paliwowych. Urządzenie HotModule ma moc elektryczną 250 kW i pozwala na wytworzenie 180 kW ciepła.

W szpitalu St. Agnes Hospital w Bocholt (Niemcy) zainstalowano ogniwo paliwowe PureCell(R) Model 200 (o mocy 200 kW). Ogniwo paliwowe wytwarza energię elektryczną oraz ciepło, a także zapewnia produkcję chłodu do urządzeń klimatyzacyjnych. Dostępność ogniwa paliwowego wynosi ok. 97% [13].

W szpitalu St. Helena Hospital w Napa Valley (Kalifornia) zainstalowano w 2009 r. ogniwo paliwowe PureCell(R) Model 400 (o mocy 400 kW) [14].

W szpitalu Hartford Hospital w Connecticut zaistalowane zostało ogniwo paliwowe o mocy 1,4 MW [15].

Szpital Sutter Health’s w Santa Rosa (USA) wyposażony został w ogniwo paliwowe o mocy 375 kW, co zapewnia ponad 70% zapotrzebowania na energię elektryczną [16].

W Stanach Zjednoczonych w kilku szpitalach zainstalowano jednostki kogeneracyjne, które służą do produkcji energii elektrycznej na potrzeby własne, a także produkują ciepło na potrzeby szpitala.

Szpital Johns Hopkins ma jednostkę CHP o mocy elektrycznej 15 MW, Szpital Mayo Clinic o mocy elektrycznej 5,2 MW, a szpital Presbyterian w Nowym Jorku układ kogeneracyjny o mocy 7,5 MW.

W szpitalu Christian Health Care Center w Wyckoff (stan New Jersey) pracuje mikroturbina kogeneracyjna o mocy elektrycznej 260 kW.

Szpital St. Peter’s University Hospital w New Brunswick (New Jersey – USA) zainstalował ponad 2,1 MW w panelach fotowoltaicznych. Projekt został zrealizowany w 2011 r. [12].

W Haiti, w miejscowości Mirebalais (ok. 60 km od stolicy Port-au-Prince) lokalny szpital został wyposażony w 1800 paneli fotowoltaicznych o mocy 280 W każdy. Łączna moc to ponad 500 kW. Energia dodatkowo magazynowana jest w akumulatorach aby zapewnić ciągłość dostaw energii elektrycznej [10].

Szpital Queensland Health (USA) ma zainstalowane 266 kW w panelach fotowoltaicznych, co pozwala na wyprodukowanie ok. 385 kWh energii elektrycznej rocznie [11].

W Wojewódzkim Specjalistycznym Szpitalu im dr. Wł. Biegańskiego w Łodzi, w ramach programu oszczędnościowego energii elektrycznej, zainstalowano ogniwa fotowoltaiczne o łącznej mocy 219 kW. Inwestycja oficjalnie otwarta została w październiku 2012 r., dzięki czemu szpital znacznie obniżył swój pobór energii od zewnętrznych dostawców, a równocześnie zyskał dodatkowe rezerwowe źródło zasilania oraz stał się obiektem spełniającym wszelkie normy środowiskowe w zakresie ochrony atmosfery.

Każdy pawilon szpitala ma własną instalację fotowoltaiczną, z której energia jest wykorzystywana na potrzeby własne oddziałów, ale także istnieje możliwość przesyłania energii między pawilonami w zależności od zapotrzebowania.

System jest również wyposażony w akumulatory, które gromadzą część energii i pozwalają na jej użytkowanie w godzinach nocnych. Dodatkowo szpital został objęty programem dotyczącym zainstalowania jednostki trigeneracyjnej, która ma zapewnić niezależność zasilania w energię elektryczną oraz ciepło, a także ma produkować chłód na potrzeby klimatyzacji [9].

Wojewódzki Szpital Specjalistyczny w Legnicy od 2014 r. ma własną instalację kogeneracyjną do wytwarzania energii elektrycznej i ciepła. Jednostka kogeneracyjna jest zasilana gazem ziemnym i ma moc 100 kW energii elektrycznej oraz 200 kW energii cieplnej, dzięki czemu wytwarza energię cieplną na potrzeby ciepłej wody użytkowej, ale również zasila w części budynki szpitala w energię elektryczną [9].

