elektro.info

news Schematy w chmurze obliczeniowej EPLAN eBuild

Schematy w chmurze obliczeniowej EPLAN eBuild

Na targach SPS 2019 zostanie zaprezentowane nowe oprogramowanie EPLAN eBuild do generowania schematów elektrycznych i hydraulicznych działające w chmurze obliczeniowej. Jest to oprogramowanie przeznaczone...

Na targach SPS 2019 zostanie zaprezentowane nowe oprogramowanie EPLAN eBuild do generowania schematów elektrycznych i hydraulicznych działające w chmurze obliczeniowej. Jest to oprogramowanie przeznaczone dla tych użytkowników Platformy EPLAN 2.8, którzy dopiero rozpoczynają swoje doświadczenia w środowisku rozwiązań chmurowych. Do korzystania z tego nowego oprogramowania freemium wymagana jest rejestracja w systemie EPLAN ePulse lub za pomocą Platformy EPLAN w wersji 2.8.

news SPIN Extra 2020 już w marcu! Nowości w programie spotkania

SPIN Extra 2020 już w marcu! Nowości w programie spotkania

W dniach 25-26 marca 2020 w Hotelu Marina koło Olsztyna, odbędzie się SPIN Extra 2020. Tradycyjnie podczas spotkania partnerzy zaprezentują swoje rozwiązania podczas prelekcji. Do dyspozycji uczestników...

W dniach 25-26 marca 2020 w Hotelu Marina koło Olsztyna, odbędzie się SPIN Extra 2020. Tradycyjnie podczas spotkania partnerzy zaprezentują swoje rozwiązania podczas prelekcji. Do dyspozycji uczestników będzie część ekspozycyjna, w ramach której prowadzone będą prezentacje sprzętu i indywidualne doradztwo. Nie zabraknie konsultacji z ekspertami oraz czasu na rozmowy kuluarowe i integrację.

news Jak wygląda elektromobilność w przypadku samochodów ciężarowych?

Jak wygląda elektromobilność w przypadku samochodów ciężarowych?

Elektromobilność w segmencie samochodów użytkowych nabiera rozpędu. Coraz więcej koncernów prezentuje nowe, zeroemisyjne modele służące do transportu towarów. W Polsce kluczowe jest uruchomienie dopłat...

Elektromobilność w segmencie samochodów użytkowych nabiera rozpędu. Coraz więcej koncernów prezentuje nowe, zeroemisyjne modele służące do transportu towarów. W Polsce kluczowe jest uruchomienie dopłat z Funduszu Niskoemisyjnego Transportu. Odpowiednie przepisy wykonawcze określające wysokość wsparcia z FNT dla pojazdów ciężarowych zostały niedawno opublikowane w Dzienniku Ustaw.

Uziemienie w urządzeniach elektronicznych

Pętla utworzona między przewodem sygnałowym a masami

Dlaczego właściwe uziemienie urządzeń jest istotne? Powszechność stosowania bardzo wrażliwych urządzeń elektronicznych w coraz bardziej strategicznych miejscach powoduje konieczność zapewnienia im odpowiednich warunków środowiskowych. Urządzenie nie może bowiem powodować zakłóceń w pracy innych urządzeń i powinno być zdolne do poprawnej pracy w określonym środowisku elektromagnetycznym. Nie może też emitować zaburzeń pola elektromagnetycznego zakłócającego poprawną pracę innych urządzeń pracujących w tym środowisku, czyli powinno spełniać warunki kompatybilności elektromagnetycznej (EMC). Jednym z istotnych czynników wpływających na te zjawiska jest właśnie sposób wykonania połączeń uziemień i mas.

Zobacz także

Stacje transformatorowe SN/nn

Stacje transformatorowe SN/nn

W zależności od funkcji pełnionej w systemie elektroenergetycznym, stacje transformatorowe SN/nn najprościej można podzielić na: transformatorowo-rozdzielcze i transformatorowe. Z kolei ze względu na budowę...

