Ogólne wymagania dotyczące zasilania w energię elektryczną oraz stosowania nowoczesnych technologii informatycznych w służbie zdrowia
Zasilanie obiektów służby zdrowia; pixabay
Zastosowanie nowoczesnych systemów informatycznych wspomagających aparaturę medyczną stosowaną do obrazowania wymusza zapewnienie niezawodności zasilania tych systemów. Obecnie diagnostyka medyczna coraz częściej wspierana jest poprzez sieci neuronowe i uczenie głębokie, które wspomagają identyfikację zmian chorobowych oraz wymagają dużej mocy obliczeniowej procesorów i układów graficznych.
Zobacz także
Impakt SA Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii
Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych....
Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych. Zastosowana topologia podwójnej konwersji (VFI-SS-311) gwarantuje najwyższy poziom bezpieczeństwa, a wyspecjalizowane układy utrzymują współczynnik mocy PF na poziomie > 0.99. Oczywiście zależy on od podłączonych urządzeń odbiorczych. Wszelkie informacje o stanie UPS widoczne są na...
Riello Delta Power Sp. z o.o. Projekt przygotowania zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w elektrowni
Firma Riello Delta Power Sp. z o.o. na przełomie lat 2022 i 2023 zrealizowała projekt zabudowy, produkcji, dostarczenia i instalacji dwóch zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków...
Firma Riello Delta Power Sp. z o.o. na przełomie lat 2022 i 2023 zrealizowała projekt zabudowy, produkcji, dostarczenia i instalacji dwóch zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w jednej z kluczowych dla polskiego systemu energetycznego elektrowni w Polsce północno-zachodniej.
mgr inż. Dariusz Zgorzalski, EVER Sp. z o.o. Wybrane aspekty wymagań zasilaczy stosowanych do urządzeń przeciwpożarowych – na przykładzie zasilacza do napędów bram napowietrzających UZS-230V-1kW-1F firmy EVER
W poprzednich częściach dowiodłem, że zasilacze do bram napowietrzających stanowią istotny element systemu wentylacji pożarowej, od strony formalnej muszą posiadać świadectwo dopuszczenia CNBOP-PIB, a...
W poprzednich częściach dowiodłem, że zasilacze do bram napowietrzających stanowią istotny element systemu wentylacji pożarowej, od strony formalnej muszą posiadać świadectwo dopuszczenia CNBOP-PIB, a stosowanie niecertyfikowanych UPSów niesie za sobą ryzyko istotnych konsekwencji. Podkreśliłem, że świadectwo dopuszczenia CNBOP-PIB jest warunkiem koniecznym, ale nie wystarczającym. Kompatybilność funkcjonalna, elektryczna i mechaniczna całego systemu jest podstawą do tego, aby urządzenia działały...
Zasilanie szpitala wymaga projektowania układów o bardzo wysokich parametrach jakościowych dostaw energii elektrycznej. Układy zasilania szpitali wyposaża się w stacje transformatorowe zawierające układy automatyki SZR, które dodatkowo rezerwuje się zespołem prądotwórczym o mocy zapewniającej pokrycie zapotrzebowania przez najważniejsze odbiorniki, gwarantujące funkcjonowanie szpitala w warunkach przerwy w dostawie energii elektrycznej z sieci elektroenergetycznej. W celu zapewnienia bezprzerwowej dostawy energii elektrycznej do odbiorników gwarantujących podtrzymanie życia, stanowiących wyposażenie bloku operacyjnego oraz OIOM, zasilanie jest realizowane w układzie, którego końcowym elementem jest zasilacz UPS.
W artykule:
|
Streszczenie W artykule omówiono podstawowe wymagania dla zasilania obiektów medycznych. Istotnym jest zapewnienie odpowiedniego stopnia dostępności tego typu systemów zasilania i odpowiedni dobór układów zasilania w zależności od pełnionej funkcji. |
Abstract General Requirements for Power Supply and the Use of Modern Technologies in Healthcare The article discusses the basic requirements for power supply healthcare facilities. It is important to ensure the appropriate degree of availability of this type of power supply systems and proper selection power supply systems for these functions. |
Zasilanie obiektów służby zdrowia
Rozporządzenie Ministra Zdrowia z dnia 26 czerwca 2012 r. w sprawie szczegółowych wymagań, jakim powinny odpowiadać pomieszczenia i urządzenia podmiotu wykonującego działalność leczniczą w § 41 stwierdza, że rezerwowym źródłem zaopatrzenia szpitala w energię elektryczną jest zespół prądotwórczy wyposażony w funkcję autostartu, zapewniający co najmniej 30% potrzeb mocy szczytowej, a także urządzenie zapewniające odpowiedni poziom bezprzerwowego podtrzymania zasilania. Należy przez to rozumieć, że wysoki poziomu niezawodności zasilania szpitala w energię elektryczną jest warunkiem bezpieczeństwa wszystkich pacjentów, a w szczególności tych, którzy poddawani są operacjom i innym procedurom medycznym mającym wpływ na funkcje życiowe organizmu. Po nowelizacji Rozporządzenie Ministra Zdrowia z dnia 26 marca 2019 r. w sprawie szczegółowych wymagań, jakim powinny odpowiadać pomieszczenia i urządzenia podmiotu wykonującego działalność leczniczą (Dz.U. z dnia 29 marca 2019 r., poz. 595) tej samej treści jest § 42. Dodatkowo wymagane jest, aby systemy monitoringu w wymienionych pomieszczeniach wyposażony był w zasilanie rezerwowe pozwalając personelowi medycznemu monitorować stan pacjentów.
Zgodnie z [3, 4, 6] należy przyjąć następujący podział pomieszczeń medycznych:
a) grupa 0: należą do niej pomieszczenia medyczne, w których nie przewiduje się stosowania części aplikacyjnych aparatury elektromedycznej, a zanik zasilania nie powoduje zagrożenia życia. Są to pomieszczenia, w których pacjenci nie stykają się z urządzeniami elektromedycznymi. Urządzenia występujące w tej strefie mają własne wbudowane źródło zasilania w postaci ogniwa. Będą to gabinety ordynatorów, sale opatrunkowe, masażu, gimnastyki, hydroterapii, inhalacji czy też ogólnych badań otolaryngologicznych, okulistycznych, gabinety stomatologiczne itp.;
b) grupa 1: należą do niej pomieszczenia medyczne, w których przewiduje się stosowanie elementów aparatury elektromedycznej zewnętrznie lub wewnętrznie do różnych części ciała, poza zastosowaniami dotyczącymi pomieszczeń grupy 2, a zanik zasilania również nie powoduje zagrożenia życia. W pomieszczeniach tych mogą być stosowane aparaty medyczne mające bezpośredni kontakt z ciałem pacjenta, również wprowadzane pod skórę oraz do naturalnych lub sztucznie wykonanych otworów ciała człowieka, pod warunkiem, że żadna z części nie może znajdować się w bezpośredniej bliskości serca. Będą to sale hydro- i fizykoterapii, radiologii (z wyłączeniem badań naczyniowych) dializy zewnątrzustrojowej, sale porodowe, chirurgii ambulatoryjnej, stomatologii (fotel pacjenta), wszelkiego rodzaju endoskopii itd.;
c) grupa 2: należą do niej pomieszczenia najwyższego ryzyka, a więc pomieszczeń, gdzie przewiduje się stosowanie części aplikacyjnych aparatury elektromedycznej przy zabiegach na sercu, w salach operacyjnych, intensywnej opieki medycznej i innych zabiegach, przy których zanik zasilania może być przyczyną zagrożenia życia. Grupa ta obejmuje pomieszczenia, gdzie są lub mogą być stosowane aparaty elektromedyczne, których elementy mogą stykać się z sercem lub znajdować się w jego bezpośrednim sąsiedztwie. Będą to sale operacyjne i związane z nimi sale przygotowania pacjenta, sale intensywnej opieki medycznej (OIOM) i pooperacyjnej, rentgenowskich badań naczyniowych oraz częściowo endoskopii i sal porodowych z możliwością zastosowania aparatów elektromedycznych.
Zasilanie obiektów medycznych
Istotne znaczenie dla bezpieczeństwa pacjentów ma zapewnienie ciągłości zasilania, w związku z tym w obiekcie służby zdrowia na etapie opracowywania koncepcji zasilania, należy dokonać podziału odbiorników na kategorie zasilania. Warunkiem zapewnienia wysokiej niezawodności jest doprowadzenie zasilania do budynku szpitala z dwóch różnych stacji transformatorowych zasilanych z różnych linii wysokiego napięcia. Takie rozwiązanie pozwala na uzyskanie właściwego rezerwowania zasilanych odbiorników przy zasilaniu z systemu elektroenergetycznego.
Przy głównym złączu budynku szpitala powinien być zainstalowany samoczynne załączanie rezerwy (SZR), z którego energia elektryczna powinna być doprowadzona do rozdzielni głównej szpitala, gdzie należy wydzielić obwody odbiorników zaliczonych do III kategorii zasilania, które nie muszą funkcjonować w czasie zaniku zasilania podstawowego oraz obwód zasilający kolejny SZR, przeznaczony do współpracy z zespołem prądotwórczym, stanowiącym awaryjne źródło zasilania [1, 2].