Wojewódzki Szpital Specjalistyczny w Radomiu dzięki wsparciu z funduszy europejskich zrealizował projekt zasilania szpitala przy pomocy źródeł odnawialnych. Po pierwsze powstał system kogeneracyjny o mocy elektrycznej 1166 kW i cieplnej 1150 kW wytwarzający ciepło i energię z gazu. Dodatkowo na dachu jednego z budynków zainstalowano ogniwa fotowoltaiczne, a także postawiono wiatrak, z którego energia wykorzystywana jest do zewnętrznego oświetlania szpitala [9].

Powyższe opisy szpitali są jedynie przykładami zmian zachodzących w zasilaniu szpitali w Polsce i na świecie.

Coraz częściej przeprowadzane są modernizacje w szpitalach mające na celu oszczędniejsze gospodarowanie energią oraz instalowanie nowych źródeł energii, które uniezależniają szpitale od operatorów zewnętrznych, ale także zapewniają dodatkowe źródła rezerwowego zasilania.

Podsumowanie

Zagadnienie zasilania budynków szpitalnych jako obiektów o specjalnych wymaganiach technicznych to niezwykle szeroki, interesujący, ale również trudny temat. Jednak jest to niezwykle ważne zagadnienie, gdyż od pewności zasilania szpitala zależy ludzkie życie. Z tego powodu dąży się do coraz to nowych zastosowań i poprawy jakości energii elektrycznej, a wymagania stawiane budynkom szpitalnym muszą być restrykcyjnie przestrzegane.

Obecnie przy zasilaniu szpitali ważne są trzy fundamentalne zagadnienia:

  • gwarancja dostaw energii – konieczność zapewnienia bezpiecznej ilości energii o odpowiedniej jakości; stała dostępność energii zasilającej oraz optymalna praca systemu,
  • niezawodna eksploatacja instalacji – stawianie na jakość elementów systemów zasilających oraz instalacji; inwestowanie w technologie,
  • efektywność energetyczna — odpowiednie zarządzanie instalacjami w celu uzyskania efektywniejszego zużycia energii – dążenie do ograniczenia zużycia poprzez odpowiednią kontrolę, jak i optymalizację działania.

Rozwiązania technologiczne stosowane w szpitalach mają zapewnić ciągłość zasilania przy równoczesnym spełnieniu wszystkich wymogów bezpieczeństwa.

Rozwój nowych technologii gwarantuje coraz lepsze współdziałanie wszelkich elementów systemu zasilania ze sobą, a także zwiększa ochronę i bezpieczeństwo przy równoczesnym wzroście efektywności energetycznej i ekonomicznej [10].

