elektro.info

Zaawansowane wyszukiwanie

Zasilacze UPS w układach zasilania urządzeń elektromedycznych

Rys. 2. Schemat instalacji dla pomieszczeń grupy 2 [4]
Rys. J. Wiatr

Rys. 2. Schemat instalacji dla pomieszczeń grupy 2 [4]


Rys. J. Wiatr

Przy projektowaniu układów zasilania budynków służby zdrowia pojawia się szereg wątpliwości wynikających z oczekiwanego poziomu niezawodności dostaw energii elektrycznej oraz poziomu bezpieczeństwa przeciwporażeniowego. Artykuł stanowi próbę przybliżenia metodyki zasilania tych obiektów.

Zobacz także

mgr inż. Michał Czosnyka, dr hab. inż Bogumiła Wnukowska Zasilanie serwerowni prądem stałym

Zasilanie serwerowni prądem stałym Zasilanie serwerowni prądem stałym

Prowadzona pod koniec XIX wieku „wojna o prąd” pomiędzy T. Edisonem a G. Westing­housem, ostatecznie została rozstrzygnięta na korzyść prądu przemiennego. Zaletą, która zaważyła o jego sukcesie, była stosunkowo...

Prowadzona pod koniec XIX wieku „wojna o prąd” pomiędzy T. Edisonem a G. Westing­housem, ostatecznie została rozstrzygnięta na korzyść prądu przemiennego. Zaletą, która zaważyła o jego sukcesie, była stosunkowo łatwa technicznie możliwość transformacji wartości napięcia. Pozwoliło to – zwiększając wartość napięcia – przesyłać energię na duże odległości przy niskich stratach. Warto zaznaczyć, że w owym czasie energia elektryczna była używana głównie do oświetlania ulic, niektórych domostw oraz do...

dr hab. inż Marek Olesz, Jacek Katarzyński Stany nieustalone towarzyszące pomiarowi impedancji pętli zwarcia w obwodach wyjściowych zasilaczy bezprzerwowych UPS

Stany nieustalone towarzyszące pomiarowi impedancji pętli zwarcia w obwodach wyjściowych zasilaczy bezprzerwowych UPS Stany nieustalone towarzyszące pomiarowi impedancji pętli zwarcia w obwodach wyjściowych zasilaczy bezprzerwowych UPS

W sieciach zasilających obiekty przemysłowe i użyteczności publicznej powszechnie stosuje się zasilacze bezprzerwowe UPS w celu ochrony ważnych urządzeń odbiorczych, wrażliwych na zapady i przerwy w napięciu....

W sieciach zasilających obiekty przemysłowe i użyteczności publicznej powszechnie stosuje się zasilacze bezprzerwowe UPS w celu ochrony ważnych urządzeń odbiorczych, wrażliwych na zapady i przerwy w napięciu. Projektowanie sieci energetycznych wyposażonych w zasilacze UPS opiera się na wytycznych ich producentów oraz na ogólnej wiedzy z elektrotechniki. Ograniczona zdolność zwarciowa zasilacza UPS oraz utrudniony ­dostęp do danych fabrycznych producentów UPS komplikuje projektową analizę ochrony...

Impakt SA Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii

Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii

Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych....

Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych. Zastosowana topologia podwójnej konwersji (VFI-SS-311) gwarantuje najwyższy poziom bezpieczeństwa, a wyspecjalizowane układy utrzymują współczynnik mocy PF na poziomie > 0.99. Oczywiście zależy on od podłączonych urządzeń odbiorczych. Wszelkie informacje o stanie UPS widoczne są na...

W Artykule:

  • Metodyka zasilania obiektów szpitalnych
  • Pomieszczenia użytkowane medycznie
  • Koncepcja ochrony przeciwpożarowej
  • Układ zasilania IT
  • Ochrona od porażeń w obwodach zasilanych przez UPS

Zawarte w nim wytyczne będą pomocne przy projektowaniu zasilania z wykorzystaniem sprzętu polecanego dla szpitali oferowanego przez kilku producentów

Wymagania dotyczące zasilania budynków zostały sprecyzowane w Rozporządzeniu Ministra Infrastruktury z 12 kwietnia 2002 roku w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2019 roku poz. 1065 z późniejszymi zmianami) [1]. Zgodnie z § 181 pkt 1 ww. rozporządzenia [1]:

Budynek, w którym zanik napięcia w elektroenergetycznej sieci zasilającej może spowodować zagrożenie życia lub zdrowia ludzi, poważne zagrożenie środowiska, a także znaczne straty materialne, należy zasilać co najmniej z dwóch niezależnych, samoczynnie załączających się źródeł energii elektrycznej oraz wyposażyć w samoczynnie załączające się oświetlenie awaryjne (zapasowe lub ewakuacyjne). W budynku wysokościowym jednym ze źródeł zasilania powinien być zespół prądotwórczy.

Są to bardzo ogólne wymagania, które nie precyzują wymagań w zakresie niezawodności zasilania oraz metodyki projektowania układów zasilania. Wyjątkiem w tym zakresie jest Rozporządzenie Ministra Łączności z 21 kwietnia 1995 roku w sprawie zasilania energią elektryczną obiektów budowlanych łączności (DzU Nr 50/1995 poz. 271) [2]. Z uwagi na to, że jest to jedyny dokument formalnoprawny, precyzyjnie określający wymagania dotyczące zasilania obiektów budowlanych łączności, można na jego podstawie opracować koncepcję układu zasilania dowolnego budynku przedstawioną na rysunku 1.

W prezentowanym układzie zasilania znajdą się wszystkie źródła zasilania, a ich stosowanie w określonym układzie zasilania może być przyjmowane w zależności od potrzeb i wymaganego poziomu niezawodności. Natomiast podział na poziomy rezerwowania oraz przypisane im źródła zasilania wynika z przyjętego w gospodarce elektroenergetycznej podziału na kategorie zasilanych odbiorników. Widoczny na rysunku 1. pojedynczy zespół prądotwórczy oraz pojedynczy zasilacz UPS, w zależności od potrzeb może być projektowany w układzie redundantnym lub w układzie pracy równoległej. W odniesieniu do obiektów służby zdrowia znajduje zastosowanie Rozporządzenie Ministra Zdrowia z dnia 26 marca 2019 roku, w sprawie szczegółowych wymagań, jakim powinny odpowiadać pomieszczenia i urządzenia podmiotu wykonującego działalność leczniczą (DzU z 2019 roku poz. 556) – źródłem zasilania awaryjnego powinien być zespół prądotwórczy, zapewniający pokrycie co najmniej 30% mocy szczytowej oraz zasilacze UPS zapewniające odpowiedni poziom bezpieczeństwa zasilanych odbiorników.

Rys. 1. Schemat blokowo-ideowy zasilania budynku:
kategoria III – długotrwała przerwa w zasilaniu nie powoduje wystąpienia negatywnych skutków w postaci zagrożenia życia lub dużych strat w materiałach,
kategoria II – dopuszcza się krótką przerwę niezbędną na uruchomienie zespołu prądotwórczego,
kategoria I – nie dopuszcza się żadnej przerwy w zasilaniu,
STK – siłownia telekomunikacyjna ac/dc,
RNR – rozdzielnica napięcia rezerwowanego,
RNG – rozdzielnica napięcia gwarantowanego,
SEE – System Elektroenergetyczny

Metodyka zasilania obiektów szpitalnych

Istotne znaczenie dla bezpieczeństwa pacjentów ma zapewnienie ciągłości zasilania, chociażby z tego powodu, że niektóre zabiegi nie są obojętne dla zdrowia, a część z nich pociąga za sobą nawet zagrożenie dla życia.

W związku z powyższym, w obiekcie szpitalnym na etapie opracowywania koncepcji zasilania należy dokonać podziału odbiorników na kategorie zasilania.

Warunkiem zapewnienia wysokiej niezawodności jest doprowadzenie zasilania do budynku szpitala z dwóch różnych stacji transformatorowych 15/0,42 kV zasilanych z różnych GPZ-tów, a przynajmniej z dwóch różnych sekcji SN jednego GPZ-tu. Takie rozwiązanie pozwala na uzyskanie właściwego rezerwowania zasilanych odbiorników przy zasilaniu z SEE (systemu elektroenergetycznego).

Przy głównym złączu budynku szpitala powinien być zainstalowany SZR, z którego energia elektryczna powinna być doprowadzona do rozdzielni głównej szpitala (RGnn), gdzie należy wydzielić obwody odbiorników zaliczonych do III kategorii zasilania oraz obwód zasilający kolejny SZR, przeznaczony do współpracy z zespołem prądotwórczym (ZP) stanowiącym awaryjne źródło zasilania.

Z drugiego SZR zasilanie należy doprowadzić do rozdzielnicy RNR – do której przyłączone są odbiorniki II kategorii zasilania. Do odbiorników tej kategorii należy zaliczyć ogólne sale chorych, apteki, korytarze, windy, oświetlenie ogólne itp. Dla odbiorników nieszpitalnych zaliczonych do II kategorii dopuszcza się czas przerwy w zasilaniu do 60 sekund (tj. czas niezbędny dla dokonania samorozruchu ZP). W rozdzielni RNA należy wydzielić obwód zasilający zasilacz UPS, przeznaczony do zasilania odbiorników I kategorii zasilania, dla których niedopuszczalna jest jakakolwiek przerwa w zasilaniu. Układ współpracy ZP z UPS nazywa się tandemem ZP-UPS. Dokonanie takiego podziału jest konieczne ze względu na warunki lokalowe, jakimi dysponuje szpital, oraz wysokie koszty zakupu i eksploatacji ZP oraz zasilaczy UPS. Zakwalifikowanie sal operacyjnych, OIOM-u oraz laboratoriów do I kategorii zasilania jest uzasadnione tym, że pacjent podłączony do aparatury nie może być pozbawiany czynności podtrzymujących życie, a brak oświetlenia (nawet przez kilka sekund) podczas operacji odbywającej się w nocy może być tragiczny w skutkach dla pacjenta. Dlatego zasilanie tych pomieszczeń w sposób bezprzerwowy jest uzasadnione i możliwe do realizacji tylko z wykorzystaniem zasilacza UPS o mocy dostosowanej do zasilanych przez niego urządzeń.