W zależności od funkcji pełnionej w systemie elektroenergetycznym, stacje transformatorowe SN/nn najprościej można podzielić na: transformatorowo-rozdzielcze i transformatorowe. Z kolei ze względu na budowę dzielimy je na napowietrzne i wnętrzowe.

Porażenia prądem elektrycznym o wysokiej częstotliwości

Porażenia prądem elektrycznym o wysokiej częstotliwości

Rozwój urządzeń elektronicznych i telekomunikacyjnych w ostatnich latach spowodował powszechność stosowania napięć o częstotliwości większej od przemysłowej. Skutki urazu elektrycznego u człowieka powodowane...

Rozwój urządzeń elektronicznych i telekomunikacyjnych w ostatnich latach spowodował powszechność stosowania napięć o częstotliwości większej od przemysłowej. Skutki urazu elektrycznego u człowieka powodowane prądem rażeniowym o wysokiej częstotliwości różnią się od skutków, które wywołuje prąd przemienny 50 Hz.

Nowelizacja zasad i wymagań stawianych ochronie przeciwporażeniowej (część 1.)

Nowelizacja zasad i wymagań stawianych ochronie przeciwporażeniowej (część 1.)

W 2003 roku wprowadzono do katalogu Polskich Norm normę uznaniową PN-EN 61140:2003 (U) pt. „Ochrona przed porażeniem prądem elektrycznym – Wspólne aspekty instalacji i urządzeń”. Jej wersja polska [2]...

W 2003 roku wprowadzono do katalogu Polskich Norm normę uznaniową PN-EN 61140:2003 (U) pt. „Ochrona przed porażeniem prądem elektrycznym – Wspólne aspekty instalacji i urządzeń”. Jej wersja polska [2] ukazała się w 2005 roku. Jest to norma niezwykle ważna i niestety mało znana. Zapisano w niej, że „jej celem jest podanie podstawowych zasad i wymagań, które są wspólne dla instalacji, sieci i urządzeń elektrycznych lub niezbędne dla ich koordynacji”. Wymagania normy dotyczą głównie ochrony przeciwporażeniowej...

Pojęcie masy jest charakterystyczne dla środowisk zajmujących się elektroniką i określa przewodzące części urządzeń elektronicznych, które można dotknąć, a które mogą znaleźć się pod napięciem w przypadku uszkodzenia – w ochronie przeciwporażeniowej są one nazywane przewodzącą częścią dostępną.

Dodatkowo, pojęciem masy lub masy funkcjonalnej określa się w elektronice elementy obwodu elektrycznego mające potencjał odniesienia dla układu elektronicznego, przyjmowany jako potencjał równy zero.

Aby urządzenia elektroniczne pracowały poprawnie, masy te powinny mieć stabilny potencjał, najlepiej równy potencjałowi ziemi, co powoduje konieczność ich uziemiania. Takie uziemienia są nazywane funkcjonalnymi, ponieważ do prawidłowej pracy tych urządzeń, czyli do spełnienia zadanych im funkcji, konieczne jest uziemienie.

Przewody ochronne, które są przyłączone do obudów urządzeń elektrycznych, także są połączone z uziemieniami. Istnieje zatem konieczność analizy wzajemnego wpływu i współdziałania systemów ochrony przeciwporażeniowej i elementów związanych z zapewnieniem kompatybilności elektromagnetycznej, czyli współdziałania przewodów i uziemień ochronnych oraz uziemień funkcjonalnych.

Wśród elektryków i elektroników panuje opinia o niezależności lub wręcz rozdzielności obydwu systemów, co powoduje znaczne kłopoty w realizacji funkcji, jakie muszą spełniać obydwa systemy, zwłaszcza że znaczna liczba urządzeń elektrycznych musi wykorzystywać obydwa systemy uziemień. Okazuje się, że nie jest tak źle, gdyż prawie zawsze obie funkcje można realizować w zbieżny sposób.

Uziemienie funkcjonalne

Według słownika terminologii elektrycznej [4] uziemienie funkcjonalne to uziemienie jednego lub wielu punktów sieci, instalacji lub urządzenia dla celów innych niż bezpieczeństwo. W przypadku urządzeń elektronicznych uziemianie ma na celu ochronę urządzeń przed uszkodzeniem na skutek przepięć lub zapewnienie im poprawnej pracy przez obniżenie poziomu zakłóceń.

Uziemienie funkcjonalne musi spełniać odpowiednie wymagania przedstawione w normie [5]. Według niej obwód uziemienia funkcjonalnego musi być odseparowany od innych części urządzenia będących pod niebezpiecznym napięciem przez izolację podwójną lub wzmocnioną, lub przez zastosowanie uziemionego ochronnie ekranu lub innej uziemionej ochronnie części, odseparowanej od części pod niebezpiecznym napięciem przez co najmniej izolację podstawową. Dopuszcza się podłączenia obwodu uziemienia funkcjonalnego do zacisku uziemienia ochronnego lub do przewodu połączenia ochronnego.

W celu odróżnienia zacisku przeznaczonego tylko do podłączenia uziemienia funkcjonalnego od uziemienia ochronnego, nie wolno stosować do ich oznaczania symbolu przeznaczonego dla uziemienia ochronnego (rys. 1b). Nie wolno również stosować oznaczenia przedstawionego na rysunku 1a. Oznakowanie symbolem przedstawionym na rysunku 1a dopuszczone jest tylko na elemencie lub podzespole, na przykład na łączówce. Dopuszcza się natomiast zastosowanie symboli przedstawionych na rysunku 1c lub rysunku 1d.

Występują również ograniczenia w dopuszczeniu do stosowania przewodów o kombinacji kolorów żółtego i zielonego. Nie dopuszcza się do stosowania przewodów o tej kombinacji kolorów wewnątrz urządzeń, z wyjątkiem elementów mających wielorakie zastosowanie, na przykład przewody wielożyłowe lub filtry EMC. Natomiast, jeżeli urządzenie wyposażone jest w przewody zasilające, gdzie przewód mający żółto-zieloną izolację jest wykorzystywany tylko do zapewnienia połączenia uziemienia funkcjonalnego, urządzenie nie może być oznakowane symbolem urządzenia wykonanego w II klasie ochronności nawet wówczas, gdy w rzeczywistości spełnia warunki takiego urządzenia.

Aby uzyskać wymagany poziom bezpieczeństwa przed porażeniem prądem elektrycznym w obwodach automatyki budynkowej, w których nośnikami informacji są skrętki lub przewody koncentryczne, do zasilania tych obwodów należy stosować napięcie bezpieczne SELV lub PELV. Jeżeli ze względów funkcjonalnych, wynikających przede wszystkim z potrzeby ograniczania skoków potencjałów względem ziemi, konieczne jest połączenie obwodów SELV z ziemią, to powinno być ono wykonane w taki sposób, aby nie pogarszać właściwości ochronnych obwodów SELV. Obwody te należy zatem łączyć z ziemią poprzez impedancję o takiej wartości, aby prąd płynący przez nią nie przekraczał 0,5 mA przy prądzie przemiennym i 2 mA przy prądzie stałym [6].

Źródła zakłóceń

Cechą charakterystyczną układów elektronicznych jest praca przy bardzo małych poziomach energii, czego powodem jest znaczna podatność na zakłócenia pochodzące z zewnątrz. Źródłem tych zakłóceń mogą być różne czynniki, zarówno naturalne, jak i wywołane przez inne urządzenia elektryczne.

Źródłami naturalnymi mogą być prądy piorunowe płynące podczas wyładowań atmosferycznych, lub prądy rozładowania ładunków elektrostatycznych. Znacznie częściej zakłócenia wywołują źródła sztucznie wytworzone przez człowieka. Ich pochodzenie często jest trudne do ustalenia lub niemożliwe do usunięcia. Jednym z nich mogą być fale radiowe o szerokim zakresie częstotliwości, będące praktycznie wszechobecne, a pochodzące z nadajników radiowo-telewizyjnych i telekomunikacyjnych.

Poziom energii, jaki niosą ze sobą, zależy między innymi od odległości od stacji nadawczej, ponieważ blisko stacji może ona osiągać znaczne wartości. W przypadku łączności radiowej trzeba zdawać sobie sprawę, że nadajnikiem jest każdy radiotelefon, a biorąc pod uwagę liczbę telefonów komórkowych można przyjąć, że nadajniki są wszędzie.

Poza celowymi źródłami fal elektromagnetycznych istnieją również źródła pasożytnicze. Takimi są na przykład urządzenia cyfrowe, zwłaszcza wykorzystujące mikroprocesory taktowane generatorami o dużych częstotliwościach.

Poziom energii zakłócającej jest zależny w znacznym stopniu od pola powierzchni pętli, jaki tworzą przewody i inne elementy przewodzące instalacji (rys. 2.). Na wielkość pola pętli mamy w pewnym zakresie wpływ poprzez odpowiednie prowadzenie przewodów lub tworzenie dodatkowych połączeń. Przykład zmiany powierzchni pętli przedstawiono na rysunku 3. Prądy indukujące się w pętli między masami, dzięki dodatkowemu połączeniu ekwipotencjalizującemu nie wpływają na wartość różnicy potencjałów między masami obu urządzeń.

Podczas ustalania trasy kabli w budynku dla poszczególnych obwodów, należy zwrócić uwagę na wzajemne ułożenie tras kabli energetycznych i sygnałowych. Od tego ułożenia zależy odporność systemu na zagrożenia wywołane wyładowaniami atmosferycznymi. Zagrożenie to jest wynikiem indukowania się siły elektromotorycznej w obwodach zamkniętych wywołanej zmiennym polem magnetycznym powstającym podczas wyładowania piorunowego, jak to pokazano na rysunku 4. [7].

Powstające napięcie może osiągać wartości powodujące uszkodzenia wrażliwych elementów elektronicznych w urządzeniach, lub może prowadzić nawet do uszkodzenia izolacji pomiędzy obwodami SELV/PELV i siecią energetyczną, co może zwiększyć zagrożenie porażeniowe.

Wielkość indukowanego napięcia w istotny sposób zależy od pola powierzchni wytworzonej przez elementy instalacji, a to z kolei zależy od sposobu doboru tras kabli. Na rysunku 5. przedstawiono przykłady tworzenia się pętli indukcyjnych składających się tylko z obwodów elektrycznych oraz z obwodów elektrycznych i instalacji nieelektrycznych.

Przepięcia powstające podczas wyładowań atmosferycznych można ograniczyć tak prowadząc instalację, aby pole powierzchni pętli indukcyjnej było jak najmniejsze. Można to osiągnąć prowadząc instalacje jak najbliżej siebie. Jest to stosunkowo łatwe przy instalacjach składających się wyłącznie z obwodów elektrycznych, znacznie trudniejsze – w przypadku instalacji nieelektrycznych.

Innym rodzajem zakłóceń są zakłócenia powstające na skutek bezpośredniego sprzężenia pomiędzy źródłem zakłóceń a obiektem zakłócanym przez pojemności lub indukcyjności pasożytnicze. Aby takie zakłócenia powstały, oba elementy, tzn. źródło i obiekt zakłócany, muszą być względem siebie odpowiednio zlokalizowane. Również przepływ prądów roboczych i uszkodzeniowych może być powodem powstawania zakłóceń. Główną przyczyną są spadki napięć powstające na przewodach zasilających, a zwłaszcza na przewodzie ochronnym.

Na rysunku 6. pokazano źródło powstawania różnicy potencjałów między dwoma urządzeniami na skutek przepływu prądu przez przewód uziemiający lub ochronny. Wartość tej różnicy zależy od impedancji przewodu uziemiającego na odcinku między współpracującymi urządzeniami, czyli między innymi od długości przewodu oraz prądu przepływającego przez ten przewód.

Układy uziemień funkcjonalnych

W celu umożliwienia poprawnej pracy urządzeniom elektronicznym konieczne jest zapewnienie im ekwipotencjalności. W tym celu należy starać się, aby wszystkie urządzenia miały potencjał ziemi. Można to osiągnąć poprzez połączenie urządzeń z uziemieniem. Możemy to zrealizować na kilka sposobów [1].

Najbardziej oczywisty wydaje się sposób, w którym każde urządzenie połączone jest niezależnie, własnym przewodem uziemiającym z uziomem. Każde urządzenie ma potencjał ziemi i nie ma na to wpływu stan pozostałych urządzeń. Taki układ nazywamy promieniowym (rys. 7.). Niewątpliwą wadą takiego rozwiązania jest wysoki koszt instalacji, zwłaszcza przy większych odległościach urządzeń od uziomu. Ponadto, poprawna praca możliwa jest w sytuacji, gdy urządzenia nie są ze sobą sprzężone innymi obwodami, czyli są autonomiczne.

Wraz z rozwojem technik informatycznych i sterujących, coraz więcej urządzeń elektrycznych i elektronicznych jest połączonych pomiędzy sobą, w celu wymiany informacji. Stwarza to dodatkowe problemy z zagwarantowaniem ich prawidłowej pracy, ze względu na trudności z zachowaniem jednakowego potencjału na całym obszarze.

Powstają tak zwane pętle mas, które są powierzchnią zawartą między przewodem roboczym, czyli kablem pomiarowym, sterującym lub przewodem zasilającym a najbliższą masą. Nie można zatem uniknąć powstawania pętli mas, możemy tylko wpływać na ich parametry. Istotnym parametrem jest powierzchnia pętli.

Na rysunku 8. przedstawiono układ promieniowy i powstające różnice potencjałów pomiędzy współpracującymi ze sobą urządzeniami elektronicznymi przy przepływie prądu uszkodzeniowego przez jeden z przewodów uziemiających. Ze względu na znaczne robocze prądy doziemne, jakie mogą występować w instalacjach z odbiornikami elektronicznymi [2], różnica potencjałów może wystąpić również w normalnych warunkach pracy.

Innym sposobem jest połączenie urządzeń wspólnym przewodem ochronnym, co przedstawiono na rysunku 9. Bez wątpienia jest to sposób najtańszy. Problemem mogą być spadki napięć przy przepływie prądu przez przewód ochronny, przedstawione na rysunku 6. Dodatkowe kłopoty mogą sprawiać urządzenia zakłócające, jeżeli będą podłączone do tego samego przewodu ochronnego, co urządzenia zakłócane.

Na rysunku 10. przedstawiono kolejną metodę przyłączenia urządzenia, w możliwie wielu punktach, do najbliższej uziemionej sieci mas. Z punktu widzenia ochrony przed zakłóceniami jest to sposób bardzo dobry. Niestety, również on ma swoje wady. Po pierwsze, jest niezgodny z obowiązującymi przepisami dotyczącymi ochrony przeciwporażeniowej, po drugie, nie ma możliwości zapewnienia integralności i ciągłości systemu masy uziemionej. Nie jest również możliwe jednoznaczne określenie obciążalności prądowej takiego zastępczego przewodu ochronnego.

Dobrym rozwiązaniem jest wykorzystanie zarówno połączeń wielokrotnych ze znajdującymi się najbliżej masami uziemiającymi, jak i połączenia do wspólnego przewodu ochronnego (rys. 11.).

Niekiedy do zasilania obwodów informatycznych stosuje się zasilacze UPS wyposażone w transformatory separujące [3]. W przypadku stosowania do zasilania urządzeń wrażliwych na zakłócenia transformatorów separacyjnych, należy umieszczać je jak najbliżej miejsca odbioru energii, na przykład nawet wewnątrz sali informatycznej. Przewód neutralny powinien być przyłączony do uziemienia tylko w punkcie neutralnym transformatora.

Uziemienie to powinno być wspólne dla sieci zasilającej i ochrony przed zakłóceniami. Przewody służące do przesyłu energii elektrycznej powinno się łączyć promieniowo, począwszy od tablicy rozdzielczej niskiego napięcia, natomiast przewody ochronne powinny tworzyć sieć zamkniętą wspólnie z uziemieniem funkcjonalnym i innymi masami.

Podsumowanie

Podstawową zasadą, jakiej należy się trzymać podczas wykonywania uziemień funkcjonalnych, jest zasada ekwipotencjalizacji. Jest ona korzystna zarówno ze względu na działanie chroniące przed zakłóceniami, jak i pod względem ochrony przeciwporażeniowej. Należy zatem dążyć do jak największej liczby połączeń wyrównawczych pomiędzy wszelkimi uziemieniami zarówno funkcjonalnymi, jak i ochronnymi oraz przewodami ochronnymi.

Należy unikać połączeń, które mogą prowadzić do powstania dużych powierzchni pętli w układzie przewodów uziemiających oraz ochronnych. Do takich sytuacji można doprowadzić stosując promieniowe połączenia poszczególnych mas ze wspólnym uziemieniem. Takie sposoby niestety czasami są stosowane.

Literatura

  1. A. Charoy, Zakłócenia w urządzeniach elektronicznych, WNT, Warszawa 2000.
  2. R. Zacirka, Bezpieczeństwo eksploatacji urządzeń techniki informatycznej, „Bezpieczeństwo elektryczne”, XI Międzynarodowa Konferencja Naukowo-Techniczna, Instytut Energoelektryki Politechniki Wrocławskiej, Wrocław 1997.
  3. R. Zacirka, Ochrona przeciwporażeniowa w instalacjach zasilanych z agregatów prądotwórczych lub z UPS-ów z przekształtnikami częstotliwości, „Bezpieczeństwo elektryczne”, XIV Konferencja Naukowo-Techniczna, Instytut Energoelektryki Politechniki Wrocławskiej, Wrocław 2003.
  4. PN-IEC 60050-195:2001 Międzynarodowy słownik terminologiczny elektryki. Uziemienia i ochrona przeciwporażeniowa.
  5. PN-EN 60950-1:2004 Urządzenia techniki informatycznej. Bezpieczeństwo. Część 1: Wymagania podstawowe.
  6. PN-EN 61140:2005 Ochrona przed porażeniem prądem elektrycznym. Wspólne aspekty instalacji i urządzeń.
  7. PN-IEC 61312-1:2003 Ochrona przed piorunowym impulsem elektromagnetycznym. Część 1: Zasady ogólne.

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Bezpieczeństwo w obwodach OZE

Bezpieczeństwo w obwodach OZE

W artykule przedstawiono zagadnienia związane z zagrożeniem porażeniowym i pożarowym występującym w obwodach związanych z energetyką ze źródeł odnawialnych. Przeanalizowano różne możliwe układy pracy instalacji...

W artykule przedstawiono zagadnienia związane z zagrożeniem porażeniowym i pożarowym występującym w obwodach związanych z energetyką ze źródeł odnawialnych. Przeanalizowano różne możliwe układy pracy instalacji przy takim zasilaniu. Przedstawiono możliwe problemy przy eksploatacji takich układów.

Zagrożenia w obwodach bardzo niskiego napięcia (ELV)

Zagrożenia w obwodach bardzo niskiego napięcia (ELV)

W artykule scharakteryzowano zasady budowy obwodów bardzo niskiego napięcia (ELV) oraz obszar ich zastosowań. