elektro.info

Zastosowania zasobników energii w systemach zasilania (część 1.)

Applications of energy storages in the power systems – part 1

Akumulatory i baterie przepływowe (BES – ang. Battery Energy Storage) - najczęściej akumulatory kwasowo-ołowiowe proste i z zaworami regulacyjnymi, szczelne i z odgazowywaniem, akumulatory niklowo-kadmowe, sodowo-siarkowe, litowo-jonowe, niklowo-hybrydowe

Akumulatory i baterie przepływowe (BES – ang. Battery Energy Storage) - najczęściej akumulatory kwasowo-ołowiowe proste i z zaworami regulacyjnymi, szczelne i z odgazowywaniem, akumulatory niklowo-kadmowe, sodowo-siarkowe, litowo-jonowe, niklowo-hybrydowe

Zasobniki
energii elektrycznej są w wielu przypadkach istotnym lub niezbędnym
elementem systemu zasilania. Koszty zasobników energii stanowią często
przeszkodę w ich ­wykorzystaniu. Ciągły rozwój technologii zasobników
energii stanowi nadzieję, że w przyszłości będą one wykorzystywanie
znacznie częściej i znajdą nowe zastosowania.

Zobacz także

Podstawowe wiadomości o napowietrznej sieci dystrybucyjnej energetyki zawodowej

Podstawowe wiadomości o napowietrznej sieci dystrybucyjnej energetyki zawodowej Podstawowe wiadomości o napowietrznej sieci dystrybucyjnej energetyki zawodowej

Cel artykułu stanowi przybliżenie funkcjonariuszom Straży Pożarnej, a zwłaszcza dowódcom akcji ratowniczo-gaśniczych, cech charakterystycznych napowietrznych linii wysokiego, średniego i niskiego napięcia....

Cel artykułu stanowi przybliżenie funkcjonariuszom Straży Pożarnej, a zwłaszcza dowódcom akcji ratowniczo-gaśniczych, cech charakterystycznych napowietrznych linii wysokiego, średniego i niskiego napięcia. W artykule nie przedstawiono wszystkich rozwiązań technicznych w zakresie budownictwa sieciowego, które są stosowane w sieci dystrybucyjnej na terenie naszego kraju, tylko podstawowe.

Modele niezawodnościowe linii napowietrznych SN z przewodami gołymi

Modele niezawodnościowe linii napowietrznych SN z przewodami gołymi Modele niezawodnościowe linii napowietrznych SN z przewodami gołymi

Artykuł stanowi analizę awaryjności linii napowietrznych SN z przewodami gołymi, eksploatowanych w krajowych sieciach dystrybucyjnych. Wyznaczono w nim modele niezawodnościowe czasu trwania odnowy, czasu...

Artykuł stanowi analizę awaryjności linii napowietrznych SN z przewodami gołymi, eksploatowanych w krajowych sieciach dystrybucyjnych. Wyznaczono w nim modele niezawodnościowe czasu trwania odnowy, czasu trwania wyłączeń awaryjnych, czasu przerw w zasilaniu, a także wartości energii elektrycznej niedostarczonej do odbiorców. Przeprowadzono w nim też analizę sezonowości oraz przyczyn awarii linii. Autor przeprowadził obszerne badania niezawodnościowe na podstawie danych pochodzących z terenu dużej...

Spadki napięć oraz straty mocy w linii średniego napięcia z generacją rozproszoną

Spadki napięć oraz straty mocy w linii średniego napięcia z generacją rozproszoną Spadki napięć oraz straty mocy w linii średniego napięcia z generacją rozproszoną

W artykule przedstawiono korzyści wynikające z podłączania generacji rozproszonej pod kątem strat mocy i poziomów napięć w sieciach średnich napięć. Wykazano, jaki wpływ na poziom strat mocy ma wybór punktu...

W artykule przedstawiono korzyści wynikające z podłączania generacji rozproszonej pod kątem strat mocy i poziomów napięć w sieciach średnich napięć. Wykazano, jaki wpływ na poziom strat mocy ma wybór punktu podłączenia generatora, a także jego moc. Do obliczeń wykorzystano parametry istniejących rzeczywistych linii średniego napięcia. Wykazano, że w przypadku nieodpowiedniego doboru mocy generatora straty mocy w linii mogą wzrosnąć.

Magazynowanie energii elektrycznej przy użyciu zasobników energii jest elementem korzystnym do sprawnego funkcjonowania systemu elektroenergetycznego.

Zasadniczym problemem związanym z wykorzystywaniem zasobników energii są wysokie koszty. W zależności od typu i wielkości zasobnika energii jednostkowe nakłady inwestycyjne wynoszą od około 1000 do nawet 10 000 $/kW.

Magazynowanie energii można uznać za opłacalne, jeśli koszt krańcowy energii elektrycznej ulega większym zmianom niż wynosi koszt magazynowania i odzyskiwania energii elektrycznej, powiększony o koszt energii elektrycznej, która jest tracona.

Analizując koszty w dużym uproszczeniu (bez uwzględnienia kosztów inwestycji) – jeśli cena energii elektrycznej w godzinach szczytu wynosi np. 180 zł/MWh, a w nocy zmniejsza się do wartości 100 zł/MWh, wtedy różnica 80 zł/MWh może być potencjalnym zyskiem wykorzystywanego zasobnika energii.

Zasobnik energii mający sprawność równą 80% będzie przynosił zysk, jeśli jego koszt użytkowania będzie mniejszy niż 64 zł/MWh.

Niestety koszty zakupu/budowy zasobników są najczęściej bardzo wysokie i dopiero po wielu latach inwestycja może się zwrócić. Nierzadkie są przypadki, gdy okres eksploatacji zasobnika jest krótszy niż zwrot z inwestycji.

Zagadnienie magazynowania energii elektrycznej dotyczy różnych systemów. Wielkość i przeznaczenie systemu i elementy systemu w dużym stopniu determinują preferowane rodzaje technologii zasobników energii elektrycznej.

Do podstawowych parametrów opisujących większość zasobników energii elektrycznej (w szczególności akumulatory) należą:

  • napięcie [V],
  • prąd [A],
  • moc [W],
  • energia [J] lub [W·h] (1 W·h to około 3600 J),
  • gęstość energii [W·h/kg] lub [W·h/m3],
  • gęstość mocy [W/kg] lub [W/m3],
  • pojemność [W·h],
  • gęstość prądu [A/cm2],
  • czas życia – lata lub liczba cykli ładowania-rozładowania (za koniec okresu eksploatacji akumulatora uznaje się taki moment, w którym jego pojemność obniży się trwale do poziomu 80% pojemności znamionowej).

W przypadku akumulatorów/ogniw, łącząc je szeregowo zwiększamy napięcie przy zachowaniu tej samej pojemności, łącząc je równolegle zwiększamy pojemność przy zachowaniu tego samego napięcia. Oczywiście łączyć możemy również ogniwa szeregowo-równolegle.

Ogólny zakres zastosowań zasobników energii elektrycznej w systemach różnej wielkości

W systemie przesyłowym (wytwarzanie, przesył energii) zasobniki energii mają następujące zastosowania [1]:

  • rozruch elektrowni po dużej awarii systemowej,
  • wyrównanie obciążenia elektrycznego systemu,
  • powiększenie tzw. „szybkiej” rezerwy systemowej,
  • rezerwa mocy i wsparcie działania wytwórców na rynku bilansującym,
  • regulacja napięcia, mocy czynnej, mocy biernej i częstotliwości.

W przypadku integracji odnawialnych źródeł energii z systemami różnej wielkości, zastosowanie zasobników energii usprawnia pracę generacji wykorzystującej OZE w następujących obszarach [1]:

  • przeciwdziałanie stanom dynamicznym, usprawniające pracę układów hybrydowych (np. układ turbozespół wiatrowy – zespół prądotwórczy z silnikiem Diesla),
  • poprawa sterowania, łatwiejsza integracja z systemem elektroenergetycznym, stabilizacja pracy pojedynczych jednostek generacyjnych OZE (np. łagodzenie efektu migotania napięcia),
  • kompensacja niedoborów oraz nadwyżek energii, tzw. „rezerwa gorąca”, produkowanej przez duże jednostki OZE (np. wsparcie dla mikrosieci, wsparcie dla KSE, wsparcie dla rynku bilansującego).

W przypadku przesyłu i dystrybucji energii elektrycznej w sieciach rozdzielczych, wykorzystanie zasobników energii usprawnia funkcjonowanie systemu w obszarach [1]:

  • poprawa stabilności systemów przesyłowych i dystrybucyjnych,
  • przesunięcie inwestycji sieciowych w czasie z uwagi na wzrastające zapotrzebowanie na energię elektryczną, dzięki właściwemu usytuowaniu zasobników energii w systemie,
  • polepszenie procesów sterowania przesyłem energii (kontrola poziomów napięcia).

W przypadku odbiorców końcowych indywidualnych, odbiorców końcowych przemysłowych i generacji rozproszonej, zasobniki mogą usprawniać pracę układów dostawczo-rozdzielczych [1]. Usprawnienie pracy dotyczyć może zarówno utrzymania lub poprawy parametrów jakości energii elektrycznej, jak również zwiększenia niezawodności i pewności zasilania.

Zasobniki energii mogą usprawniać ponadto pracę małych układów generacyjnych z turbinami wiatrowymi lub ogniwami fotowoltaicznymi, które pracują na potrzeby pojedynczych gospodarstw domowych [1].

Rodzaje i charakterystyka zasobników energii elektrycznej

Zasobniki energii elektrycznej to bardzo różnorodne konstrukcje magazynujące energię w odmienny sposób. Ogólnie podzielić można zasobniki energii na siedem opisanych rodzajów. Ponadto w ramach danego rodzaju zasobnika wyróżnić można wiele różnych rozwiązań technologicznych.

Nadprzewodzące zasobniki energii (SMES – ang. Superconducting Magnetic Energy Storage). Energia magazynowana jest w polu magnetycznym indukowanym w cewce nadprzewodzącej zasilanej prądem stałym [2]. Cewka nabiera właściwości nadprzewodnika po schłodzeniu jej do temperatury nadprzewodnictwa za pomocą ciekłego helu lub ciekłego azotu. Technologia jest nadal bardzo droga.

Jednym z poszukiwanych rozwiązań jest zastosowanie takich materiałów nadprzewodzących, które nie będą traciły swoich właściwości w wysokich temperaturach – pozwoliłoby to zredukować koszty.

Superkondensatory (ang. Supercapacitors).

Energia magazynowana jest w polu elektrycznym kondensatora elektrolitycznego. Ultrakondensator pozwala na gromadzenie wielokrotnie większych ilości energii niż tradycyjne kondensatory. Osiąga się to dzięki bardzo rozwiniętej powierzchni elektrod oraz niezwykle małej odległości pomiędzy elektrodami [4].

Funkcjonowanie kondensatora polega na gromadzeniu ładunków elektrycznych w obrębie podwójnej warstwy, która powstaje na granicy ośrodków elektroda – elektrolit [9]. Technologia jest nadal bardzo droga. (fot. 1.)

b zastosowanie zasobnikow fot1 1

Fot. 1. Moduł superkondensatorów firmy EVER [33]; fot. archiwum autora

Akumulatory i baterie przepływowe (BES – ang. Battery Energy Storage).

W akumulatorach energia elektryczna jest gromadzona w postaci energii chemicznej, a elektrody i elektrolit biorą udział w zachodzących reakcjach chemicznych, co wraz z upływem czasu (kolejne ładowania i rozładowywania) powoduje zmiany parametrów technicznych oraz ograniczenie trwałości akumulatorów [9].

Większość ze stosowanych akumulatorów ulega całkowitemu zużyciu po około 1000 cyklach ładowania i rozładowywania.

W elektroenergetyce stosuje się najczęściej akumulatory kwasowo-ołowiowe proste oraz z zaworami regulacyjnymi, szczelne i z odgazowywaniem, akumulatory niklowo-kadmowe, sodowo-siarkowe, litowo-jonowe oraz stosuje się najczęściej akumulatory kwasowo-ołowiowe proste oraz z zaworami regulacyjnymi, szczelne i z odgazowywaniem, akumulatory niklowo-kadmowe, sodowo-siarkowe, litowo-jonowe oraz niklowo-hybrydowe [4].

Akumulatory mogą być teoretycznie budowane na dowolną moc i pojemność. Akumulatory łączy się w szeregowo-równoległe moduły, dzięki czemu można budować układy wyższych napięć i mocy [1]. Napięcie pojedynczego ogniwa wynosi około 2 V.

Baterie przepływowe są bateriami rewersyjnymi, w których magazynowanie energii odbywa się za pomocą pośrednictwa dwóch elektrolitów, przechowywanych w osobnych zbiornikach oraz specjalnego ogniwa wyposażonego w membranę przepuszczalną separującą oba elektrolity [1].

W czasie procesu rozładowywania oba elektrolity przepływają przez ogniwo, a membrana, która jest przepuszczalna dla jednej z substancji, umożliwia wymianę jonów pomiędzy elektrolitami.

W czasie ponownego ładowania, potencjał elektryczny przywraca właściwości chemiczne elektrolitów [1]. Technologia umożliwia niezależny dobór mocy i pojemności baterii. Ogniwa wymiaruje się na moc wyjściową, natomiast zbiorniki z elektrolitem na wymaganą pojemność.

Baterie przepływowe można ładować elektrycznie lub przez wymianę elektrolitu zużytego w trakcie procesu rozładowywania na gotowy elektrolit „naładowany” [1].

Wyróżnia się trzy główne rodzaje baterii przepływowych [1]:

  • baterie polisylfidowebromkowe (PSB),
  • utleniająco-redukujące baterie VRB
  • oraz cynkowo-bromkowe baterie.

Technologia kosztowna, nadal w fazie rozwoju.

Ogniwa paliwowe (FC – ang. Fuel Cells)

W ogniwie paliwowym przetwarzana jest energia chemiczna w procesie elektrochemicznym w energię elektryczną oraz ciepło [3].

Rozwiązanie zawiera dwie elektrody (katoda i anoda) oraz elektrolit. Do anody dostarczane jest paliwo (wodór w stanie czystym lub w mieszaninie) natomiast do katody utleniacz (tlen w stanie czystym lub powietrze) [4, 9].

Dzięki obecności katalizatora, wodór podlega procesowi jonizacji. Jony dodatnie przedostają się przez elektrolit do katody, natomiast elektrony przepływają przez elektrody oraz zamknięty obieg wewnętrzny [4]. Tlen wiąże się z jonami wodoru i jonami elektronami tworząc cząsteczki wody.

Istnieje wiele różnych typów ogniw paliwowych (m.in.: alkaliczne (AFC), ze stopionym węglanem (MCFC), z kwasem fosforowym (PAFC), zasilane bezpośrednio metanolem (DMFC), z elektrolitem polimerowym (PMFC), tlenkowe (SOFC) oraz zasilane cynkiem (ZnFC)) [4].

Jako paliwo stosowany może być także gaz ziemny lub metanol.

Wadą technologii są nadal bardzo wysokie jednostkowe koszty inwestycyjne.

Inne wady to niska trwałość, długi czas rozruchu oraz zmiana własności energetycznych ogniwa w czasie jego eksploatacji [4].

Ogniwa paliwowe stosowane są w układach napędowych, jako źródło energii w urządzeniach przenośnych oraz w elektroenergetyce w generacji rozproszonej (moce od kilkudziesięciu KW do pojedynczych MW) [1].

W energetyce stosowane są przede wszystkim ogniwa paliwowe typu PAFC, MCFC oraz SOFC.

Elektrownie wodne pompowe

W elektrowniach wodnych pompowych energia elektryczna w okresach nadmiaru produkcji w stosunku do zapotrzebowania („doliny energetyczne”) zamieniana jest na energię potencjalną wody przepompowywanej z dolnego do górnego zbiornika, a następnie w okresach szczytu obciążenia energia masy wody zamieniana jest w generatorze na energię elektryczną [9].

Rozwiązanie umożliwia magazynowanie bardzo dużej energii. Koszt jednostkowy energii jest względnie niski, ale cała inwestycja jest bardzo kosztowna.

Możliwości zastosowania technologii silnie zależą od warunków hydrogeologicznych terenu. Korzystne lokalizacje mogą być niestety w miejscach, gdzie brakuje infrastruktury energetycznej [1].

Pneumatyczne zasobniki energii (CAES – ang. Compressed Air Energy Storage)

b zastosowanie zasobnikow rys1

Rys. 1. Koncepcja działania pneumatycznego zasobnika energii. Opracowano na podstawie [36]; rys. archiwa autora

Energia przechowywana jest w szczelnych jaskiniach, kopalniach lub grotach w postaci sprężonego gazu (powietrza) o ciśnieniu do 100 atm. [3].

Powietrze sprężane jest w okresach „dolin energetycznych”.

Rozwiązanie alternatywne do elektrowni wodnych pompowych – umożliwia gromadzenie bardzo dużej energii przez bardzo długi czas. W czasie szczytów zapotrzebowania na moc sprężone powietrze jest uwalniane i kierowane na łopatki turbiny turbozespołu generującego energię elektryczną [1].

Rysunek 1. przedstawia koncepcję działania pneumatycznego zasobnika energii współpracującego z farmą wiatrową.

Kinetyczne zasobniki energii (FES – ang. Flywheel Energy Storage)

Przechowywanie energii w masach wirujących polega na rozpędzeniu do określonej prędkości koła o dużej masie [4]. Koło wiruje ze stałą prędkością i w ten sposób przechowuje energię w postaci energii kinetycznej masy. Masa wirująca jest połączona wspólnym wałem z maszyną elektryczną, która może skokowo przechodzić od pracy silnikowej, czyli gromadzenia energii do pracy prądnicowej, czyli oddawania energii. Rozwój technologii polega na zwiększaniu średnicy bardzo ciężkich kół zamachowych uzyskując wzrost prędkości obrotowej (duże moce zasobników) lub wykorzystaniu materiałów lekkich, co umożliwia uzyskanie bardzo dużych prędkości obrotowych (małe moce – małe kompaktowe zasobniki energii) [1].

tabeli 1. przedstawiono rodzaje zasobników energii oraz ich charakterystykę.

b zastosowanie zasobnikow tab1

Tab. 1. Rodzaje zasobników energii oraz ich charakterystyka (opracowano na podstawie [1, 2, 3])

Moc nominalna zasobnika energii silnie zależy od jego typu (od 1 KW do 1 GW). Podobnie czas rozładowania może wynosić w zależności od typu zasobnika od sekund do wielu dni.

Z kolei sprawność wynosi od 60 do 95%. Duże różnice występują również w czasie eksploatacji (od kilku lat do 40 lat).

rbt

Zdjęcie: Kinetyczny zasobnik energii IEM Power System

Gęstość energii może być bardzo różna, od około 6,5 do nawet 11000 [W·h/kg]. Należy zwrócić uwagę na fakt, że niektóre technologie są na etapie prototypów i ciągłego rozwoju, często powiązanego z próbami obniżenia kosztów produkcji (np. nadprzewodzące zasobniki energii), a inne (np. elektrownie wodne pompowe, akumulatory) są technologiami dojrzałymi stosowanymi od bardzo wielu lat).

Wykorzystanie zasobników energii w mikrosieciach

Jedną z głównych idei mikrosieci jest możliwość magazynowania energii w zasobnikach energii [4].

W przypadku pracy wyspowej (mikrosieć jest odłączona od sieci rozdzielczej) możliwa jest poprawa jakości energii elektrycznej, sterowanie napięciem oraz częstotliwością.

Ponadto zasobniki energii mogą być źródłem mocy zwarciowej potrzebnej do skutecznej realizacji ochrony przeciwpożarowej. Dobór odpowiedniej strategii magazynowania energii umożliwia zmniejszenie zmienności obciążenia, racjonalne i pełne wykorzystanie odnawialnych źródeł energii elektrycznej – gdy produkcja przekracza bieżące zapotrzebowanie, magazynowanie energii pozwala na jej późniejsze wykorzystanie w okresie zwiększonego zapotrzebowania na energię.

Do magazynowania energii w mikrosieciach mogą mieć zastosowanie [4]: akumulatory, baterie przepływowe, koła zamachowe, superkondensatory oraz cewki nadprzewodzące.

Większość stosowanych w praktyce akumulatorów ulega całkowitemu zużyciu po około 1000 cyklach ładowania i rozładowania i z tego powodu akumulatory dużych mocy pełnią tylko funkcję źródła bilansującego moc w przypadku pracy wyspowej i nie służą do ciągłego lub cyklicznego zasilania [4].

Duże nadzieje w zakresie regulacji systemów wiąże się z bateriami przepływowymi (rewersyjnymi), a konkretnie z bateriami wanadowymi (VRB), które są wciąż w fazie badawczo-rozwojowej.

W badaniach [31] wykonano wielowariantową analizę dotyczącą fragmentu aglomeracji o różnorodnej strukturze odbiorców (symulacja dużej mikrosieci). Moc szczytowa dla analizowanego obszaru wynosiła 1,983 MW.

Wykonano symulacje związane z różnym stopniem nasycenia OZE na analizowanym obszarze. Symulacje produkcji energii przez OZE przeprowadzono wykorzystując historyczne dane meteorologiczne (uzyskane z ICM UW).

Celem było wyznaczenie kombinacji liczby i rodzaju OZE zapewniającej zbilansowanie mocowe i energetyczne. Założono, że występujące nadwyżki produkowanej energii są sprzedawane do Sieci Energetyki Zawodowej.

Jednym z analizowanych przypadków była praca wyspowa mikrosieci. W pracy wyspowej mikrosieci jest ona odłączona od zewnętrznej sieci rozdzielczej [4].

Nie pracuje synchronicznie z siecią spółki dystrybucyjnej, a regulacja częstotliwości i napięcia realizowana jest wewnątrz mikrosieci.

W przypadku wariantu pracy wyspowej i wykorzystania do produkcji energii tylko systemów fotowoltaicznych, zasobnik energii powinien posiadać pojemność ponad 4 GWh (wartość równa średniej energii konsumowanej na tym obszarze przez ponad 100 dni) i przed uruchomieniem zostać naładowany do poziomu 54% pojemności, aby zapewnić zbilansowanie mocowe oraz energetyczne analizowanego obszaru [31].

W przypadku wariantu pracy wyspowej i wykorzystania do produkcji energii tylko turbin wiatrowych, zasobnik energii powinien mieć pojemność ponad 10 GWh (wartość równa średniej energii konsumowanej na tym obszarze przez ponad 300 dni).

Wykorzystywanie zasobników energii w systemach zasilania gwarantowanego

Zasobniki energii są wykorzystywane w celu utrzymania lub poprawy jakości parametrów energii elektrycznej oraz w celu zwiększenia niezawodności i pewności zasilania.

Konieczność utrzymania lub poprawy jakości parametrów energii elektrycznej wynika z faktu, że użytkownicy energii elektrycznej są wrażliwi na szybkie zmiany parametrów jakości napięcia (przepięcia, chwilowe zapady napięcia zasilającego, odkształcenia wyższymi harmonicznymi spowodowane najczęściej pracą odbiorników nieliniowych) [1].

Układy kondycjonujące np. kompensatory mocy biernej SVC, filtry aktywne, wykorzystujące technologie zasobników energii, mogą przeciwdziałać wymienionym zakłóceniom, chroniąc wrażliwe odbiorniki.

Równie ważnym elementem jest zapewnienie wysokiego poziomu niezawodności i pewności zasilania priorytetowych odbiorników.

W celu zapewnienia ciągłości zasilania z sieci elektroenergetycznej buduje się rozdzielnie napięcia gwarantowanego wyposażone w zaawansowane systemy UPS (główny jego element to zasobnik energii) oraz zespoły prądotwórcze.

W praktyce wykorzystywane są w UPS zasobniki akumulatorowe (najczęściej baterie kwasowo-ołowiowe), baterie przepływowe VRB, superkondesatory.

W przypadku dużych systemów zasilania gwarantowanego stosowane są także kinetyczne zasobniki energii (np. urządzenie DRUPS).

Nowoczesne rozwiązania w zakresie zasobników, np. superkondensatory, są oferowane już w sprzedaży, ale niestety są bardzo drogie.

W porównaniu do np. klasycznego zasilacza UPS wykorzystującego akumulatory, UPS wykorzystujący superkondensatory ma sporo zalet.

W tab. 2. podano parametry klasycznego UPS-a (akumulatory) oraz UPS-a (superkondensatory).

b zastosowanie zasobnikow tab2

Tab. 2. Porównanie UPS-a wykorzystującego akumulatory oraz superkondensatorów. Opracowano na podstawie informacji z [11, 33]

Do zalet UPS-a wykorzystującego superkondensatory należy zaliczyć [10, 11, 33]:

  • bardzo dużą trwałość (milion cykli ładowania),
  • bardzo krótki, nieosiągalny w technologii akumulatorowej czas ładowania rzędu kilku minut,
  • dużą gęstość mocy do 10 000 W/kg (w przypadku akumulatorów jest to około 100 W/kg),
  • wyższe sprawności niż w ogniwach elektrochemicznych (osiągają one wartości około 95%, natomiast w akumulatorach są to wartości rzędu 70%),
  • mała wartość rezystancji wewnętrznej (poniżej 0,3 mW),
  • szerszy temperaturowy zakres pracy ultrakondensatorów (–40°C÷65°C) niż wtórnych ogniw elektrochemicznych (0°C ¸ 40°C)
  • oraz w przeciwieństwie do akumulatorów mała zależność parametrów od zmian temperatury,
  • głębokość rozładowywania nie ma wpływu na żywotność w przeciwieństwie do klasycznych akumulatorów,
  • długotrwałe koszty eksploatacyjne są bardzo niskie w porównaniu do akumulatorów (bezobsługowość),
  • znikome oddziaływanie na środowisko
  • oraz niewielkie zmiany własności przy wielokrotnym ładowaniu i rozładowywaniu.

Superkondensatory mają również pewne wady.

Niestety, założony krótki czas ładowania superkondensatora wymaga zastosowania w UPS-ie z nim współpracującym specjalnie skonstruowanego wysoko wydajnego układu ładowania i przetwarzania energii (prąd ładowania w początkowej fazie wynosi nawet 100 A np. dla UPS-a z superkondensatorem w tab. 2.) [33].

Ładowanie dużymi prądami niesie za sobą zagrożenie związane z nagłym rozłączeniem obwodu superkondensatora (odłączenie od urządzenia).

Korzystniejszym parametrem w akumulatorach niż w superkondensatorach jest natomiast gęstość energii [10]. We wtórnych ogniwach elektrochemicznych jest ona na poziomie 100 W·h/kg, a w ultrakondensatorach jest około 10 razy mniejsza [11].

Literatura

  1. Paska J.: Zasobniki energii elektrycznej w systemie elektroenergetycznym – zastosowania i rozwiązania, Przegląd Elektrotechniczny, nr 9a/2012 (88), str. 50-55
  2. Paska J., Kłos M., Antos, P., Błajszczak G.: Koncepcja zasobnika energii elektrycznej o zdolności magazynowania 50 MWh, Acta Energetica, 2/11 (2012), str. 32-37
  3. Paska J., Kłos M., Michalski Ł., Molik L.: Układy hybrydowe – integracja różnych technologii wytwarzania energii elektrycznej, Elektroenergetyka, nr 4 (6)/2010, str. 46-57
  4. Baczyński D., Księżyk K., Parol M., Piotrowski P., Wasilewski J., Wójtowicz T.: Mikrosieci niskiego napięcia. Praca zbiorowa pod redakcją M. Parola. Monografia, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2013
  5. Wiatr J., Orzechowski M.: Poradnik projektanta elektryka, Dom Wydawniczy MEDIUM, Warszawa 2012
  6. Wiatr J., Miegoń M., Orzechowski M., Przasnyski A.: Poradnik projektanta systemów zasilania awaryjnego i gwarantowanego, EATON Powerware, 2008
  7. Sutkowski T. Rezerwowe i bezprzerwowe zasilanie w energię elektryczną – Urządzenia i układy, Centralny Ośrodek Szkolenia i Wydawnictw, Warszawa 2007
  8. Wiatr J., Miegoń M. „Zasilacze UPS oraz baterie akumulatorów w układach zasilania gwarantowanego”, Zeszyt dla elektryków nr.4, Dom Wydawniczy MEDIUM, Warszawa 2009
  9. Bednarek K., Kasprzyk L.: Zasobniki energii w systemach elektrycznych – część 1. Charakterystyka problemu, Academic Journals, Electrical engineering, No 69, Poznan University of Technology, Poznań 2012, p. 199-207
  10. Bednarek K., Kasprzyk L.: Zasobniki energii w systemach elektrycznych – część 2. Analizy porównawcze i aplikacje, Academic Journals, Electrical engineering, No 69, Poznan University of Technology, Poznań 2012, p. 209-218
  11. Bednarek K., Akumulatory czy superkondensatory – zasobniki energii w UPS-ach, Elektro.info, nr 1-2, 2012.
  12. Sarniak M.: Zasobniki energii w systemach fotowoltaicznych, Warunki techniczne.pl, nr 1/2016 (12), str. 62-65
  13. http://www.forbes.pl/chinczycy-pokazali-grafenowa-baterie-100-procent-w-15-minut,artykuly,205944,1,1.html
  14. http://ise.pl/informacje/4988-wkrotce-ruszy-produkcja-przelomowych-baterii-grafenowo-polimerowych
  15. http://www.dobreprogramy.pl/Smartfony-beda-dzialac-dluzej-W-koncu-przelom-w-rozwoju-akumulatorow-Liion,News,56780.html
  16. http://autoflesz.com/rozwiazania-tecniczne/5397-prze%C5%82om-w-motoryzacji-%E2%80%93-akumulatory-magnezowo-jonowe,-a-mo%C5%BCe-redox-flow.html
  17. http://www.tabletowo.pl/2014/05/14/przelom-w-technologii-baterii-realna-szansa-czy-kolejny-marketingowy-belkot/
  18. http://motogazeta.mojeauto.pl/Technika/Litowo_tlenowe_baterie_nowej_generacji,a,262365.html
  19. http://www.bateriegrafenowe.pl/
  20. http://technowinki.onet.pl/technika/baterie-nowej-generacji-coraz-blizej/7r42e
  21. http://tylkonauka.pl/wideo/prototypowa-bateria-nowej-generacji-moze-zostac-naladowana-w-ciagu-30-sekund
  22. http://www.polskieradio.pl/23/267/Artykul/181202,Nowe-baterie-beda-11-razy-pojemniejsze-niz-ogniwa-litowojonowe
  23. http://www.antyradio.pl/Technologia/Duperele/Naukowcy-stworzyli-przypadkiem-superbaterie-8094
  24. http://www.ckm.pl/lifestyle/bateria-komorki-na-2-lat,13248,1,a.html
  25. http://www.chip.pl/artykuly/trendy/2015/07/akumulatory-przyszlosci-1?b_start:int=1
  26. http://www.komputerswiat.pl/jak-to-dziala/2015/07/akumulatory.aspx
  27. http://www.komputerswiat.pl/jak-to-dziala/2015/07/akumulatory.aspx
  28. http://samochodyelektryczne.org/domowy_magazyn_energii_tesla_powerwall_wlasnej_roboty_za_300_usd.htm
  29. https://www.tesla.com/
  30. http://www.sklep.soltechenergy.pl/pl/p/Tesla-Powerwall-7-kWh/137
  31. Sabat M.: Analiza szeregów czasowych produkcji energii ze źródeł odnawialnych pod kątem niezależności energetycznej wybranego obszaru, Praca dyplomowa magisterska, Wydział Elektryczny, Politechnika Warszawska, promotor pracy – dr hab. inż. Dariusz Baczyński
  32. http://gramwzielone.pl/trendy/16039/elon-musk-pokazal-domowy-magazyn-energii-tesli
  33. http://ever.eu/
  34. http://www.seas.harvard.edu/news/2014/01/organic-mega-flow-battery-promises-breakthrough-for-renewable-energy
  35. http://www.smh.com.au/technology/sci-tech/new-lowcost-highenergy-batteries-could-be-powered-by-rhubarb-plants-20140108-30iok
  36. https://www.pge.com/en_US/about-pge/environment/what-we-are-doing/compressed-air-energy-storage/compressed-air-energy-storage.page
  37. http://www.gtb-solaris.pl
  38. http://moto.onet.pl/aktualnosci/najwieksza-baterie-na-swiecie-stworzy-tesla/9xh2yd