Pomieszczenia użytkowane medycznie

Pod pojęciem „pomieszczenie użytkowane medycznie” należy rozumieć nie tylko pomieszczenia szpitalne, ale również pomieszczenia pozaszpitalne, gdzie mogą być wykonywane zabiegi medyczne. Zwiększone zagrożenie dotyczy tylko pacjentów (również zwierząt w weterynarii), natomiast personel nie wymaga ochrony o wyższym stopniu bezpieczeństwa niż w innych obiektach budownictwa powszechnego.

Pomieszczenie „szpitalne” w interesującym nas zakresie dotyczy tylko pomieszczeń, gdzie pacjent może przebywać i poddawany jest badaniom lub zabiegom. Będą to więc sale chorych, gabinety badań, zabiegowe, sale operacyjne, porodowe, fizykoterapii, gabinety rentgenowskie itp.

Nie są nimi pomieszczenia niedostępne dla pacjentów oraz takie, w których pacjent nie jest poddawany żadnym zabiegom medycznym (pomieszczenia administracyjne, kuchnie, pralnie, laboratoria, kioski, korytarze w oddziałach, sale pobytu dziennego, dyżurki lekarskie, a także nastawnie pracowni rentgenowskich, przygotowanie lekarzy w bloku operacyjnym itd.). Zgodnie z publikacją [7] należy przyjąć następujący podział pomieszczeń medycznych:

a) grupa 0: Należą do niej pomieszczenia medyczne, w których nie przewiduje się stosowania części aplikacyjnych aparatury elektromedycznej, a zanik zasilania nie powoduje zagrożenia życia. Są to pomieszczenia, w których pacjenci nie stykają się z urządzeniami elektromedycznymi. Urządzenia występujące w tej strefie mają własne wbudowane źródło zasilania w postaci ogniwa. Będą to gabinety ordynatorów, sale opatrunkowe, masażu, gimnastyki, hydroterapii, inhalacji, czy też ogólnych badań otolaryngologicznych, okulistycznych, gabinety stomatologiczne itp.

b) grupa 1: Należą do niej pomieszczenia medyczne, w których przewiduje się stosowanie części aplikacyjnych aparatury elektromedycznej zewnętrznie lub wewnętrznie do różnych części ciała, poza zastosowaniami dotyczącymi pomieszczeń grupy 2, a zanik zasilania również nie powoduje zagrożenia życia. W pomieszczeniach tych mogą być stosowane aparaty medyczne mające bezpośredni kontakt z ciałem pacjenta, również wprowadzane pod skórę lub do naturalnych lub sztucznie wykonanych otworów ciała człowieka, pod warunkiem, że żadna z części nie może znajdować się w bezpośredniej bliskości serca. Będą to sale hydro- i fizykoterapii, radiologii (z wyłączeniem badań naczyniowych) dializy zewnątrzustrojowej, sale porodowe, chirurgii ambulatoryjnej, stomatologii (fotel pacjenta), wszelkiego rodzaju endoskopii itd.

c) grupa 2: Należą do niej pomieszczenia najwyższego ryzyka, a więc pomieszczeń, gdzie przewiduje się stosowanie części aplikacyjnych aparatury elektromedycznej przy zabiegach na sercu, w salach operacyjnych, intensywnej opieki medycznej i innych zabiegach, przy których zanik zasilania może być przyczyną zagrożenia życia. Grupa ta obejmuje pomieszczenia, gdzie są lub mogą być stosowane aparaty elektromedyczne, których elementy mogą stykać się z sercem lub znajdować się w jego bezpośrednim sąsiedztwie. Będą to sale operacyjne i związane z nimi sale przygotowania pacjenta, sale intensywnej opieki medycznej (OIOM) i pooperacyjnej, rentgenowskich badań naczyniowych oraz częściowo endoskopii i sal porodowych z możliwością zastosowania aparatów elektromedycznych.

Podane przykłady są przypadkami oczywistymi, zaklasyfikowanie pomieszczeń do odpowiedniej grupy powinno jednak odbywać się przy współudziale lekarza tam pracującego.

Rys. 2. Schemat instalacji dla pomieszczeń grupy 2 [4], gdzie:
UKSI – układ kontroli stanu izolacji (reagujący na zmniejszenie się poziomu izolacji poniżej 50 kΩ), z przyciskiem kontrolnym,
KS – kaseta ze wskaźnikiem świetlnym i akustycznym (lampka zielona – stan prawidłowy, lampka pomarańczowa i brzęczyk – stan awaryjny),
PE – przewód ochronny – szyna połączeń ochronnych urządzeń elektrycznych,
EC – szyna połączeń wyrównawczych obcych mas metalowych

Rys. 3. Bezpośrednie otoczenie pacjenta [7]

Koncepcja ochrony przeciwporażeniowej

Pomieszczenia grupy 01. muszą spełniać wszystkie warunki normy przedmiotowej PN-HD 60364-4-41 [11], prawa budowlanego, rozporządzeń wykonawczych oraz cech osobniczych człowieka chorego i jego podatności na działanie prądu elektrycznego.

Wszystkie pomieszczenia muszą mieć podłogi o rezystancji Ri ≥ 50 kΩ, a urządzenia w nich zainstalowane powinny posiadać ochronę przy uszkodzeniu. Instalacja odbiorcza musi być wykonana w systemie TN-S, mieć połączenia wyrównawcze i być chroniona przed przeciążeniami i zwarciami, a także mieć ochronę przeciwprzepięciową.

Natomiast w pomieszczeniach grupy 2 instalacja odbiorcza oprócz skutecznej ochrony przeciwporażeniowej powinna gwarantować ciągłość zasilania. W pomieszczeniach tych niedopuszczalne są jakiekolwiek przerwy w zasilaniu wynikłe z przeciążeń lub zwarć.

Spośród pięciu dostępnych systemów zasilania (TN: TN-S, TN-C-S, TN-C, TT oraz IT) tylko system IT może podołać tym wymaganiom. Układ ten buduje się z wykorzystaniem jednofazowych transformatorów separacyjnych ze stałą kontrolą stanu izolacji np. ES710 produkcji firmy Bender. Każde pomieszczenie lub grupa pomieszczeń funkcjonalnie związanych ze sobą (np. sala operacyjna i pomieszczenia przygotowania pacjenta) powinny być zasilane z osobnego transformatora o mocy (3,15–10) kVA. W przypadku większych mocy zapotrzebowanych należy wykonać klika sieci elektromedycznych zasilanych z osobnych transformatorów o mocach dobranych do potrzeb zasilanych odbiorników (zgodnie z normą PN-HD 60364-7-710:2012 [10] transformatory elektromedyczne nie mogą być łączone równolegle). Przykładowe rozwiązania układów zasilania zostały zamieszczone w publikacji [15].

Układ zasilania IT

W odróżnieniu od układów TN, w których jeden przewód ma potencjał ziemi, a pozostałe są pod napięciem 230 V, układ IT charakteryzuje się odizolowanym punktem neutralnym.

W związku z tym różnica potencjałów pomiędzy przewodami a ziemią nie jest określona, a bezpośrednie doziemienie jednego z nich powoduje tylko wyrównanie potencjału z potencjałem ziemi, co sprowadza się do krótkotrwałego, niegroźnego w skutkach (przy niezbyt dużych pojemnościach sieci) przepływu przez człowieka prądu wyrównawczego.

Do szczególnie korzystnych cech układu IT należy zaliczyć:

  • duże bezpieczeństwo eksploatacji,
  • wysoki stopień bezpieczeństwa pożarowego,
  • występowanie minimalnego prądu dotykowego i doziemieniowego,
  • możliwość łatwego wykrycia doziemienia,
  • możliwość bezprzerwowego zasilania po wystąpieniu doziemienia jednobiegunowego,
  • małe wymagania oporności uziemień ochronnych.

Cechy te spowodowały, iż układ IT ma szczególne predyspozycje do stosowania w obiektach o wysokim zagrożeniu porażeniowym i pożarowym.

W celu uniknięcia zgorzeń powstającym przy podwójnym zwarciu, w obiektach służby zdrowia zasilanych w układzie IT dopuszcza się jedynie układy jednofazowego zasilania.

Miejscem szczególnego zagrożenia są sale operacyjne i inne pomieszczenia szpitalne, w których wykonuje się zabiegi za pomocą aparatów elektromedycznych z pominięciem wierzchniej warstwy naskórka, a często bezpośrednio na sercu. Dlatego też w warunkach szpitalnych może dojść do mikroporażenia, przy którym cały prąd rażeniowy przepływa przez mięsień sercowy. O ile więc w warunkach pozaszpitalnych granicą zagrożenia jest prąd 10 mA, to w salach operacyjnych ta granica przesuwa się do wartości 10 μA.

Należy pamiętać, że zwiększona podatność pacjentów na działanie prądu elektrycznego wynika między innymi z następujących czynników:

  • brak możliwości reagowania na odczucie przepływu prądu (choroba, brak przytomności, działanie anestyków, ograniczenie swobody ruchu),
  • zmniejszenie rezystancji naskórka (pocenie się, stres),
  • konieczność stałego podłączenia do aparatury podtrzymującej podstawowe funkcje życiowe.

Wszystko to prowadzi do konieczności zastosowania układu elektrycznego gwarantującego wysoki stopień bezpieczeństwa (szczególnie w pomieszczeniach drugiej grupy). Gniazda wtyczkowe i odbiorniki znajdujące się w zasięgu ręki muszą więc być zasilane przez transformatory separacyjne z kontrolą stanu izolacji (medyczne transformatory ochronne).

Rys. 4. Przykład UKSI wraz z przyłączonym ogranicznikiem przepięć CCX-2 [16]

Rys. 5. Opis mocy wejściowej i wyjściowej w zasilaczu UPS [8], gdzie: W – współczynnik zniekształceń; η – sprawność zasilacza

Poszczególne obwody powinny mieć zabezpieczenie przed prądami zwarciowymi, a przypadkowe przeciążenia powinny być natychmiast sygnalizowane. Odporność na krótkotrwałe przeciążenie uzyskuje się przez stosowanie transformatorów separacyjnych o uzwojeniach z przewodami o zwiększonym przekroju, wykonanych w II klasie ochronności.

Z uwagi na to, że całość obiektu szpitalnego zasilana jest w systemie sieci TN-S, koniecznym jest przejście na sieć IT, w celu realizacji zasilania bloku operacyjnego oraz OIOM-u. Schemat takiego układu przedstawia rysunek 2. W przypadku obwodów IT eksploatowanych w obiektach służby zdrowia, nie wolno w żadnym przypadku dodatkowo lub zamiennie stosować wyłączników różnicowoprądowych, gdyż nie chronią one przed upływem mogącym spowodować mikroporażenie. Mogą również doprowadzić do wyłączenia napięcia w trakcie zabiegu, co nigdy nie powinno nastąpić.

Wyłączniki różnicowoprądowe muszą być natomiast stosowane jako zabezpieczenia przewoźnych aparatów rentgenowskich i mogą być stosowane do zabezpieczania odbiorników o mocy ponad 5 kVA zainstalowanych na stałe, obwodów gniazdek, które nie mogą mieć zastosowania medycznego, instalacji oświetleniowej (zawsze w układzie TN-S).

Należy podkreślić, że mimo stosowania transformatorów separacyjnych, system ten nie ma nic wspólnego z ochroną przez separację, dla której nie wolno stosować żadnych uziemień.

Należy przy tym pamiętać o zabezpieczeniu pacjenta przed pojawieniem się przypadkowej różnicy potencjałów na dowolnych dostępnych częściach przewodzących. W tym celu wszystkie metalowe obudowy urządzeń elektrycznych i kołki ochronne gniazd odbiorczych powinny być połączone z szyną wyrównawczą PE, a stałe masy metalowe nienależące do urządzeń elektrycznych (grzejniki c.o., metalowe futryny drzwi, wbudowane szafy, konstrukcje budowlane, ekrany itp.) – z szyną EC. Obydwie szyny PE i EC powinny być ze sobą połączone w sposób łatwy do rozłączenia i uziemione.

Przypadkowa różnica potencjałów na różnych częściach przewodzących nie powinna przekraczać 10 mV i 1 mV dla pomieszczeń grupy 2. Wprawdzie te zalecenia dotyczące pomieszczeń grupy 2 eksploatowanych medycznie w zakresie bezpośredniego otoczenia pacjenta (rys. 3.), to jednak ze względu na długości przewodów łączeniowych i przypadkowych połączeń mas metalowych, rozciągają się na całe pomieszczenie.

Uwzględnienie prądów rozruchowych oraz odkształconych przy doborze mocy zasilacza UPS jest niezbędne dla jego poprawnego funkcjonowania. UPS o zbyt małej mocy przeznaczony do zasilania odbiorników nieliniowych lub silników elektrycznych przy wzroście obciążenia automatycznie przejdzie na bypass zewnętrzny co skutkowało będzie pozbawieniem układu zasilania funkcji napięcia gwarantowanego.

Bardzo ważnym elementem jest ochrona przepięciowa w instalacjach zasilanych prze elektromedyczny transformator separacyjny. Zastosowanie ogranicznika przepięć, który łączy przewody dołączone do zacisków transformatora przez warystor, który poprzez iskiernik jest połączony z uziemionym przewodem PE. Takie rozwiązanie umożliwia ograniczenie przepięć oraz neutralizacje ładunków elektrostatycznych. Schemat UKSI z przyłączonym ogranicznikiem przepięć typu VCX-2 przedstawia rysunek 4.

Moc zasilacza UPS podawana w kartach katalogowych dotyczy wyjścia. Moc wejściowa zasilacza nie jest równa mocy wyjściowej. Zasilacz pobiera z sieci moc większą niż oddaje zasilanym odbiornikom. Podczas projektowania układów zasilania UPS należy uwzględnić ten problem. Dobierając moc zasilacza UPS na podstawie mocy czynnej zapotrzebowanej Pz należy przyjmować 25% rezerwy w celu skompensowania chwilowego wzrostu mocy lub ewentualnych błędów jej oszacowania.

Ponieważ zasilacz UPS musi pokryć zapotrzebowanie mocy czynnej PZ oraz mocy biernej QZ, w przypadku gdy UPS konwertuje energię przy współczynniku mocy cos φZ < cos φnUPS, zmniejsza się zdolność wykorzystania mocy czynnej UPS ze względu na możliwości przełączeniowe układu półprzewodnikowego falownika. Falownik zasilacza UPS zasilający odbiorniki posiada ograniczenia wydajności mocy czynnej związanej z kształtowaniem przebiegu napięcia przy poborze prądu odbiorników zarówno o charakterze pojemnościowym jak i indukcyjnym, czyli cos φnUPS, zatem w przypadku wytwarzania energii elektrycznej przy współczynniku cos φZ < cos φnUPS skutkuje zmniejszeniem jego wykorzystania. Względne obciążenie zasilacza UPS mocą czynną można określić współczynnikiem wykorzystania, który należy obliczyć z poniższego wzoru [4]:

Wymagana minimalna moc czynna zasilacza UPS musi spełniać następującą nierówność:

Obliczony ze wzoru (1) współczynnik wykorzystania „p”, należy podstawić do wzoru (2). W przypadku, gdy p ≥ 1, do wzoru (2) należy wstawić wartość „1”. Wartość współczynnika mocy cos φnUPS należy przyjąć zgodnie z DTR zasilacza UPS. W przypadku braku informacji w tym zakresie można przyjmować cos φnUPS = 0,8 dla zasilaczy UPS o konstrukcji transformatorowej lub cos φnUPS = 0,9 dla zasilaczy beztransformatorowych z falownikiem IGBT oraz cos φnUPS = 1 dla falowników wielostopniowych. Moc pozorna zasilacza UPS musi spełniać następującą nierówność:

gdzie:

PUPSmin – minimalna mocy czynna, jaką musi pokryć generator zespołu prądotwórczego, w [kW],

cos φnUPS – znamionowy współczynnik mocy zasilacza UPS, w [-] (wartość cos φnUPS należy przyjmować na podstawie DTR producenta UPS).

W przypadku gdy zasilacz służy do zasilania urządzeń z dużym prądem rozruchowych, za podstawę doboru mocy należy przyjmować prądy rozruchowe tych urządzeń, które nie mogą przekraczać wartości prądu znamionowego zasilacza UPS z uwzględnieniem jego chwilowego przeciążenia określonego w DTR producenta. Nieco problemu w tym zakresie może nastręczyć transformator elektromedyczny, którego prądy rozruchowe zgodnie katalogiem producenta mogą wynosić: Ir = 12·In (gdzie: In – prąd znamionowy transformatora).

W takim przypadku przyjęcie mocy zapotrzebowanej wyznaczonej z wykorzystaniem spodziewanej wartości prądu rozruchowego transformatora dla potrzeb doboru zasilacza UPS nie znajduje technicznego uzasadnienia. Przyjęcie tak dużych wartości prądów dla potrzeb doboru mocy zasilacza UPS skutkowałoby znaczącym przewymiarowaniem zasilacza, które jest nieuzasadnione technicznie i ekonomicznie. Zasadnym jest dobór zasilacza UPS do zasilania transformatora elektromedycznego dla wartości mocy znamionowej przy pracy w stanie ustalonym, ze względu na rozruch transformatora przez tor bypassu zasilacza UPS.

Jest to jednoznaczne z wyeliminowaniem akumulatorów z toru zasilania na czas rozruchu transformatora, który trwa bardzo krótko i jest realizowany w warunkach niezagrażających życiu pacjentów. Należy jednak mieć świadomość, że w takim przypadku również występują pewne ograniczenia wynikające z wartości dopuszczalnego prądu obciążenia toru bypassu oraz czasu trwania rozruchu. Dopuszczalne wartości prądów możliwe do pobrania przy pracy z baterii wybranych zasilaczy UPS przedstawia tabela 1.

Tab. 1. Zdolność zwarciowa przykładowych zasilaczy UPS podczas pracy z baterii, iloczyn prądu i napięcia

W przypadku gdy zasilacz UPS zasila odbiorniki nieliniowe powstają zniekształcenia prądu pobieranego ze źródła. Zniekształcenia te powodują pojawianie się w sieci zasilającej oraz instalacji odbiorczej harmonicznych, interharmonicznych i subharmonicznych, które na ogół nie są w fazie z napięciem. Zjawisko wyższych harmonicznych powoduje, że oprócz mocy czynnej i biernej pojawia się moc deformacji, co oznacza, że moc pozorna nie może być określona jako stopnia odkształcenia przebiegów napięcia i prądów, czyli od zawartości wyższych harmonicznych, a w układach wielofazowych również od stopnia asymetrii.

W przypadku obciążeń asymetrycznych współczynnik mocy cos nie jest jednakowy dla poszczególnych faz. W każdej fazie jego wartość może być różna i uzależniona od wartości mocy czynnej i biernej obciążającej fazę. Oszacowanie wartości mocy deformacji powodowanej niesymetrycznym obciążeniem jest dość trudne, jednak współczesne zasilacze UPS beztransformatorowe z falownikiem wykonanym w technologii IGBT są odporne na niesymetrię obciążenia wyjściowego. Zależność mocy wejściowej oraz mocy wyjściowej przedstawia rysunek 5.

Osobnym problemem jest wymagany czas podtrzymania zasilania przy pracy bateryjnej. W tym przypadku jedynym wyznacznikiem są wymagania stawiane przez użytkownika.

W praktyce przy zasilaniu zasilacza UPS przez zespół prądotwórczy można przyjmować czas podtrzymania na 15–20 minut, gdyż zespół prądotwórczy przejmie zasilanie w czasie do 30 s po zaniku napięcia w sieci elektroenergetycznej (jeśli zespół prądotwórczy zasila urządzenia przeciwpożarowe oprócz ogólnego podtrzymania zasilania całego obiektu, wymagany czas przejęcia zasilania zgodnie z normą PN-EN 12101-10:2007 [14] wynosi 15 s).

Zgodnie z normą IEC 60364-7-710:2012 Instalacje elektryczne niskiego napięcia. Część 7-710. Wymagania dotyczące specjalnych instalacji lub lokalizacji. Pomieszczenia medyczne [10]. Wymagany czas pracy zasilacza UPS wynosi:

  • bez współpracy z zespołem prądotwórczym – 3 godziny,
  • przy współpracy z zespołem prądotwórczym – 1 godzinę.