Literatura

  1. H. Markiewicz, A. Klajn, Jakość zasilania – poradnik. Pewność zasilania. Układy rezerwowego zasilania odbiorców, 2003.
  2. Rozporządzenie Ministra Zdrowia z dnia 26 czerwca 2012 r. w sprawie szczegółowych wymagań, jakim powinny odpowiadać pomieszczenia i urządzenia podmiotu wykonującego działalność leczniczą (DzU z dnia 29 czerwca 2012 r.)
  3. Norma PN-EN 50160 Parametry napięcia zasilającego w publicznych sieciach rozdzielczych.
  4. Norma PN-HD 60364-7-710, rozdział 556.5.2.1.1.
  5. K. Strzałka-Gołuszka, J. Strzałka, Praktyczne sposoby poprawy niezawodności zasilania i jakości energii elektrycznej, „Biuletyn Techniczny” nr 2 (46) 2010.
  6. G. Seip, Elektrische Installationstechnik, T1. Berlin, Munchen, Simens, Aktiengesellschaft 1993.
  7. H. Markiewicz, A. Klajn, Pewność zasilania. Układy rezerwowego zasilania odbiorców (www.miedz.org.pl).
  8. Dokument harmonizujący HD 60364-7-710:2012 Instalacje elektryczne w obiektach budowlanych. Wymagania dotyczące specjalnych instalacji lub lokalizacji – pomieszczenia medyczne.
  9. M. Ciarkowska, R. Szczerbowski, Bezpieczeństwo zasilania obiektów szpitalnych, Materiały II międzynarodowej konferencji naukowej „Europejski wymiar bezpieczeństwa energetycznego Polski a ochrona środowiska”, Poznań, czerwiec 2015.
  10. http://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/5883/Solar-Powered-Hospital.aspx.
  11. http://www04.abb.com/global/auabb/auabb500.nsf!OpenDatabase&db=/global/auabb/auabb504.nsf&v=DB2&e=us&url=/global/seitp/seitp202.nsf/0/BE3F8E17E669BC65C12579970011D4E2!OpenDocument.
  12. http://investors.canadiansolar.com/phoenix.zhtml?c=196781&p=irol-newsArticle&ID=1608695.
  13. http://www.prnewswire.com/news-releases/fuel-cell-at-german-hospital-tops-10-million-kilowatt-hours-of-operation-56795852.html.
  14. http://www.prnewswire.com/news-releases/st-helenas-hospital-orders-new-model-400kw-fuel-cell-from-utc-power-64853322.html.
  15. http://www.fuelcellenergy.com/applications/clean-natural-gas/on-site-power-generation/universities-healthcare/.
  16. http://www.hfmmagazine.com/display/HFM-news-article.dhtml?dcrPath=/templatedata/HF_Common/NewsArticle/data/HFM/Magazine/2015/Apr/upfront-fuel-cell.
  17. W. Dołęga, Układy zasilania obiektów ochrony zdrowia, „INPE” nr 182–183, s. 29–38.
  18. J. Wiatr, M. Miegoń, Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną, „Niezbędnik Elektryka”, „elektro.info”, Warszawa 2011.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Najnowsze produkty i technologie

TRANSFER MULTISORT ELEKTRONIK SP. Z O.O. Nowe przewody wstążkowe od 3M

Nowe przewody wstążkowe od 3M Nowe przewody wstążkowe od 3M

Przewody wstążkowe i okrągłe stosuje się powszechnie zarówno w konsumenckich, jak i przemysłowych urządzeniach elektronicznych. Ich zadaniem jest zapewnianie elastycznego połączenia między systemami elektronicznymi...

Przewody wstążkowe i okrągłe stosuje się powszechnie zarówno w konsumenckich, jak i przemysłowych urządzeniach elektronicznych. Ich zadaniem jest zapewnianie elastycznego połączenia między systemami elektronicznymi potrzebnymi w takich branżach jak automatyzacja, RTV, telekomunikacja i informatyka. Ze względu na zróżnicowaną charakterystykę aplikacji, przewody występują w wielu wariantach. Dlatego w katalogu TME znaleźć można, dosłownie, setki rodzajów takich kabli. Niedawno oferta ta dodatkowo poszerzyła...

mgr inż. Julian Wiatr Instalacja fotowoltaiczna na terenie stacji paliw płynnych i gazowych

Instalacja fotowoltaiczna na terenie stacji paliw płynnych i gazowych Instalacja fotowoltaiczna na terenie stacji paliw płynnych i gazowych

Wykorzystanie energii słonecznej przy lokalizacji elektrowni PV w miejscu dobrego nasłonecznienia może skutkować nadmiarem produkcji energii elektrycznej w stosunku do potrzeb. Z pomocą przychodzą magazyny...

Wykorzystanie energii słonecznej przy lokalizacji elektrowni PV w miejscu dobrego nasłonecznienia może skutkować nadmiarem produkcji energii elektrycznej w stosunku do potrzeb. Z pomocą przychodzą magazyny energii, w których może zostać zgromadzony jej nadmiar, przeznaczony do wykorzystania w godzinach nocnych lub w zależności od potrzeb użytkownika.

LEGRAND POLSKA Sp.z o.o. Smart Home – co to jest i jaki system wybrać?

Smart Home – co to jest i jaki system wybrać? Smart Home – co to jest i jaki system wybrać?

Dlaczego systemy inteligentnego domu są coraz bardziej popularne? Ponieważ zapewniają domownikom komfort i dają poczucie bezpieczeństwa. Poznaj funkcjonalności systemu inteligentnego domu oraz korzyści...

Dlaczego systemy inteligentnego domu są coraz bardziej popularne? Ponieważ zapewniają domownikom komfort i dają poczucie bezpieczeństwa. Poznaj funkcjonalności systemu inteligentnego domu oraz korzyści płynące ze stosowania zestawów Smart Home.

Mirosław Marciniak Ensto Building System Domowe stacje ładowania – bezpieczeństwo na pierwszym miejscu

Domowe stacje ładowania – bezpieczeństwo na pierwszym miejscu Domowe stacje ładowania – bezpieczeństwo na pierwszym miejscu

Według danych Polskiego Stowarzyszenia Paliw Alternatywnych po polskich drogach pod koniec marca jeździło prawie 23 tysiące elektrycznych samochodów osobowych. Choć daleko nam do krajów skandynawskich,...

Według danych Polskiego Stowarzyszenia Paliw Alternatywnych po polskich drogach pod koniec marca jeździło prawie 23 tysiące elektrycznych samochodów osobowych. Choć daleko nam do krajów skandynawskich, które przodują w dziedzinie elektromobilności, to widok auta elektrycznego budzi coraz mniejsze zdziwienie. Wzrost zainteresowania autami elektrycznymi powoduje zwiększenie zapotrzebowania na infrastrukturę ładowania. Choć w wielu miejscach publicznych, takich jak centra handlowe czy urzędy, coraz...

BayWa r.e. Solar Systems Fronius Wattpilot

Fronius Wattpilot Fronius Wattpilot

Ładowanie samochodów elektrycznych w domu i w podróży

Ładowanie samochodów elektrycznych w domu i w podróży

BRADY Polska Inteligentne zarządzanie łańcuchem dostaw

Inteligentne zarządzanie łańcuchem dostaw Inteligentne zarządzanie łańcuchem dostaw

Teraz firmy mogą usprawnić zarządzanie łańcuchem dostaw przedmiotów, poprawić uwierzytelnianie i zwiększyć zaangażowanie użytkowników końcowych za pomocą jednej etykiety.

Teraz firmy mogą usprawnić zarządzanie łańcuchem dostaw przedmiotów, poprawić uwierzytelnianie i zwiększyć zaangażowanie użytkowników końcowych za pomocą jednej etykiety.

Elektromontaż Rzeszów SA Bezpieczny punkt oświetleniowy – bieżące wyniki projektu „Badania przemysłowe i eksperymentalne prace rozwojowe nad opracowaniem bezpiecznego punktu oświetleniowego”

Bezpieczny punkt oświetleniowy – bieżące wyniki projektu „Badania przemysłowe i eksperymentalne prace rozwojowe nad opracowaniem bezpiecznego punktu oświetleniowego” Bezpieczny punkt oświetleniowy – bieżące wyniki projektu „Badania przemysłowe i eksperymentalne prace rozwojowe nad opracowaniem bezpiecznego punktu oświetleniowego”

Słupy oświetleniowe z cechami bezpieczeństwa biernego są elementami bezpieczeństwa ruchu drogowego, których zadaniem jest ograniczenie skutków zderzenia drogowego.

Słupy oświetleniowe z cechami bezpieczeństwa biernego są elementami bezpieczeństwa ruchu drogowego, których zadaniem jest ograniczenie skutków zderzenia drogowego.

BRADY Polska Brady A8500 Flexcell – automatyczne drukowanie i umieszczanie etykiet

Brady A8500 Flexcell – automatyczne drukowanie i umieszczanie etykiet Brady A8500 Flexcell – automatyczne drukowanie i umieszczanie etykiet

Brady A8500 Flexcell umożliwia automatyczny wydruk i umieszczenie niezawodnej etykiety identyfikacyjnej w dowolnym miejscu na dowolnym wielo- lub jednopłytkowym standardowym obwodzie drukowanym w ciągu...

Brady A8500 Flexcell umożliwia automatyczny wydruk i umieszczenie niezawodnej etykiety identyfikacyjnej w dowolnym miejscu na dowolnym wielo- lub jednopłytkowym standardowym obwodzie drukowanym w ciągu 3 sekund. Odkryj nowe zautomatyzowane rozwiązanie!

BRADY Polska BradyPrinter i5300: Łatwa obsługa. Bez konfiguracji i korekt. Bez odpadów

BradyPrinter i5300: Łatwa obsługa. Bez konfiguracji i korekt. Bez odpadów BradyPrinter i5300: Łatwa obsługa. Bez konfiguracji i korekt. Bez odpadów

Konfiguracja, przełączanie i drukowanie szybsze niż kiedykolwiek wcześniej dzięki przemysłowej drukarce etykiet BradyPrinter i5300. Jest intuicyjna, automatycznie kalibrowana i precyzyjna, drukuje kody...

Konfiguracja, przełączanie i drukowanie szybsze niż kiedykolwiek wcześniej dzięki przemysłowej drukarce etykiet BradyPrinter i5300. Jest intuicyjna, automatycznie kalibrowana i precyzyjna, drukuje kody kreskowe i małe czcionki na etykietach o wielkości zaledwie 5,08 mm.

PHOENIX CONTACT Sp.z o.o. Nowe wymogi w zakresie kodeksów sieciowych i certyfikatów

Nowe wymogi w zakresie kodeksów sieciowych i certyfikatów Nowe wymogi w zakresie kodeksów sieciowych i certyfikatów

Szybki i intensywny rozwój instalacji fotowoltaicznych w Polsce jest faktem. Jest odpowiedzią na rosnące ceny energii oraz ciągły wzrost zapotrzebowania na energię elektryczną, czynnik charakterystyczny...

Szybki i intensywny rozwój instalacji fotowoltaicznych w Polsce jest faktem. Jest odpowiedzią na rosnące ceny energii oraz ciągły wzrost zapotrzebowania na energię elektryczną, czynnik charakterystyczny dla krajów rozwijających się (fot. 1.).

TRANSFER MULTISORT ELEKTRONIK SP. Z O.O. Arduino – komunikacja z wykorzystaniem sieci Ethernet

Arduino – komunikacja z wykorzystaniem sieci Ethernet Arduino – komunikacja z wykorzystaniem sieci Ethernet

Tworzenie rozbudowanych sieci komputerowych już od dobrych kilkunastu lat przestało służyć jedynie łączeniu komputerów. Spadek cen oraz wzrost mocy obliczeniowej małych mikrokontrolerów rozpoczął gwałtowny...

Tworzenie rozbudowanych sieci komputerowych już od dobrych kilkunastu lat przestało służyć jedynie łączeniu komputerów. Spadek cen oraz wzrost mocy obliczeniowej małych mikrokontrolerów rozpoczął gwałtowny proces przyłączania do lokalnych sieci Ethenetowych czy nawet globalnej sieci Internetowej, niskomocowych urządzeń, pełniących głównie funkcje kontrolne, sterujące i pomiarowe.

AS ENERGY AS Energy: dystrybutor nowoczesnych rozwiązań dla PV i HVAC

AS Energy: dystrybutor nowoczesnych rozwiązań dla PV i HVAC AS Energy: dystrybutor nowoczesnych rozwiązań dla PV i HVAC

Fotowoltaika to najdynamiczniej rozwijający się sektor OZE w Polsce. Swój rozkwit przeżywa również branża HVAC. Marką specjalizującą się w obu tych obszarach i proponującą jedne z najbardziej nowoczesnych...

Fotowoltaika to najdynamiczniej rozwijający się sektor OZE w Polsce. Swój rozkwit przeżywa również branża HVAC. Marką specjalizującą się w obu tych obszarach i proponującą jedne z najbardziej nowoczesnych i niezawodnych rozwiązań na rynku jest AS Energy. W swoich działaniach łączy troskę o środowisko naturalne z dostarczaniem produktów najwyższej klasy.

Relpol S.A. RELPOL zaprasza na Targi ENERGETAB 2021

RELPOL zaprasza na Targi ENERGETAB 2021 RELPOL zaprasza na Targi ENERGETAB 2021

W dniach 14–16 września odbędzie się kolejna edycja międzynarodowych targów ENERGETAB w Bielsku-Białej. Weźmie w nich udział firma Relpol – wiodący producent przekaźników, obecny w branży od 1958 roku....

W dniach 14–16 września odbędzie się kolejna edycja międzynarodowych targów ENERGETAB w Bielsku-Białej. Weźmie w nich udział firma Relpol – wiodący producent przekaźników, obecny w branży od 1958 roku. Relpol zaprasza na stoisko nr 12 w pawilonie A.

WAMTECHNIK Sp. z o.o. Wamtechnik zaprasza na Targi ENERGETAB 2021

Wamtechnik zaprasza na Targi ENERGETAB 2021 Wamtechnik zaprasza na Targi ENERGETAB 2021

Wamtechnik, jeden z największych w Europie assemblerów baterii, wystawia się na tegorocznych międzynarodowych Targach ENERGETAB. Targi jak co roku odbywają się w Bielsko-Białej, w dniach 14-16 września.

Wamtechnik, jeden z największych w Europie assemblerów baterii, wystawia się na tegorocznych międzynarodowych Targach ENERGETAB. Targi jak co roku odbywają się w Bielsko-Białej, w dniach 14-16 września.

ELEKTROMETAL SA Elektrometal zaprasza na Targi ENERGETAB 2021

Elektrometal zaprasza na Targi ENERGETAB 2021 Elektrometal zaprasza na Targi ENERGETAB 2021

Firma Elektrometal SA będzie obecna międzynarodowych Targach ENERGETAB 2021, które odbywają się w Bielsku-Białej w dniach 14-16 września. Zapraszamy na stoisko A36.

Firma Elektrometal SA będzie obecna międzynarodowych Targach ENERGETAB 2021, które odbywają się w Bielsku-Białej w dniach 14-16 września. Zapraszamy na stoisko A36.

BayWa r.e. Solar Systems novotegra – szybki i prosty montaż modułów PV

novotegra – szybki i prosty montaż modułów PV novotegra – szybki i prosty montaż modułów PV

Baywa r.e. Solar Systems Sp. z o.o. – autoryzowany dystrybutor PV w Polsce oferuje nie tylko moduły, falowniki i wszelkie akcesoria PV od globalnych, sprawdzonych dostawców, ale także autorski system montażowy...

Baywa r.e. Solar Systems Sp. z o.o. – autoryzowany dystrybutor PV w Polsce oferuje nie tylko moduły, falowniki i wszelkie akcesoria PV od globalnych, sprawdzonych dostawców, ale także autorski system montażowy novotegra opracowany przez rodzimą spółkę BayWa r.e.

Finder Polska Sp. z o.o. news Finder na Targach ENERGETAB 2021

Finder na Targach ENERGETAB 2021 Finder na Targach ENERGETAB 2021

Finder, producent przekaźników i komponentów elektrycznych, będzie obecny na Targach ENERGETAB 2021, odbywających się w Bielsko-Białej w dniach 14-16 września. Firma zaprasza na swoje stoisko A58.

Finder, producent przekaźników i komponentów elektrycznych, będzie obecny na Targach ENERGETAB 2021, odbywających się w Bielsko-Białej w dniach 14-16 września. Firma zaprasza na swoje stoisko A58.

merXu Nowe możliwości dzięki integracji merXu z BaseLinkerem

Nowe możliwości dzięki integracji merXu z BaseLinkerem Nowe możliwości dzięki integracji merXu z BaseLinkerem

MerXu to nowa międzynarodowa platforma internetowa dla przedsiębiorców sprzedających i kupujących przede wszystkim w kategoriach przemysłowych, takich jak elektrotechnika i oświetlenie.

MerXu to nowa międzynarodowa platforma internetowa dla przedsiębiorców sprzedających i kupujących przede wszystkim w kategoriach przemysłowych, takich jak elektrotechnika i oświetlenie.

swiatlolux.pl Jak podłączyć żyrandol na 3 żarówki?

Jak podłączyć żyrandol na 3 żarówki? Jak podłączyć żyrandol na 3 żarówki?

Remontujesz mieszkanie? Wybrałeś już żyrandol do salonu lub sypialni i teraz zastanawiasz się, kto go podłączy? Nie musisz dzwonić po elektryka – świetnie poradzisz sobie samodzielnie! Nie wierzysz? Przeczytaj,...

Remontujesz mieszkanie? Wybrałeś już żyrandol do salonu lub sypialni i teraz zastanawiasz się, kto go podłączy? Nie musisz dzwonić po elektryka – świetnie poradzisz sobie samodzielnie! Nie wierzysz? Przeczytaj, jak podłączyć żyrandol na 3 żarówki. To prostsze niż myślisz!

Brother Polska BROTHER na Targach ENERGETAB 2021

BROTHER na Targach ENERGETAB 2021 BROTHER na Targach ENERGETAB 2021

Firma BROTHER bierze udział w międzynarodowych Targach ENERGETAB 2021, które odbywają się w Bielsku-Białej w dniach 14-16 września. W ramach targowej promocji drukarka PTE110VP będzie sprzedawana na stoisku...

Firma BROTHER bierze udział w międzynarodowych Targach ENERGETAB 2021, które odbywają się w Bielsku-Białej w dniach 14-16 września. W ramach targowej promocji drukarka PTE110VP będzie sprzedawana na stoisku BROTHER za 99 zł, czyli 50% taniej. Zapraszamy na stoisko N16.

AS ENERGY Fotowoltaika na nowych zasadach. Co się zmieni?

Fotowoltaika na nowych zasadach. Co się zmieni? Fotowoltaika na nowych zasadach. Co się zmieni?

Rozwój fotowoltaiki w Polsce nie zwalnia tempa. Jak wynika z informacji statystycznej opublikowanej przez Agencję Rynku Energii (ARE), moc zainstalowana w PV w czerwcu 2021 roku wyniosła niemal 5,4 GW,...

Rozwój fotowoltaiki w Polsce nie zwalnia tempa. Jak wynika z informacji statystycznej opublikowanej przez Agencję Rynku Energii (ARE), moc zainstalowana w PV w czerwcu 2021 roku wyniosła niemal 5,4 GW, co oznacza wzrost o 117% w porównaniu z analogicznym okresem poprzedniego roku. Czy na dynamikę przyrostu instalacji wpłyną planowane nowe przepisy prawne? Przedstawiamy zmiany, jakie czekają osoby zainteresowane inwestycją w fotowoltaikę.

Iwona Bortniczuk, Brother Polska Taśmy TZe synonimem trwałości

Taśmy TZe synonimem trwałości Taśmy TZe synonimem trwałości

Mimo warstwowej budowy są niezwykle cienkie. Grubość 160 mikrometrów nie przeszkadza im jednak w osiągnięciu zaskakująco dobrych parametrów wytrzymałościowych. Taśmy TZe są odporne na ścieranie, zarysowania,...

Mimo warstwowej budowy są niezwykle cienkie. Grubość 160 mikrometrów nie przeszkadza im jednak w osiągnięciu zaskakująco dobrych parametrów wytrzymałościowych. Taśmy TZe są odporne na ścieranie, zarysowania, promieniowania UV i ekstremalne temperatury.

PHOENIX CONTACT Sp.z o.o. Certyfikowane rozwiązanie dla systemów fotowoltaicznych

Certyfikowane rozwiązanie dla systemów fotowoltaicznych Certyfikowane rozwiązanie dla systemów fotowoltaicznych

Sterownik do regulacji dostarczania energii do sieci Operatorzy systemu elektroenergetycznego zobowiązani są do dostarczania jak największej ilości energii odnawialnej do sieci, przy czym jej stabilność...

Sterownik do regulacji dostarczania energii do sieci Operatorzy systemu elektroenergetycznego zobowiązani są do dostarczania jak największej ilości energii odnawialnej do sieci, przy czym jej stabilność nie może być zagrożona. Za stabilność sieci odpowiada regulacja mocy czynnej i biernej. Certyfikowane sterowniki firmy Phoenix Contact pozwalaj na regulacje dostarczania energii do sieci, a dzięki technologii PLCnext potrafią znacznie więcej.

LEGRAND POLSKA Sp.z o.o. Nowe rozdzielnice Practibox S - wysoka jakość i nagrodzony design w przystępnej cenie

Nowe rozdzielnice Practibox S - wysoka jakość i nagrodzony design w przystępnej cenie Nowe rozdzielnice Practibox S - wysoka jakość i nagrodzony design w przystępnej cenie

W portfolio produktowym firmy Legrand pojawiła się nowa gama rozdzielnic izolacyjnych o nazwie Practibox S. Oferta dedykowana jest przede wszystkim dla budownictwa mieszkaniowego (prywatnego jak i deweloperskiego),...

W portfolio produktowym firmy Legrand pojawiła się nowa gama rozdzielnic izolacyjnych o nazwie Practibox S. Oferta dedykowana jest przede wszystkim dla budownictwa mieszkaniowego (prywatnego jak i deweloperskiego), hoteli i obiektów biurowych. Rozdzielnice otrzymały prestiżową nagrodę IF DESIGN AWARD 2019 w kategorii produkt, za elegancki i lekki wygląd oraz dbałość o środowisko naturalne podczas procesu produkcji.

F&F Pabianice MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa...

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa wykazują dużą determinację do zmian prowadzących do optymalizacji kosztów, co zapewnić ma im zachowanie przewagi konkurencyjnej, wynikającej np. z przyjętej strategii przewagi kosztowej.

Brother Polska Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Drukarki etykiet dla elektryków i elektroinstalatorów Brother Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch...

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch E550WVP to przenośne i szybkie urządzenia, które oferują specjalne funkcje do druku najpopularniejszych typów etykiet. Urządzenia pozwalają na szybkie i bezproblemowe drukowanie oznaczeń kabli, przewodów, gniazdek elektrycznych, przełączników oraz paneli krosowniczych.

COMEX S.A. Inteligentny system monitorowania baterii COVER PBAT

Inteligentny system monitorowania baterii COVER PBAT Inteligentny system monitorowania baterii COVER PBAT

Największym problemem związanym z eksploatacją baterii akumulatorów jest zagwarantowanie ich pełnej dostępności i niezawodności. Aby to osiągnąć, wymagane jest wykonywanie okresowych testów obciążeniowych...

Największym problemem związanym z eksploatacją baterii akumulatorów jest zagwarantowanie ich pełnej dostępności i niezawodności. Aby to osiągnąć, wymagane jest wykonywanie okresowych testów obciążeniowych takiego systemu oraz czasochłonna obsługa, związana z pomiarami poszczególnych elementów składowych. W przypadku systemu składającego się z dużej liczby akumulatorów, obsługa jest czasochłonna, kosztowna i jednocześnie może zakłócać normalną pracę systemu. Co więcej, nawet prawidłowo wykonywana...

PHOENIX CONTACT Sp.z o.o. Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych....

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych. Dodatkowo w różnych materiałach marketingowych również można znaleźć nie zawsze pełne informacje na temat wymagań stawianych SPD, co nie pomaga w właściwym doborze odpowiedniego modelu do aplikacji. W tym artykule postaramy się przybliżyć najważniejsze zagadnienia, które pozwolą dobrać bezpieczne ograniczniki...

Euro Pro Group Euro Pro Group na Targach ENERGETAB 2021

Euro Pro Group na Targach ENERGETAB 2021 Euro Pro Group na Targach ENERGETAB 2021

Euro Pro Group, firma prowadząca dystrybucję kamer diagnostycznych oraz badania diagnostyczne, będzie obecna na międzynarodowych targach energetycznych ENERGETAB, które odbędą się w dniach 14-16 września...

Euro Pro Group, firma prowadząca dystrybucję kamer diagnostycznych oraz badania diagnostyczne, będzie obecna na międzynarodowych targach energetycznych ENERGETAB, które odbędą się w dniach 14-16 września w Bielsku-Białej. Zaprezentuje tam najnowsze produkty firmy FLIR, których jest bezpośrednim importerem.

Kontakt - Simon SA news Kontakt-Simon na Targach ENERGETAB 2021

Kontakt-Simon na Targach ENERGETAB 2021 Kontakt-Simon na Targach ENERGETAB 2021

W 2021 roku firma obchodzi 100-lecie, które zostanie mocno zaakcentowane podczas targów branżowych Energetab 2021 w Bielsku-Białej. Będzie można przenieść się w czasie, poznać bogatą historię zakładu oraz...

W 2021 roku firma obchodzi 100-lecie, które zostanie mocno zaakcentowane podczas targów branżowych Energetab 2021 w Bielsku-Białej. Będzie można przenieść się w czasie, poznać bogatą historię zakładu oraz zobaczyć, jak na przestrzeni lat zmieniał się osprzęt produkowany przez Kontakt Simon.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.