Tab. 1.  Rodzaje zasobników energii oraz ich charakterystyka (opracowano na podstawie [1, 2, 3])

Tab. 2. Porównanie UPS-a wykorzystującego akumulatory oraz superkondensatorów. Opracowano na podstawie informacji z [11, 33]

Fot. 1. Moduł superkondensatorów firmy EVER [33]

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Analiza rozwoju elektromobilności w Polsce oraz prognozy liczby pojazdów z napędem elektrycznym do roku 2025

Analiza rozwoju elektromobilności w Polsce oraz prognozy liczby pojazdów z napędem elektrycznym do roku 2025 Analiza rozwoju elektromobilności w Polsce oraz prognozy liczby pojazdów z napędem elektrycznym do roku 2025

Prognozy liczby pojazdów elektrycznych w Polsce pozwalają ocenić w wielu wariantach dynamikę rozwoju elektromobilności w Polsce. Niepewność prognoz jest stosunkow duża i wynika z wielu czynników mających...

Prognozy liczby pojazdów elektrycznych w Polsce pozwalają ocenić w wielu wariantach dynamikę rozwoju elektromobilności w Polsce. Niepewność prognoz jest stosunkow duża i wynika z wielu czynników mających potencjalnie wpływ na rozwój elektromobilności w Polsce. Zbyt duże ceny na komercyjnych stacjach ładowania czy też mała liczba dostępnych punktów ładowania mogą zniechęcać do kupna pojazdów elektrycznych. Z kolei duże dopłaty do pojazdów elektrycznych stanowić mogą bodziec pobudzający rozwój elektromobilności....

Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi

Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi

Pożary budynków to zjawisko w dużym stopniu losowe. Wzrost liczby budynków na terenie Polski, wzrost liczby niefachowo wykonanych instalacji elektrycznych, wzrost niskiej jakości elementów zastosowanych...

Pożary budynków to zjawisko w dużym stopniu losowe. Wzrost liczby budynków na terenie Polski, wzrost liczby niefachowo wykonanych instalacji elektrycznych, wzrost niskiej jakości elementów zastosowanych do ich wykonania oraz malejąca jakość urządzeń elektrycznych mogą być potencjalną przyczyną wzrostu liczby pożarów budynków. Nowym, potencjalnym źródłem pożarów są również instalowane coraz bardziej masowo na dachach budynków systemy fotowoltaiczne oraz punkty ładowania pojazdów elektrycznych wewnątrz...

Wybrane aspekty energetyki wiatrowej w Polsce (część 2.)

Wybrane aspekty energetyki wiatrowej w Polsce (część 2.) Wybrane aspekty energetyki wiatrowej w Polsce (część 2.)

Rozwój energetyki wiatrowej w Polsce to zjawisko dość nowe o dużej dynamice zmian. Warto zwrócić uwagę na wykorzystywane w siłowniach wiatrowych zaawansowane układy sterowania i regulacji, które są wciąż...

Rozwój energetyki wiatrowej w Polsce to zjawisko dość nowe o dużej dynamice zmian. Warto zwrócić uwagę na wykorzystywane w siłowniach wiatrowych zaawansowane układy sterowania i regulacji, które są wciąż udoskonalane. Z kolei z uwagi na duże lepsze warunki wietrzne szansą na dalszy rozwój energetyki wiatrowej w Polsce są z całą pewnością farmy wiatrowe morskie.

Wybrane aspekty energetyki wiatrowej w Polsce (część 1.)

Wybrane aspekty energetyki wiatrowej w Polsce (część 1.) Wybrane aspekty energetyki wiatrowej w Polsce (część 1.)

Rozwój energetyki wiatrowej w Polsce to zjawisko dość nowe o dużej dynamice zmian. W ostatnich latach szczególnie dynamicznie rosła liczba turbin wiatrowych oraz ich moc. Z uwagi na koszty tej technologii...

Rozwój energetyki wiatrowej w Polsce to zjawisko dość nowe o dużej dynamice zmian. W ostatnich latach szczególnie dynamicznie rosła liczba turbin wiatrowych oraz ich moc. Z uwagi na koszty tej technologii produkcji energii elektrycznej dużą rolę w jej rozwoju odgrywa polityka danego państwa oraz obowiązujące przepisy. Zmiana przepisów zahamowała w ostatnim roku trend rosnący. Z drugiej strony konieczność ograniczenia w Polsce emisji CO2 sprawia, że od inwestycji w OZE nie ma w praktyce odwrotu.

Wybrane aspekty techniczne i ekonomiczne zasilania odbiorców energii elektrycznej

Wybrane aspekty techniczne i ekonomiczne zasilania odbiorców energii elektrycznej Wybrane aspekty techniczne i ekonomiczne zasilania odbiorców energii elektrycznej

Odbiorcy energii elektrycznej mają różne wymagania niezawodnościowe. Układów zasilania stosowanych w praktyce dla obiektów wymagających podwyższonej niezawodności jest również wiele. Wybór układu zasilania...

Odbiorcy energii elektrycznej mają różne wymagania niezawodnościowe. Układów zasilania stosowanych w praktyce dla obiektów wymagających podwyższonej niezawodności jest również wiele. Wybór układu zasilania to najczęściej kompromis pomiędzy wymaganiami niezawodnościowymi oraz kosztami. Coraz częściej źródłem energii elektrycznej wspomagającym zasilanie podstawowe jest system fotowoltaiczny lub farma wiatrowa – ten aspekt został również omówiony w kontekście niezawodności zasilania.

Wybrane aspekty techniczne i ekonomiczne zasilania odbiorców energii elektrycznej

Wybrane aspekty techniczne i ekonomiczne zasilania odbiorców energii elektrycznej Wybrane aspekty techniczne i ekonomiczne zasilania odbiorców energii elektrycznej

Odbiorcy energii elektrycznej mają różne wymagania niezawodnościowe. Układów zasilania stosowanych w praktyce dla obiektów wymagających podwyższonej niezawodności jest również wiele. Wybór układu zasilania...

Odbiorcy energii elektrycznej mają różne wymagania niezawodnościowe. Układów zasilania stosowanych w praktyce dla obiektów wymagających podwyższonej niezawodności jest również wiele. Wybór układu zasilania to najczęściej kompromis pomiędzy wymaganiami niezawodnościowymi oraz kosztami. Coraz częściej źródłem energii elektrycznej wspomagającym zasilanie podstawowe jest system fotowoltaiczny lub farma wiatrowa – ten aspekt został również omówiony w kontekście niezawodności zasilania.

Analiza perspektyw rozwoju klastrów energetycznych w Polsce

Analiza perspektyw rozwoju klastrów energetycznych w Polsce Analiza perspektyw rozwoju klastrów energetycznych w Polsce

Artykuł jest próbą dokonania analizy perspektyw rozwoju klastrów energetycznych w Polsce.

Artykuł jest próbą dokonania analizy perspektyw rozwoju klastrów energetycznych w Polsce.

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2) Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności...

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe.

Zastosowania zasobników energii w systemach zasilania - część 2

Zastosowania zasobników energii w systemach zasilania - część 2 Zastosowania zasobników energii w systemach zasilania - część 2

W niniejszej publikacji opisano zasobniki stosowane u indywidualnych odbiorców, wykorzystanie zasobników energii u odbiorców indywidualnych w systemach zasilania semi off grid, off grif oraz on grid.

W niniejszej publikacji opisano zasobniki stosowane u indywidualnych odbiorców, wykorzystanie zasobników energii u odbiorców indywidualnych w systemach zasilania semi off grid, off grif oraz on grid.

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia...

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia dla 2 obiektów data center (duży oraz średni), każdy w trzech wariantach. Sformułowano wnioski końcowe.

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (cześć 2.)

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (cześć 2.) Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (cześć 2.)

Artykuł przedstawia wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności,...

Artykuł przedstawia wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności, a ponadto omawia aspekty techniczne i ekonomiczne związane z niezawodnością i formułuje wnioski końcowe.

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.) Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności,...

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności, omawia aspekty techniczne i ekonomiczne związane z niezawodnością oraz formułuje wnioski końcowe.

Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids (część 2.)

Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids (część 2.) Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids (część 2.)

O systemach inteligentnego opomiarowania oraz korzyściach z wdrożenia tego typu systemów jest ostatnio w mediach coraz głośniej. Do roku 2020 w Polsce planuje się montaż inteligentnych liczników energii...

O systemach inteligentnego opomiarowania oraz korzyściach z wdrożenia tego typu systemów jest ostatnio w mediach coraz głośniej. Do roku 2020 w Polsce planuje się montaż inteligentnych liczników energii u co najmniej 80% odbiorców. To duże wyzwanie oraz bardzo duże koszty.

Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids (część 1.)

Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids (część 1.) Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids  (część 1.)

Artykuł związany z miernictwem dotyczy wybranych aspektów inteligentnych liczników w systemie Smart Power Grids / Smart Metering. Autor skupił się na charakterystyce inteligentnych systemów pomiarowych...

Artykuł związany z miernictwem dotyczy wybranych aspektów inteligentnych liczników w systemie Smart Power Grids / Smart Metering. Autor skupił się na charakterystyce inteligentnych systemów pomiarowych (inteligentnych liczników), korzyściach i kosztach wprowadzania systemów inteligentnego opomiarowania. Ponadto przedstawił aktualny stan wdrożeń systemów inteligentnego opomiarowania w UE i Polsce i omówił wybrane problemy bezpieczeństwa w takich systemach oraz sformułował końcowe uwagi i wnioski.

Niezawodność zasilania gwarantowanego dla obiektów typu data center

Niezawodność zasilania gwarantowanego dla obiektów typu data center Niezawodność zasilania gwarantowanego dla obiektów typu data center

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek...

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek wyposażony w systemy kontroli dostępu, przeciwdziałania napadom i sabotażom, telewizję przemysłową, odporny na zalanie i usytuowany poza strefą zalewową, aktywną sejsmicznie.

Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 2)

Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 2) Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 2)

Zasilanie gwarantowane dla obiektów typu data center to problem złożony i wieloaspektowy. Zwiększanie niezawodności jest zawsze związane z dynamicznym wzrostem kosztów. Wybór konkretnego układu zasilania...

Zasilanie gwarantowane dla obiektów typu data center to problem złożony i wieloaspektowy. Zwiększanie niezawodności jest zawsze związane z dynamicznym wzrostem kosztów. Wybór konkretnego układu zasilania gwarantowanego oraz urządzeń UPS wymaga dokładnej analizy zarówno technicznej, jak i ekonomicznej.

Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 1.)

Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 1.) Analiza techniczna i ekonomiczna wybranych elementów zasilania gwarantowanego dla obiektów typu data center (część 1.)

Zasilanie gwarantowane dla obiektów typu data center to problem złożony i wieloaspektowy. Zwiększanie niezawodności jest zawsze związane z dynamicznym wzrostem kosztów. Wybór konkretnego układu zasilania...

Zasilanie gwarantowane dla obiektów typu data center to problem złożony i wieloaspektowy. Zwiększanie niezawodności jest zawsze związane z dynamicznym wzrostem kosztów. Wybór konkretnego układu zasilania gwarantowanego oraz urządzeń UPS wymaga dokładnej analizy zarówno technicznej, jak i ekonomicznej.

Klasyfikacja niezawodności dla obiektów typu data center

Klasyfikacja niezawodności dla obiektów typu data center Klasyfikacja niezawodności dla obiektów typu data center

W dobie komputeryzacji i powszechnego dostepu do informacji niezwykle istotne jest zagwarantowanie niezawodnego zasilania obiektów informatycznych, w których odbywa sie magazynowanie oraz przetwarzanie...

W dobie komputeryzacji i powszechnego dostepu do informacji niezwykle istotne jest zagwarantowanie niezawodnego zasilania obiektów informatycznych, w których odbywa sie magazynowanie oraz przetwarzanie danych. Klasyfikacja niezawodnosci dla obiektów typu data center zawiera istotne informacje związane z właściwym projektowaniem układów zasilania gwarantowanego.

Analiza techniczno-ekonomiczna wyboru jednofazowego zespołu prądotwórczego małej mocy w zależności od wykorzystywanego paliwa

Analiza techniczno-ekonomiczna wyboru jednofazowego zespołu prądotwórczego małej mocy w zależności od wykorzystywanego paliwa Analiza techniczno-ekonomiczna wyboru jednofazowego zespołu prądotwórczego małej mocy w zależności od wykorzystywanego paliwa

Wybór rodzaju paliwa jest istotnym elementem przy doborze zespołu prądotwórczego. Preferowany z uwagi na kryteria techniczne oraz ekonomiczne typ silnika i rodzaj paliwa (benzyna, olej napędowy, gaz płynny...

Wybór rodzaju paliwa jest istotnym elementem przy doborze zespołu prądotwórczego. Preferowany z uwagi na kryteria techniczne oraz ekonomiczne typ silnika i rodzaj paliwa (benzyna, olej napędowy, gaz płynny LPG, gaz ziemny NG) dla zespołu prądotwórczego może być różny w zależności od celu stosowania zespołu prądotwórczego (szacowany czas i częstotliwość pracy).

Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 2)

Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 2) Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 2)

Bardzo wysoka niezawodność układów zasilania w centrach przetwarzania danych znacznie zwiększa koszty budowy systemu, rosnące przy tym znacznie szybciej niż odpowiadające im zmniejszenie czasu niedostępności...

Bardzo wysoka niezawodność układów zasilania w centrach przetwarzania danych znacznie zwiększa koszty budowy systemu, rosnące przy tym znacznie szybciej niż odpowiadające im zmniejszenie czasu niedostępności systemu.

Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 1)

Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 1) Analiza układów zasilania dla obiektu typu data center w zależności od wymaganego poziomu niezawodności (część 1)

Koszty budowy układów zasilania dla ośrodków przetwarzania danych stanowiące istotny element ekonomiczny są w praktyce bardzo różne w zależności od wybranego standardu Tier. Koszty bardzo znacznie rosną...

Koszty budowy układów zasilania dla ośrodków przetwarzania danych stanowiące istotny element ekonomiczny są w praktyce bardzo różne w zależności od wybranego standardu Tier. Koszty bardzo znacznie rosną wraz ze wzrostem niezawodności układu zasilania.

Analiza wybranych aspektów niezawodności i bezpieczeństwa w centrach przetwarzania danych

Analiza wybranych aspektów niezawodności i bezpieczeństwa w centrach przetwarzania danych Analiza wybranych aspektów niezawodności i bezpieczeństwa w centrach przetwarzania danych

Niezawodność i bezpieczeństwo w centrach przetwarzania danych to zagadnienie złożone i bardzo obszerne. W artykule szczególną uwagę poświęcono zasilaniu gwarantowanemu na potrzeby data center.

Niezawodność i bezpieczeństwo w centrach przetwarzania danych to zagadnienie złożone i bardzo obszerne. W artykule szczególną uwagę poświęcono zasilaniu gwarantowanemu na potrzeby data center.

Analiza statystyczna oraz prognozy godzinowej produkcji energii przez elektrownię wiatrową z horyzontem 1 godziny

Analiza statystyczna oraz prognozy godzinowej produkcji energii przez elektrownię wiatrową z horyzontem 1 godziny Analiza statystyczna oraz prognozy godzinowej produkcji energii przez elektrownię wiatrową z horyzontem 1 godziny

Prognozy produkcji energii elektrycznej przez elektrownie wiatrowe stanowią istotny element pracy systemu elektroenergetycznego. Opracowanie skutecznych metod prognozowania poziomu produkcji jest konieczne....

Prognozy produkcji energii elektrycznej przez elektrownie wiatrowe stanowią istotny element pracy systemu elektroenergetycznego. Opracowanie skutecznych metod prognozowania poziomu produkcji jest konieczne. Podstawą do prognoz są przeprowadzone analizy statystyczne danych energetycznych oraz pozaenergetycznych.

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.