Norma ta dostępna jest w wersji angielskiej i nie została powołana w Rozporządzeniu [1], przez co jej stosowanie jest dobrowolne na zasadach wiedzy technicznej.

Dobór zabezpieczeń zasilacza UPS na jego wejściu jest uzależniony od wartości mocy zapotrzebowanej przez przyłączone do jego wyjścia odbiorniki. Przy zasilaniu odbiorników przez tor przekształtnika moc zapotrzebowana jest większa niż moc pobierana przy zasilaniu przez tor bypassu zewnętrznego. Skutkuje to tym, że zabezpiecza się osobno tor przekształtnika oraz tor bypassu statycznego i tor bypassu zewnętrznego.

Tor przekształtnika oraz bypassu statycznego zabezpiecza się bezpiecznikami topikowymi lub wyłącznikami nadprądowym instalacyjnymi o jednakowym prądzie znamionowym. Decydującym czynnikiem o doborze prądu znamionowego zabezpieczenia jest moc zapotrzebowana na wejściu zasilacza UPS przy pełnym obciążeniu. Natomiast prąd znamionowy zabezpieczeń toru bypassu zewnętrznego jest uzależniony od mocy zapotrzebowanej przez odbiorniki.

Przykład

Należy dobrać zasilacz UPS do zasilania urządzeń elektrycznych poprzez transformator elektromedyczny ES710/8000 o następujących parametrach Un1/Un2 = 230V/230 V; Sn = 8000 VA; prąd rozruchu Ir = 12·In.

Czas trwania stanu nieustalonego transformatora jest krótki, przez co dobór mocy zasilacza UPS do mocy zapotrzebowanej przez rozruch transformatora jest bezcelowym działaniem.

Zgodnie z katalogiem transformatorów elektromedycznych, transformator ES710/8000 wymaga zabezpieczenia bezpiecznikiem typu gG przy prądzie znamionowym In = 63 A. Oznacza to, że współczynnik k = In/IB = 63/34,7 ∈(1,8–2). Zatem należy przyjąć obciążenie prądowe zasilacza UPS o wartości 63 A. Przy takim załażeniu wymagana moc wyjściowa zasilacza UPS powinna wynosić 10 kVA. Przy zabezpieczeniu transformatora bezpiecznikiem Do2gG63 w torze bypassu dobranym ze względu na rozruch transformatora, odporność zwarciowa zasilacza wynosi 4 kA. Prąd wyłączenia zabezpieczenia w czasie nie dłuższym od 0,4 s zgodnie z charakterystyką prądowo-czasowa bezpiecznika wynosi Ia = 655,2 A. Podczas zwarcia w transformatorze zasilacz UPS musi przejść na bypass gdyż zgodnie z jego kartą katalogową praca z baterii dopuszcza jedynie pobór prądu o wartości 113 A. Prąd ten nie gwarantuje zadziałania zabezpieczeń w czasie nieprzekraczającym 5 s gdyż zgodnie z charakterystyką prądowo czasową bezpiecznika Do2gG63 prąd gwarantujący zadziałanie zabezpieczenia w czasie nie dłuższym od 5 s, wynosi Ia = 333,9 A.

Po rozruchu transformatora prąd obciążenia spada i wynosi po stronie pierwotnej 36 A. Zatem moc zasilacza UPS przy pracy bateryjnej musi gwarantować wydatek prądowy wynoszący więcej niż 36 A. Moc wyjściowa zasilacza w takim przypadku musi wynosić nie mniej niż:

Zabezpieczenie toru przekształtnika, przy założeniu współczynnika mocy zapotrzebowanej przez odbiorniki przyłączone do transformatora elektromedycznego cos φ = 0,9, czyli PZ = 100 000,9 = 9000 W:

 

Do zabezpieczenia toru bypassu wewnętrznego należy przyjąć zabezpieczenie Do2gD63. Natomiast ochronę przeciwporażeniową w obwodach elektromedycznych należy projektować zgodnie z zasadami opisanymi w treści artykułu.

Ochrona od porażeń w obwodach zasilanych przez UPS

W newralgicznych pomieszczeniach elektromedycznych, takich jak blok operacyjny lub OIOM, ze względu na wymaganą wysoką niezawodność zasilania zabronione jest stosowanie wyłączników różnicowoprądowych. Zdolność zwarciową wraz z dopuszczalnymi czasami trwania zwarcia dla wybranych zasilaczy UPS przedstawia tabela 1.

Analiza danych zawartych w tabeli 1. prowadzi do wniosku, że zasilacz UPS nie jest w stanie zagwarantować przepływu prądu o wartosci umożliwiajacej zadziałanie zabezpieczenia nadprądowego w czasie nie dłuższym od określonego w normie PN-HD 60364-4-41 [11].

Rys. 6. Metodyka wyznaczania przekroju przewodu ochronnego SPE łączącego chronione urządzenie z GSU, dla spełnienia warunku UST≤UL, gdzie:
UST – spodziewana wartość napięcia dotykowego,
GSU – główna szyna uziemiająca,
SPE – minimalny przekrój przewodu ochronnego, gwarantujący spełnienie warunku UST≤UL,
kp – współczynnik korekcyjny uwzględniający wpływ temperatury pożaru, którego sposób wyznaczenia określa norma N SEP 005 [13] – w warunkach normalnych (niepożarowych kp=1),
l – długość przewodu łączącego odbiornik z GSU,
Ia – prąd wyłączający zabezpieczenie w czasie wymaganym przez normę,
RPE – rezystancja przewodu ochronnego,
γ – konduktywność przewodu ochronnego łączącego chroniony odbiornik z GSU

 

Dla przykładu zasilacz o mocy 60 kVA gwarantuje prąd zwarciowy z baterii o wartości 520 A przez czas nie dłuższy od 100 ms, podczas gdy prąd zwarciowy gwarantujący nieprzekroczenie dopuszczalnego czasu trwania zwarcia, w jakim nastąpić powinno samoczynne wyłączenie, nie powinien przekraczać wartości 2400 A. Stan ten nie gwarantuje zapewnienia skutecznej ochrony od porażeń realizowanej przez samoczynne wyłączenie. Ograniczenie prądu zwarciowego w zasilaczu UPS do wartości z przedziału (2,5–3)·In jest spowodowane koniecznością ochrony elementów aktywnych przekształtnika. W takim przypadku pomocne może być sterowanie wartością spodziewanego napięcia dotykowego UST, tak by jego wartość nie przekraczała wartości napięcia dotykowego dopuszczalnego długotrwale UL. Postępowanie takie jest zgodne z normą [11], a sposób realizacji tego zalecenia (przy uproszczonym załażeniu: ZPE ≈ RPE) wyjaśnia rysunek 6. Dokładna analiza rysunku 6. oraz zamieszczonych przy nim wzorów prowadzi do oceny dwóch przypadków:

  • jeżeli Ik < Ia – czy spodziewane napięcie dotykowe UST, jakie powstanie na częściach przewodzących dostępnych chronionego urządzenia, w warunkach zakłóconych nie przekroczy napięcia dotykowego dopuszczalnego długotrwale UL?
  • jeżeli Ik ≥ Ia – czy nastąpi samoczynne wyłączenie zasilania w czasie nie dłuższym od określonego w normie PN-HD 60364-4-41:2009 (2017-09)?

Przyjęcie takiego sposobu rozwiązania ochrony przeciwporażeniowej gwarantuje jej zachowanie przy dowolnej wartości spodziewanego prądu zwarciowego Ik.

W przypadku zastosowania zasilacza trójfazowego do zasilania w ramach jednej sali operacyjnej lub OIOM należy wykorzystywać jedną fazę. W celu uniknięcia przejścia na bypass przy przeciążeniu jednej z faz, co spowoduje utratę gwarancji zasilania w całej zasilanej instalacji, obwody odbiorcze w poszczególnych fazach należy wyposażyć w przekaźniki priorytetu, które wyeliminują fazę uszkodzoną zapewniając utrzymanie zasilania gwarantowanego w instalacjach zasilanych z pozostałych faz. Przykład takiego układu przedstawia rysunek 7.

W przypadku zastosowania zasilacza UPS GT S 31 Rack/Tower 20 kVA przeznaczonego do zasilania urządzeń medycznych, gdzie każda faza na jego wyjściu tworzy osobny obwód jednofazowy, zwarcie w jednej z faz za UPS-em skutkowało będzie przełączeniem układu zasilania na bypass. W przypadku długotrwałego utrzymywania się takiego stanu, co będzie miało miejsce w przypadku Ik < Ia, ulega utracie bezpieczeństwo zasilania w fazach nieobjętych zwarciem. W celu wyeliminowania fazy objętej zwarciem i umożliwienia szybkiego powrotu do pracy przekształtnikowej zasilacza UPS, każda faza musi zostać dodatkowo zabezpieczona z wykorzystaniem układu automatyki umożliwiającej przerwanie zasilania w fazie objętej zwarciem w czasie jak najkrótszym od jego powstania, lecz nie dłuższym od 5 sekund. Układ automatyki zabezpieczeniowej należy wówczas projektować przed transformatorem elektromedycznym.

UPS GT S 31 Rack/Tower 20 kVA przeznaczony do zasilania urządzeń medycznych

Literatura

1. Rozporządzeniu Ministra Infrastruktury z 12 kwietnia 2002 roku w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie [Dz. U. z 2015 roku poz.1422 z późniejszymi zmianami].
2. Rozporządzenie Ministra Łączności z 21 kwietnia 1995 roku w sprawie zasilania energią elektryczną obiektów budowlanych łączności [Dz. U. Nr 50/1995 poz. 271].
3. Poradnik projektanta Systemów Sygnalizacji Pożaru – cz. II – SITP Warszawa 2009
4. J. Wiatr, M. Orzechowski – Poradnik Projektanta Elektryka – Grupa Medium Warszawa 2012, wydanie V
5. J. Wiatr, A. Boczkowski, M. Orzechowski –Ochrona przeciwporażeniowa oraz dobór przewodów i ich zabezpieczeń w instalacjach elektrycznych niskiego napięcia – DW MEDIUM Warszawa 2010 - wydanie I
6. T. Sutkowski – Rezerwowe i bezprzerwowe zasilanie w energię elektryczną. Urządzenia i układy. – COSiW SEP 2007
7. K. Sałasiński – Bezpieczeństwo elektryczne w zakładach opieki zdrowotnej – COSiW SEP 2007
8. PN-HD 60364-7-710:2012 Instalacje elektryczne niskiego napięcia. Część 7- 710: Wymagania dotyczące specjalnych instalacji lub lokalizacji. Pomieszczenia medyczne. – wersja angielska
9. PN-EN 60896-11:2007 Baterie ołowiowe stacjonarne. Część 11. Ogólne wymagania i metody badań.
10. PN-HD 60364-7-710:2012 Instalacje elektryczne niskiego napięcia. Część 7- 710. Wymagania dotyczące specjalnych instalacji lub lokalizacji. Pomieszczenia medyczne.
11. PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4- 41. Instalacje dla zapewnia bezpieczeństwa Ochrona przed porażeniem elektrycznym.
12. PN-EN 62040-1:2017 Systemy bezprzerwowego zasilania (UPS). Część 1. Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych.
13. N SEP-E 005 Dobór przewodów elektrycznych do zasilania urządzeń, których funkcjonowanie jest niezbędne w czasie pożaru.
14. PN-EN 12101-10:2007 Systemy kontroli rozprzestrzeniania dymu i ciepła. Część 10: Zasilacze.
15. Katalogi producentów zasilaczy UPS (Socomec)
16. J. Wiatr – Uproszczony projekt instalacji bloku operacyjnego – elektro.info nr 1-2/2019
17. Rozporządzenie Ministra Zdrowia z dnia 26 czerwca 2012 roku, w sprawie szczegółowych wymagań, jakim powinny odpowiadać pomieszczenia i urządzenia podmiotu wykonującego działalność leczniczą [Dz. U. z 2012 roku poz. 739] – źródłem zasilania awaryjnego powinien być zespół prądotwórczy, zapewniający pokrycie co najmniej 35 % mocy szczytowej oraz zasilacze UPS zapewniające odpowiedni poziom bezpieczeństwa zasilanych odbiorników.

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

  • Andru Andru, 21.03.2024r., 08:37:10 W przypadku urządzeń elektromedycznych niezawodność zasilania jest kwestią życia i śmierci. Zasilacze UPS muszą działać sprawnie i niezawodnie, aby zapewnić ciągłość pracy tych urządzeń.

Powiązane

dr inż. Karol Kuczyński Nadmiarowość i niezawodność w układach zasilania gwarantowanego

Nadmiarowość i niezawodność w układach zasilania gwarantowanego Nadmiarowość i niezawodność w układach zasilania gwarantowanego

Zaniki i zapady napięcia oraz inne zaburzenia, które występują w sieciach elektroenergetycznych powodują w zakładach przemysłowych lub innych przedsiębiorstwach straty w wyniku zatrzymania linii produkcyjnych...

Zaniki i zapady napięcia oraz inne zaburzenia, które występują w sieciach elektroenergetycznych powodują w zakładach przemysłowych lub innych przedsiębiorstwach straty w wyniku zatrzymania linii produkcyjnych bądź zakłócenia w pracy układów elektronicznych. W przypadku częstego występowania trwających kilka–kilkadziesiąt sekund zakłóceń zasilania urządzenia o mocy rzędu kilkudziesięciu–kilkuset kVA wymagają zastosowania specjalizowanych układów zapewniających krótkotrwałe zasilanie odbiornikom, np....

dr hab. inż. Paweł Piotrowski Analiza wybranych aspektów niezawodności i bezpieczeństwa w centrach przetwarzania danych

Analiza wybranych aspektów niezawodności i bezpieczeństwa w centrach przetwarzania danych Analiza wybranych aspektów niezawodności i bezpieczeństwa w centrach przetwarzania danych

Niezawodność i bezpieczeństwo w centrach przetwarzania danych to zagadnienie złożone i bardzo obszerne. W artykule szczególną uwagę poświęcono zasilaniu gwarantowanemu na potrzeby data center.

Niezawodność i bezpieczeństwo w centrach przetwarzania danych to zagadnienie złożone i bardzo obszerne. W artykule szczególną uwagę poświęcono zasilaniu gwarantowanemu na potrzeby data center.

dr inż. Arkadiusz Zmuda, mgr inż. Wojciech Rachtan Systemy kogeneracyjne oparte na mikroturbinach

Systemy kogeneracyjne oparte na mikroturbinach Systemy kogeneracyjne oparte na mikroturbinach

Układy energetyczne mocy mikro pracują zwykle w kogeneracji, tzn. że ciepło odpadowe, które jest nieodłącznym produktem ubocznym wytwarzania energii elektrycznej, wykorzystywane jest do wytwarzania ciepła...

Układy energetyczne mocy mikro pracują zwykle w kogeneracji, tzn. że ciepło odpadowe, które jest nieodłącznym produktem ubocznym wytwarzania energii elektrycznej, wykorzystywane jest do wytwarzania ciepła użytkowego. Układy te mogą być instalowane w obszarach zurbanizowanych, gdzie istnieje możliwość wykorzystania przez okolicznych odbiorców całego potencjału produkcji ciepła użytkowego.

mgr inż. Wojciech Rachtan, dr inż. Arkadiusz Zmuda Charakterystyka technologii mikroturbin pracujących w kogeneracji

Charakterystyka technologii mikroturbin pracujących w kogeneracji Charakterystyka technologii mikroturbin pracujących w kogeneracji

Mikroturbiny sprzedawane jako gotowe agregaty prądotwórcze są godną rozpatrzenia alternatywą dla agregatów opartych na silnikach tłokowych. Ze względu na prostą budowę silnika z jednym ruchomym elementem...

Mikroturbiny sprzedawane jako gotowe agregaty prądotwórcze są godną rozpatrzenia alternatywą dla agregatów opartych na silnikach tłokowych. Ze względu na prostą budowę silnika z jednym ruchomym elementem konstrukcyjnym, potencjalnie przeważają możliwością ciągłej pracy w długim czasie i z długimi okresami międzyserwisowymi. Dzięki zintegrowanym urządzeniom automatycznej regulacji i zabezpieczeń mogą pracować praktycznie bez nadzoru użytkownika.

dr inż. Karol Kuczyński Metody zwiększania niezawodności zasilania – zagadnienia wybrane

Metody zwiększania niezawodności zasilania – zagadnienia wybrane Metody zwiększania niezawodności zasilania – zagadnienia wybrane

Niezawodność zasilania to swego rodzaju kompromis pomiędzy zagrożeniami i stratami, jakie mogą być skutkiem przerw w zasilaniu, a kosztami środków i urządzeń, które mają takim przerwom zapobiegać. Jedną...

Niezawodność zasilania to swego rodzaju kompromis pomiędzy zagrożeniami i stratami, jakie mogą być skutkiem przerw w zasilaniu, a kosztami środków i urządzeń, które mają takim przerwom zapobiegać. Jedną z konsekwencji tego kompromisu jest podział odbiorców na grupy i kategorie w zależności od dopuszczalnego czasu trwania przerw w zasilaniu. Wykonując instalację w budynku korzystne jest zaplanowanie odrębnych obwodów do zasilania odbiorników, które wymagają zwiększonej pewności zasilania i mogą być...

mgr inż. Grzegorz Rysiński O czym warto pamiętać dobierając UPS?

O czym warto pamiętać dobierając UPS? O czym warto pamiętać dobierając UPS?

UPS (ang. Uninterruptible Power Supply) jest urządzeniem gwarantującym bezprzerwowe zasilanie odbiorników w przypadku wystąpienia przerwy lub awarii zasilania. Głównymi funkcjami tego typu urządzeń jest...

UPS (ang. Uninterruptible Power Supply) jest urządzeniem gwarantującym bezprzerwowe zasilanie odbiorników w przypadku wystąpienia przerwy lub awarii zasilania. Głównymi funkcjami tego typu urządzeń jest ochrona danych w przypadku zaniku zasilania (np. poprzez umożliwienie zapisania danych i bezpieczne wyłączenie odbiornika) oraz ochrona przed zakłóceniami w sieci.

dr hab. inż. Paweł Piotrowski, mgr inż. Rafał Pająk Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 1)

Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 1) Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 1)

Koszty budowy układów zasilania dla ośrodków przetwarzania danych stanowiące istotny element ekonomiczny są w praktyce bardzo różne w zależności od wybranego standardu Tier. Koszty bardzo znacznie rosną...

Koszty budowy układów zasilania dla ośrodków przetwarzania danych stanowiące istotny element ekonomiczny są w praktyce bardzo różne w zależności od wybranego standardu Tier. Koszty bardzo znacznie rosną wraz ze wzrostem niezawodności układu zasilania.

dr hab. inż. Paweł Piotrowski, mgr inż. Rafał Pająk Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 2)

Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 2) Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 2)

Bardzo wysoka niezawodność układów zasilania w centrach przetwarzania danych znacznie zwiększa koszty budowy systemu, rosnące przy tym znacznie szybciej niż odpowiadające im zmniejszenie czasu niedostępności...

Bardzo wysoka niezawodność układów zasilania w centrach przetwarzania danych znacznie zwiększa koszty budowy systemu, rosnące przy tym znacznie szybciej niż odpowiadające im zmniejszenie czasu niedostępności systemu.

dr inż. Karol Kuczyński Tandem zespół prądotwórczy i zasilacz UPS

Tandem zespół prądotwórczy i zasilacz UPS Tandem zespół prądotwórczy i zasilacz UPS

Obiekty wymagające zwiększonej niezawodności dostarczanego zasilania to: banki, centra przetwarzania danych, szpitale, metro, obiekty telekomunikacyjne oraz kompleksy biurowe w pełni sterowane przez układy...

Obiekty wymagające zwiększonej niezawodności dostarczanego zasilania to: banki, centra przetwarzania danych, szpitale, metro, obiekty telekomunikacyjne oraz kompleksy biurowe w pełni sterowane przez układy inteligentnego budynku. Niejednokrotnie zastosowanie zasilania dwustronnego z sieci elektroenergetycznej jest niewystarczające i należy instalować dodatkowe źródło energii w postaci zespołu prądotwórczego.

dr inż. Karol Bednarek Moduły bateryjne w systemach zasilania gwarantowanego (UPS)

Moduły bateryjne w systemach zasilania gwarantowanego (UPS) Moduły bateryjne w systemach zasilania gwarantowanego (UPS)

Poprawność i bezpieczeństwo pracy urządzeń elektrycznych, elektronicznych oraz informatycznych jednoznacznie związane są z jakością energii w układach zasilania elektrycznego. Powszechność funkcjonowania...