Z drugiego SZR-a zasilanie należy doprowadzić do rozdzielnicy odbiorników II kategorii zasilania. Do odbiorników tej kategorii należy zaliczyć ogólne sale chorych, apteki, korytarze, windy, oświetlenie ogólne itp. Dla odbiorników zaliczonych do II kategorii dopuszcza się czas przerwy w zasilaniu do 60 sekund (tj. czas niezbędny dla dokonania samorozruchu zespołu prądotwórczego i ustabilizowanie obrotów). W rozdzielni należy wydzielić obwód zasilający zasilacz UPS, przeznaczony do zasilania odbiorników I kategorii zasilania, dla których niedopuszczalna jest jakakolwiek przerwa w zasilaniu. Układ współpracy zespołu prądotwórczego z zasilaczem UPS nazywa się tandemem. Dokonanie takiego podziału jest konieczne ze względu na warunki lokalowe, jakimi dysponuje szpital oraz wysokie koszty zakupu, eksploatacji zespołu prądotwórczego i zasilaczy UPS. Zakwalifikowanie sal operacyjnych, OIOM oraz laboratoriów do I kategorii zasilania jest uzasadnione tym, że pacjent podłączony do aparatury nie może być pozbawiany czynności podtrzymujących życie, a brak oświetlenia (nawet przez kilka sekund) podczas operacji odbywającej się w nocy może być tragiczny w skutkach dla pacjenta. Dlatego zasilanie tych pomieszczeń w sposób bezprzerwowy jest uzasadnione i możliwe do realizacji tylko z wykorzystaniem zasilacza UPS o mocy dostosowanej do zasilanych przez niego urządzeń [3].
Ochrona przeciwporażeniowa
Pomieszczenia grupy 0 i 1 muszą spełniać wszystkie warunki normy PN-HD 60364-4-41 [7], prawa budowlanego, rozporządzeń wykonawczych oraz cech indywidualnych człowieka chorego i jego podatności na działanie prądu elektrycznego.
Wszystkie pomieszczenia muszą mieć podłogi o rezystancji Ri ≥ 50 kΩ, a urządzenia w nich zainstalowane powinny posiadać ochronę przy uszkodzeniu. Instalacja odbiorcza musi być wykonana w systemie TN-S, mieć połączenia wyrównawcze i być chroniona przed przeciążeniami i zwarciami, a także mieć ochronę przeciwprzepięciową [3].
Natomiast w pomieszczeniach grupy 2 instalacja odbiorcza oprócz skutecznej ochrony przeciwporażeniowej powinna gwarantować ciągłość zasilania. W pomieszczeniach tych niedopuszczalne są jakiekolwiek przerwy w zasilaniu wynikłe z przeciążeń lub zwarć.
Spośród pięciu dostępnych systemów zasilania (TN: TN-S, TN-C-S, TN-C oraz TT i IT) tylko system IT może podołać tym wymaganiom. Układ ten buduje się z wykorzystaniem jednofazowych transformatorów separacyjnych ze stałą kontrolą stanu izolacji. Każde pomieszczenie lub grupa pomieszczeń funkcjonalnie związanych ze sobą (np. sala operacyjna i pomieszczenia przygotowania pacjenta) powinny być zasilane z osobnego transformatora o mocy (3,15–10) kVA. W przypadku większych mocy zapotrzebowanych należy wykonać klika sieci elektromedycznych zasilanych z osobnych transformatorów o mocach dobranych do potrzeb zasilanych odbiorników (zgodnie z normą PN-HD 60364-7-710:2012 [7] transformatory elektromedyczne nie mogą być łączone równolegle). Przykładowe rozwiązania układów zasilania zostały zamieszczone w publikacji [5, 6].
Układ zasilania IT
W odróżnieniu od układów TN, w których jeden przewód ma potencjał ziemi, a pozostałe są pod napięciem 230 V, układ IT charakteryzuje się odizolowanym punktem neutralnym [3].
W związku z tym różnica potencjałów pomiędzy przewodami a ziemią nie jest określona, a bezpośrednie doziemienie jednego z nich powoduje tylko wyrównanie potencjału z potencjałem ziemi, co sprowadza się do krótkotrwałego, niegroźnego w skutkach (przy niezbyt dużych pojemnościach sieci) przepływu przez człowieka prądu wyrównawczego.
System ten jednak jest tak długo bezpieczny, jak długo nie nastąpi pierwsze doziemienie, gdyż wówczas upodabnia się on swoją konfiguracją najczęściej do układu TT. Podczas zwarć podwójnych na obudowach chronionych odbiorników pojawia się pełne napięcie znamionowe.
Miejscem szczególnego zagrożenia są sale operacyjne i inne pomieszczenia szpitalne, w których wykonuje się zabiegi za pomocą aparatów elektromedycznych z pominięciem wierzchniej warstwy naskórka, a często bezpośrednio na sercu. Dlatego też w warunkach szpitalnych może dojść do mikroporażenia, przy którym cały prąd rażeniowy przepływa przez mięsień sercowy. O ile więc w warunkach pozaszpitalnych granicą zagrożenia jest prąd 10 mA, to w salach operacyjnych ta granica przesuwa się do wartości 10 µA.
Należy pamiętać, że zwiększona podatność pacjentów na działanie prądu elektrycznego wynika między innymi z następujących czynników [3]:
- brak możliwości reagowania na odczucie przepływu prądu (choroba, brak przytomności, działanie anestyków, ograniczenie swobody ruchu),
- zmniejszenie rezystancji naskórka (pocenie się, stres),
- konieczność stałego podłączenia do aparatury podtrzymującej podstawowe funkcje życiowe.
Wszystko to prowadzi do konieczności zastosowania układu elektrycznego gwarantującego wysoki stopień bezpieczeństwa (szczególnie w pomieszczeniach drugiej grupy). Gniazda wtyczkowe i odbiorniki znajdujące się w zasięgu ręki muszą więc być zasilane przez transformatory separacyjne z kontrolą stanu izolacji (medyczne transformatory ochronne). Poszczególne obwody powinny mieć zabezpieczenie przed prądami zwarciowymi, a przypadkowe przeciążenia powinny być natychmiast sygnalizowane. Odporność na krótkotrwałe przeciążenie uzyskuje się przez stosowanie transformatorów separacyjnych o uzwojeniach z przewodami o zwiększonym przekroju [3].
Zasilanie systemów informatycznych w służbie zdrowia
Europejski Instytut Innowacji i Technologii (EIT Health) i firma konsultingowa Mckinsey w marcu 2020r. przygotowały wspólnie raport dotyczący zastosowania sztucznej inteligencji i technologii informatycznych w ochronie zdrowia: „Transforming healthcare with AI – The impact on the workforce and organisations – Transformacja opieki zdrowotnej poprzez AI: wpływ na ludzi i organizacje“. Uczenie maszynowe jako część sztucznej inteligencji (AI) wymaga dużych zbiorów danych do ich analizy z użyciem sieci neuronowych i uczenia głębokiego. Sztuczna inteligencja ma wspomóc analizę danych obrazowych wykonywaną przez specjalistów we wczesnym wykrywaniu chorób. Jednocześnie należy pamiętać, że uczenie maszynowe (ang. machine learning) to nauka o algorytmach i systemach usprawniających swoje działanie oraz zwiększających trafność diagnozy wraz ze zdobywanym doświadczeniem [8]. Algorytmy w uczeniu maszynowym nazywamy algorytmami uczącymi (ang. learning algorithms). W odróżnieniu od klasycznych algorytmów, które opisują konkretną sekwencje instrukcji, algorytmy uczące tworzą model zawierający listę instrukcji do wykonania na podstawie analizy przekazanych im danych uczących. Proces tworzenia wiedzy o rozwiązaniu nazywamy uczeniem, a jako wyniki procesu budujemy model danych [8]. Systemy informatyczne służące do przechowywania i analizy danych to serwery obliczeniowe wymagające odpowiednich układów zasilania i stopnia niezawodności. W kolejnym artykule przybliżymy wymagania dla zasilania takich serwerowni.
Literatura
- J. Wiatr, M. Orzechowski, Podstawy zasilania budynków mieszkalnych, użyteczności publicznej i innych obiektów nieprzemysłowych w energię elektryczną, Poradnik projektanta elektryka, Grupa Medium, Warszawa 2012.
- J. Wiatr, M. Miegoń, Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczna, niezbędnik elektryka nr 4, Warszawa 2012.
- J. Wiatr, Zasilacze UPS w układach zasilania urządzeń elektromedycznych (część 1.), „elektro.info” 6/2018.
- W. Dołęga, Zasilanie obiektów budowlanych służby zdrowia w energię elektryczną, „elektro.info” 4/2021.
- K. Sałasiński, Bezpieczeństwo elektryczne w zakładach opieki zdrowotnej, COSiW SEP 2007.
- PN-HD 60364-7-710:2012 E, Instalacje elektryczne niskiego napięcia. Część 7-710: Wymagania dotyczące specjalnych instalacji lub lokalizacji. Pomieszczenia medyczne.
- Raport EIT Health and McKinsey „Transforming healthcare with AI – The impact on the workforce and organizations” marzec 2020.
- P. Flach, Machine Learning: The Art and Science of Algorithms, Cambridge University Press, 2012.