Poprawność i bezpieczeństwo pracy urządzeń elektrycznych, elektronicznych oraz informatycznych jednoznacznie związane są z jakością energii w układach zasilania elektrycznego. Powszechność funkcjonowania odbiorników nieliniowych (często pracujących impulsowo) bądź dynamicznie przełączanych dużych obciążeń sprzyja powstawaniu zaburzeń we wspólnych sieciach zasilających.

dr inż. Karol Kuczyński Rynek zasilaczy UPS w Polsce a niezawodność zasilania – zagadnienia wybrane

Rynek zasilaczy UPS w Polsce a niezawodność zasilania – zagadnienia wybrane Rynek zasilaczy UPS w Polsce a niezawodność zasilania – zagadnienia wybrane

Wydaje się nieprawdopodobnym, aby w XXI wieku dotykały nas regularne przerwy w dostawach energii elektrycznej. Tymczasem, jak ostrzegają eksperci, do takiego stanu może dojść w ciągu dwóch lat, a problem...

Wydaje się nieprawdopodobnym, aby w XXI wieku dotykały nas regularne przerwy w dostawach energii elektrycznej. Tymczasem, jak ostrzegają eksperci, do takiego stanu może dojść w ciągu dwóch lat, a problem będzie dotyczył zarówno odbiorców prywatnych, jak i firm. Zaniki i zapady napięcia oraz inne zaburzenia, które występują w sieciach elektroenergetycznych, powodują w zakładach przemysłowych lub innych przedsiębiorstwach straty w wyniku zatrzymania linii produkcyjnych bądź zakłóceń w pracy układów...

dr inż. Marek Woliński Zagrożenie wybuchowe stwarzane przez baterie

Zagrożenie wybuchowe stwarzane przez baterie Zagrożenie wybuchowe stwarzane przez baterie

Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75 z 2002 r., poz. 690 z późn. zm) w § 181...

Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75 z 2002 r., poz. 690 z późn. zm) w § 181 stawia warunek, że „budynek, w którym zanik napięcia w elektrycznej sieci zasilającej może spowodować zagrożenie życia lub zdrowia ludzi, poważne zagrożenie środowiska, a także znaczne straty materialne, należy zasilać co najmniej z dwóch niezależnych, samoczynnie załączających się źródeł energii elektrycznej”....

dr hab. inż. Paweł Piotrowski, inż. Przemysław Suchecki Analiza techniczno-ekonomiczna wyboru jednofazowego zespołu prądotwórczego małej mocy w zależności od wykorzystywanego paliwa

Analiza techniczno-ekonomiczna wyboru jednofazowego zespołu prądotwórczego małej mocy w zależności od wykorzystywanego paliwa Analiza techniczno-ekonomiczna wyboru jednofazowego zespołu prądotwórczego małej mocy w zależności od wykorzystywanego paliwa

Wybór rodzaju paliwa jest istotnym elementem przy doborze zespołu prądotwórczego. Preferowany z uwagi na kryteria techniczne oraz ekonomiczne typ silnika i rodzaj paliwa (benzyna, olej napędowy, gaz płynny...

Wybór rodzaju paliwa jest istotnym elementem przy doborze zespołu prądotwórczego. Preferowany z uwagi na kryteria techniczne oraz ekonomiczne typ silnika i rodzaj paliwa (benzyna, olej napędowy, gaz płynny LPG, gaz ziemny NG) dla zespołu prądotwórczego może być różny w zależności od celu stosowania zespołu prądotwórczego (szacowany czas i częstotliwość pracy).

dr inż. Karol Kuczyński Na co zwracać uwagę przy wyborze zasilacza UPS?

Na co zwracać uwagę przy wyborze zasilacza UPS? Na co zwracać uwagę  przy wyborze zasilacza UPS?

Występowanie stanów awaryjnych lub innych zaburzeń w systemie elektroenergetycznym, jak również oddziaływanie czynników atmosferycznych wpływa na powstawanie przerw w dostawach energii. Oddziałujące zaburzenia...

Występowanie stanów awaryjnych lub innych zaburzeń w systemie elektroenergetycznym, jak również oddziaływanie czynników atmosferycznych wpływa na powstawanie przerw w dostawach energii. Oddziałujące zaburzenia bądź przerwy w zasilaniu odbiorników mogą powodować utratę przetwarzanych danych, uszkodzenie urządzeń, przegrzewanie się systemów z uwagi na wyłączenie klimatyzacji, a w konsekwencji ich natychmiastowe zatrzymanie lub uszkodzenie. Zabezpieczeniem przed przytoczonymi konsekwencjami jest zastosowanie...

dr inż. Karol Kuczyński Zespół prądotwórczy jako źródło zasilania awaryjnego budynku

Zespół prądotwórczy jako źródło zasilania awaryjnego budynku Zespół prądotwórczy jako źródło zasilania awaryjnego budynku

Niejednokrotnie zastosowanie zasilania z dwóch niezależnych linii elektroenergetycznych jest niewystarczające i należy instalować dodatkowe źródło energii w postaci zespołu prądotwórczego. W niektórych...

Niejednokrotnie zastosowanie zasilania z dwóch niezależnych linii elektroenergetycznych jest niewystarczające i należy instalować dodatkowe źródło energii w postaci zespołu prądotwórczego. W niektórych przypadkach stanowi on jedyne źródło zasilania odbiorników elektrycznych. Na rynku dostępne są zespoły o mocach od kilku kVA do 6 MVA przeznaczone do różnych sposobów eksploatacji oraz do zabudowy w pomieszczeniu lub zabudowane w wolno stojącym kontenerze. Sposób eksploatacji zespołu prądotwórczego...

mgr inż. Julian Wiatr Dobór mocy zespołu prądotwórczego (część 1)

Dobór mocy zespołu prądotwórczego (część 1) Dobór mocy zespołu prądotwórczego (część 1)

Wielokrotnie zachodzi konieczność projektowania układów zasilania o zwiększonej pewności dostaw energii elektrycznej. Nie zawsze druga linia elektroenergetyczna doprowadzona do obiektu budowlanego spełnia...

Wielokrotnie zachodzi konieczność projektowania układów zasilania o zwiększonej pewności dostaw energii elektrycznej. Nie zawsze druga linia elektroenergetyczna doprowadzona do obiektu budowlanego spełnia oczekiwania odbiorcy. Często zachodzi potrzeba instalowania źródła zasilania awaryjnego, którym jest zespół prądotwórczy oraz zasilacza UPS. Obydwa te źródła wymagają odmiennego podejścia przy doborze ich mocy oraz innego sposobu projektowania i oceny ochrony przeciwporażeniowej w stosunku do systemu...

mgr inż. Julian Wiatr Dobór mocy zespołu prądotwórczego (część 2)

Dobór mocy zespołu prądotwórczego (część 2) Dobór mocy zespołu prądotwórczego (część 2)

W drugiej części artykułu publikowanego w nr. 9/2013 skupimy się na zasadach projektowania ochrony przeciwporażeniowej oraz jej ocenie w istniejących układach zasilania awaryjnego.

W drugiej części artykułu publikowanego w nr. 9/2013 skupimy się na zasadach projektowania ochrony przeciwporażeniowej oraz jej ocenie w istniejących układach zasilania awaryjnego.

dr inż. Karol Kuczyński Zasilacz UPS – na co zwrócić uwagę dokonując wyboru (część 2.)

Zasilacz UPS – na co zwrócić uwagę dokonując wyboru (część 2.) Zasilacz UPS – na co zwrócić uwagę dokonując wyboru (część 2.)

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu...

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu danego systemu należy uwzględnić typ zasilacza, biorąc pod uwagę jego niezawodność oraz sposób połączenia odbiorników i ich grup. W fazie przygotowania projektu należy wziąć pod uwagę znaczenie odbiorników i wymagany czas podtrzymania zasilania. Praca niektórych z nich może być zakończona bezpośrednio...

mgr inż. Julian Wiatr Ocena skuteczności samoczynnego wyłączania w instalacjach zasilanych przez zespół prądotwórczy

Ocena skuteczności samoczynnego wyłączania w instalacjach zasilanych przez zespół prądotwórczy Ocena skuteczności samoczynnego wyłączania w instalacjach zasilanych przez zespół prądotwórczy

Artykuł wyjaśnia powody, dla których ocena samoczynnego wyłączenia jest możliwa tylko w czasie działania układu forsowania wzbudzenia, W przeciwnym wypadku jeżeli dochodzi do zwarcia trwającego dłużej,...

Artykuł wyjaśnia powody, dla których ocena samoczynnego wyłączenia jest możliwa tylko w czasie działania układu forsowania wzbudzenia, W przeciwnym wypadku jeżeli dochodzi do zwarcia trwającego dłużej, należy poszukać innego środka ochrony przeciwporażeniowej, gdyż samoczynne wzbudzenie nie będzie skuteczne i nie spełni wymagań normy, którą tekst przywołuje. Oszacowanie skuteczności samoczynnego wyłączenia zabezpieczeń w instalacji zasilanej przez zespół prądotwórczy jest możliwe na drodze obliczeniowej...

dr hab. inż. Paweł Piotrowski, inż. Michał Derlacki - Politechnika warszawska Klasyfikacja niezawodności dla obiektów typu data center

Klasyfikacja niezawodności dla obiektów typu data center Klasyfikacja niezawodności dla obiektów typu data center

W dobie komputeryzacji i powszechnego dostepu do informacji niezwykle istotne jest zagwarantowanie niezawodnego zasilania obiektów informatycznych, w których odbywa sie magazynowanie oraz przetwarzanie...

W dobie komputeryzacji i powszechnego dostepu do informacji niezwykle istotne jest zagwarantowanie niezawodnego zasilania obiektów informatycznych, w których odbywa sie magazynowanie oraz przetwarzanie danych. Klasyfikacja niezawodnosci dla obiektów typu data center zawiera istotne informacje związane z właściwym projektowaniem układów zasilania gwarantowanego.

dr inż. Karol Kuczyński Niezawodność zasilania w kontekście układów SZR

Niezawodność zasilania w kontekście układów SZR Niezawodność zasilania w kontekście układów SZR

Zaprojektowanie możliwie najbardziej niezawodnego systemu zasilania w konkretnym obiekcie wymaga wiedzy o wymaganiach i zainstalowanych odbiornikach. W zależności od rodzaju odbiorników i stopnia ich ważności...

Zaprojektowanie możliwie najbardziej niezawodnego systemu zasilania w konkretnym obiekcie wymaga wiedzy o wymaganiach i zainstalowanych odbiornikach. W zależności od rodzaju odbiorników i stopnia ich ważności dla użytkownika stosowane są różne rozwiązania układów sieci zasilającej oraz zasilania gwarantowanego. Podstawowym wyznacznikiem doboru odpowiedniego układu zasilania jest wymagana niezawodność systemu zasilania. Aby zmniejszyć możliwość awarii systemu zasilania, stosuje się zwielokrotnienie...

dr hab. inż. Paweł Piotrowski, inż. Michał Derlacki - Politechnika warszawska Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 1.)

Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 1.) Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 1.)

Zasilanie gwarantowane dla obiektów typu data center to problem złożony i wieloaspektowy. Zwiększanie niezawodności jest zawsze związane z dynamicznym wzrostem kosztów. Wybór konkretnego układu zasilania...

Zasilanie gwarantowane dla obiektów typu data center to problem złożony i wieloaspektowy. Zwiększanie niezawodności jest zawsze związane z dynamicznym wzrostem kosztów. Wybór konkretnego układu zasilania gwarantowanego oraz urządzeń UPS wymaga dokładnej analizy zarówno technicznej, jak i ekonomicznej.

dr hab. inż. Paweł Piotrowski Niezawodność zasilania gwarantowanego dla obiektów typu data center

Niezawodność zasilania gwarantowanego dla obiektów typu data center Niezawodność zasilania gwarantowanego dla obiektów typu data center

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek...

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek wyposażony w systemy kontroli dostępu, przeciwdziałania napadom i sabotażom, telewizję przemysłową, odporny na zalanie i usytuowany poza strefą zalewową, aktywną sejsmicznie.

Jacek Katarzyński Jakość energii elektrycznej w mikrosieciach

Jakość energii elektrycznej w mikrosieciach Jakość energii elektrycznej w mikrosieciach

Stosowanie zespołów prądotwórczych jako rezerwowego źródła zasilania oraz współpracujących z nimi zasilaczy UPS stało się zjawiskiem powszechnym i dotyczy coraz większej liczby obiektów, w których ciągłość...

Stosowanie zespołów prądotwórczych jako rezerwowego źródła zasilania oraz współpracujących z nimi zasilaczy UPS stało się zjawiskiem powszechnym i dotyczy coraz większej liczby obiektów, w których ciągłość zasilania jest priorytetem.

Wybrane dla Ciebie

Jak wybrać odpowiedni sterownik PLC? »

Jak wybrać odpowiedni sterownik PLC? » Jak wybrać odpowiedni sterownik PLC? »

Falownik z funkcją zasilania rezerwowego dla gospodarstw domowych»

Falownik z funkcją zasilania rezerwowego dla gospodarstw domowych» Falownik z funkcją zasilania rezerwowego dla gospodarstw domowych»

Odkryj rewolucję w ładowaniu! Najtrwalsza i najprostsza stacja ładowania ev z prądem zmiennym »

Odkryj rewolucję w ładowaniu! Najtrwalsza i najprostsza stacja ładowania ev z prądem zmiennym » Odkryj rewolucję w ładowaniu! Najtrwalsza i najprostsza stacja ładowania ev z prądem zmiennym »

Najnowsza i najbardziej zaawansowana seria osprzętu elektroinstalacyjnego »

Najnowsza i najbardziej zaawansowana seria osprzętu elektroinstalacyjnego » Najnowsza i najbardziej zaawansowana seria osprzętu elektroinstalacyjnego »

Gdzie sprawdzą się zasilacze awaryjne?

Gdzie sprawdzą się zasilacze awaryjne? Gdzie sprawdzą się zasilacze awaryjne?

Wyszukiwarka UPS - znajdź najlepszy dla siebie!

Wyszukiwarka UPS - znajdź najlepszy dla siebie! Wyszukiwarka UPS - znajdź najlepszy dla siebie!

Sprawdź oprogramowanie dedykowane projektantom elektrycznym »

Sprawdź oprogramowanie dedykowane projektantom elektrycznym » Sprawdź oprogramowanie dedykowane projektantom elektrycznym »

Sterowniki zabezpieczeniowe dedykowane dla farm fotowoltaicznych i wiatrowych »

Sterowniki zabezpieczeniowe dedykowane dla farm fotowoltaicznych i wiatrowych » Sterowniki zabezpieczeniowe dedykowane dla farm fotowoltaicznych i wiatrowych »

Rejestrator zakłóceń - jaki wybrać?

Rejestrator zakłóceń - jaki wybrać? Rejestrator zakłóceń - jaki wybrać?

Jesteś elektrykiem? Dołącz do programu Elektroklub!

Jesteś elektrykiem? Dołącz do programu Elektroklub! Jesteś elektrykiem? Dołącz do programu Elektroklub!

Zasilanie gwarantowane - jak je zapewnić?

Zasilanie gwarantowane - jak je zapewnić? Zasilanie gwarantowane - jak je zapewnić?

Zasilacze z magazynami energii »

Zasilacze z magazynami energii » Zasilacze z magazynami energii »

Aplikacja do symulowania reakcji obciążenia lub zwarcia urządzeń zabezpieczających »

Aplikacja do symulowania reakcji obciążenia lub zwarcia urządzeń zabezpieczających » Aplikacja do symulowania reakcji obciążenia lub zwarcia urządzeń zabezpieczających »

Jak wybrać odpowiednie zasilanie awaryjne?

Jak wybrać odpowiednie zasilanie awaryjne? Jak wybrać odpowiednie zasilanie awaryjne?

Bezpłatne szkolenie: Procedura odbioru stacji ładowania samochodów elektrycznych przez UDT

Bezpłatne szkolenie: Procedura odbioru stacji ładowania samochodów elektrycznych przez UDT Bezpłatne szkolenie: Procedura odbioru stacji ładowania samochodów elektrycznych przez UDT

Zdalne sterowanie i nadzór rozdzielnic gazowych »

Zdalne sterowanie i nadzór rozdzielnic gazowych » Zdalne sterowanie i nadzór rozdzielnic gazowych »

Ograniczniki przepięć SPD - wyższy poziom zabezpieczenia »

Ograniczniki przepięć SPD - wyższy poziom zabezpieczenia » Ograniczniki przepięć SPD - wyższy poziom zabezpieczenia »

Jak chronić fotowoltaikę przed przepięciami?

Jak chronić fotowoltaikę przed przepięciami? Jak chronić fotowoltaikę przed przepięciami?

Kilka pomysłów na przeprowadzenie kabli »

Kilka pomysłów na przeprowadzenie kabli » Kilka pomysłów na przeprowadzenie kabli »

Osprzęt instalacyjny idealnie dopasowany do montażu w kanałach instalacyjnych »

Osprzęt instalacyjny idealnie dopasowany do montażu w kanałach instalacyjnych » Osprzęt instalacyjny idealnie dopasowany do montażu w kanałach instalacyjnych »

Szkolenie - solidna dawka SMART HOME

Szkolenie - solidna dawka SMART HOME Szkolenie - solidna dawka SMART HOME

Czy termowizja pozwala przewidzieć awarię zanim jeszcze nastąpi?

Czy termowizja pozwala przewidzieć awarię zanim jeszcze nastąpi? Czy termowizja pozwala przewidzieć awarię zanim jeszcze nastąpi?

Pobierz program do projektowania schematów elektrycznych »

Pobierz program do projektowania schematów elektrycznych » Pobierz program do projektowania schematów elektrycznych »

Jak prawidłowo wykonać połączenia elektryczne?

Jak prawidłowo wykonać połączenia elektryczne? Jak prawidłowo wykonać połączenia elektryczne?

Odkryj zagrożenia ukryte w Twojej instalacji dzięki miernikowi rezystancji izolacji »

Odkryj zagrożenia ukryte w Twojej instalacji dzięki miernikowi rezystancji izolacji » Odkryj zagrożenia ukryte w Twojej instalacji dzięki miernikowi rezystancji izolacji »

Jaki jest najlepszy modułowy zasilacz UPS dla urządzeń krytycznych?

Jaki jest najlepszy modułowy zasilacz UPS dla urządzeń krytycznych? Jaki jest najlepszy modułowy zasilacz UPS dla urządzeń krytycznych?

Wielofunkcyjny miernik parametrów instalacji elektrycznych - jaki wybrać?

Wielofunkcyjny miernik parametrów instalacji elektrycznych - jaki wybrać? Wielofunkcyjny miernik parametrów instalacji elektrycznych - jaki wybrać?

Gniazda podłogowe i dokujące — unikalne, uniwersalne rozwiązania »

Gniazda podłogowe i dokujące — unikalne, uniwersalne rozwiązania » Gniazda podłogowe i dokujące — unikalne, uniwersalne rozwiązania »

Jak zmienić swój dom w dom inteligentny bez konieczności zmian w tradycyjnej instalacji?

Jak zmienić swój dom w dom inteligentny bez konieczności zmian w tradycyjnej instalacji? Jak zmienić swój dom w dom inteligentny bez konieczności zmian w tradycyjnej instalacji?

Zwiększ wydajność: narzędzie do testowania impedancji pętli »

Zwiększ wydajność: narzędzie do testowania impedancji pętli » Zwiększ wydajność: narzędzie do testowania impedancji pętli »

Najnowsze produkty i technologie

dr inż. Andrzej Książkiewicz - Astat Sp. z o.o. Wykorzystanie stacjonarnych analizatorów jakości energii PQI-DA Smart do raportowania stanu sieci elektroenergetycznej

Wykorzystanie stacjonarnych analizatorów jakości energii PQI-DA Smart do raportowania stanu sieci elektroenergetycznej Wykorzystanie stacjonarnych analizatorów jakości energii PQI-DA Smart do raportowania stanu sieci elektroenergetycznej

Zapewnienie właściwej jakości energii elektrycznej, w tym brak przerw w dostawie energii oraz opłat za ponadumowny pobór energii elektrycznej, należą do zadań służb energetycznych w zakładzie przemysłowym....

Zapewnienie właściwej jakości energii elektrycznej, w tym brak przerw w dostawie energii oraz opłat za ponadumowny pobór energii elektrycznej, należą do zadań służb energetycznych w zakładzie przemysłowym. Aby móc wypełnić wskazane zadania, niezbędne są rzetelne dane o parametrach jakości energii elektrycznej. W tym celu można stosować stacjonarne analizatory jakości energii elektrycznej firmy A-Eberle typu PQI-DA Smart.

Aero7.pl Klimatyzator ścienny split do domu i mieszkania

Klimatyzator ścienny split do domu i mieszkania Klimatyzator ścienny split do domu i mieszkania

Klimatyzatory ścienne split to idealne rozwiązanie do chłodzenia wnętrz zarówno w domach, jak i mieszkaniach. Umożliwiają efektywną regulację temperatury, zapewniając komfort nawet w najgorętsze dni.

Klimatyzatory ścienne split to idealne rozwiązanie do chłodzenia wnętrz zarówno w domach, jak i mieszkaniach. Umożliwiają efektywną regulację temperatury, zapewniając komfort nawet w najgorętsze dni.

De Dietrich Sanktuarium w Kałkowie-Godowie z nowoczesnym systemem ogrzewania marki De Dietrich

Sanktuarium w Kałkowie-Godowie z nowoczesnym systemem ogrzewania marki De Dietrich Sanktuarium w Kałkowie-Godowie z nowoczesnym systemem ogrzewania marki De Dietrich

Zakończono półtoraroczny projekt termomodernizacji w Sanktuarium Matki Bożej Bolesnej, Pani Ziemi Świętokrzyskiej, zlokalizowanym w Kałkowie-Godowie. Obecnie zarówno duchowni, jak i pielgrzymi odwiedzający...

Zakończono półtoraroczny projekt termomodernizacji w Sanktuarium Matki Bożej Bolesnej, Pani Ziemi Świętokrzyskiej, zlokalizowanym w Kałkowie-Godowie. Obecnie zarówno duchowni, jak i pielgrzymi odwiedzający to miejsce, mają dostęp do zaawansowanego technologicznie systemu grzewczego.

Fakro Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu?

Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu? Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu?

Składane schody prowadzące na strych są popularną alternatywą dla tradycyjnych schodów, które zazwyczaj zajmują bardzo dużo miejsca. W jakie konstrukcje warto zainwestować? Czym się charakteryzują?

Składane schody prowadzące na strych są popularną alternatywą dla tradycyjnych schodów, które zazwyczaj zajmują bardzo dużo miejsca. W jakie konstrukcje warto zainwestować? Czym się charakteryzują?

PHOENIX CONTACT Sp.z o.o. Efektywność prefabrykacji przewodów

Efektywność prefabrykacji przewodów Efektywność prefabrykacji przewodów

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo...

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo niewiele można zrobić, aby wpłynąć na te aspekty, dlatego coraz częściej w centrum uwagi znajduje się produkcja własna ze wszystkimi procesami i strukturami, a także ogólna struktura kosztów.

Zakłady Kablowe BITNER Sp. z o.o. EMC na przykładzie kabli zasilających i sterowniczych

EMC na przykładzie kabli zasilających i sterowniczych EMC na przykładzie kabli zasilających i sterowniczych

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych...

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych w całość. Prawidłowe funkcjonowanie urządzeń może być zapewnione tylko i wyłącznie wtedy, gdy zakłócenia generowane przez otoczenie będą skutecznie blokowane. Generowane spodziewane zakłócenia elektromagnetyczne przez wyposażenie otaczające kable muszą zatem być w odpowiedni sposób odseparowane.

Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Jaki dysk zewnętrzny wybrać, robiąc backup danych? Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia...

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia kopii zapasowych. Czytaj dalej i dowiedz się, który z nich może odpowiadać Twoim potrzebom!

Renowa24.pl Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Dlaczego wybór okien dachowych jest ważny?

Dlaczego wybór okien dachowych jest ważny?

BayWa r.e. Solar Systems BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

BayWa r.e. Solar Systems otwiera magazyn w Gdańsku! BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie...

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie daje ponad 45 tys. m kw. powierzchni magazynowej BayWa r.e. Solar Systems w Polsce.

WAGO ELWAG Sp. z o.o. Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi...

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi – połączyć przewody o przekroju od 0,75 do 4 mm kw. Wystarczy po prostu odizolować końcówkę przewodu i bez użycia jakichkolwiek narzędzi wsunąć ją do złączki – i bezpieczne połączenie gotowe.

ASTAT Sp. z o.o. Modułowe filtry aktywne firmy Schaffner

Modułowe filtry aktywne firmy Schaffner Modułowe filtry aktywne firmy Schaffner

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej,...

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej, moc odbiorników czy budowa samej instalacji elektroenergetycznej. Dobór konkretnego rozwiązania powinien opierać się na analizie układu zasilającego zakład, reżimu pracy i zainstalowanych odbiorników. Bardzo ważnym punktem doboru jest wykonanie pomiarów Jakości Energii Elektrycznej i ich prawidłowa...

IGE+XAO Polska Sp. z o.o. Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

SIBA Polska Sp. z o.o. Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów...

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów zapewniających zasilanie całych zakładów. Jest zatem sprawą kluczową, aby systemy zasilania awaryjnego same działały bez zarzutu. Bezpieczniki produkowane przez firmę SIBA zabezpieczają urządzenia, które w przypadku awarii zasilania dostarczają energię kluczowym odbiorom.

SONEL S.A. Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV...

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV – pierwszy na świecie miernik przeznaczony do pomiarów impedancji pętli zwarcia w sieciach o napięciach dochodzących aż do 900 V AC, z kategorią pomiarową CAT IV 1000 V.

GROMTOR sp. z o.o. Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie...

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie zabezpieczać wszelkiego rodzaju obiekty, projektując i montując instalację odgromową zgodną z obowiązującymi przepisami.

Redakcja news Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami! Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa...

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa w nim wiosenna promocja, w której można wygrać supernagrody!

Solfinity sp. z o.o. sp.k. Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Inwertery hybrydowe: przyszłość zrównoważonej energetyki Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są...

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są przyszłością zrównoważonej energetyki.

CSI S.A Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210 Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel®...

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel® Celeron® N6210 o mocy 6,5 W.

Ewimar Sp. z o.o. Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Nowe ograniczniki przepięć do systemów automatyki i nie tylko Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Pewny Lokal Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków? Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych...

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych optymalizacja zużycia energii staje się priorytetem. Jednym z ważniejszych kroków prowadzących do obniżenia klasy energetycznej budynków jest wprowadzenie świadectwa energetycznego i nowoczesnych instalacji elektrycznych.

Fronius Polska Sp. z o.o. Fronius GEN24

Fronius GEN24 Fronius GEN24

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius...

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius GEN24.

Dominik Mamcarz, Ekspert ds. Techniczno-Rozwojowych w Alseva EPC CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem...

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem energii ze źródeł odnawialnych jest gromadzenie i przesyłanie wyprodukowanej energii elektrycznej. W tym kontekście technologia cable pooling zyskuje na znaczeniu, umożliwiając zoptymalizowane zarządzanie przesyłem energii elektrycznej ze źródeł OZE.

leroymerlin.pl Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz,...

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz, mają różne rozmiary, dzięki czemu można je dopasować do praktycznie każdego rodzaju lamp, są energooszczędne, a to tylko kilka z wielu ich zalet. Na co zwracać uwagę przy zakupie tego rodzaju żarówek i jak dopasować ich parametry do swoich potrzeb?

Bankier.pl Które produkty bankowe przydają się podczas remontu?

Które produkty bankowe przydają się podczas remontu? Które produkty bankowe przydają się podczas remontu?

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić...

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić niektóre produkty bankowe. O których z nich mowa? Tego lepiej dowiedzieć się jeszcze przed rozpoczęciem prac budowalnych.

NNV Sp z o.o. Czy fotowoltaika podnosi wartość nieruchomości?

Czy fotowoltaika podnosi wartość nieruchomości? Czy fotowoltaika podnosi wartość nieruchomości?

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest...

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest to ekologiczne źródło energii. Montaż paneli fotowoltaicznych na działce lub dachu domu ma jeszcze jedną zaletę – w przypadku sprzedaży nieruchomości podnosi jej wartość.

APATOR SA Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego...

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego producenta dla krajowych Operatorów Sieci Dystrybucji, którzy poszukują skutecznych rozwiązań technicznych do bilansowania sieci oraz redukcji nadmiernych obciążeń w szczytach produkcji energii z odnawialnych źródeł.

PHOENIX CONTACT Sp.z o.o. Modularny system drukujący – Thermomark E series

Modularny system drukujący – Thermomark E series Modularny system drukujący – Thermomark E series

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym...

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym cyklu roboczym. Rozwiązanie to umożliwia proste i bardzo wydajne oznaczanie przemysłowe, dzięki czemu efektywność naszej produkcji może wzrosnąć diametralnie.

Finder Polska Sp. z o.o. Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni...

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni z tradycyjnego domu budynku pasywnego. Niewątpliwie jednak należy pamiętać, że elementy automatyki budynkowej są składową pasywnych budowli i nawet zwykłe mieszkanie potrafią uczynić bardziej oszczędnym i ekologicznym.

Brother Polska Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Drukarki etykiet dla elektryków i elektroinstalatorów Brother Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch...

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch E550WVP to przenośne i szybkie urządzenia, które oferują specjalne funkcje do druku najpopularniejszych typów etykiet. Urządzenia pozwalają na szybkie i bezproblemowe drukowanie oznaczeń kabli, przewodów, gniazdek elektrycznych, przełączników oraz paneli krosowniczych.

PHOENIX CONTACT Sp.z o.o. Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych....

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych. Dodatkowo w różnych materiałach marketingowych również można znaleźć nie zawsze pełne informacje na temat wymagań stawianych SPD, co nie pomaga w właściwym doborze odpowiedniego modelu do aplikacji. W tym artykule postaramy się przybliżyć najważniejsze zagadnienia, które pozwolą dobrać bezpieczne ograniczniki...

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.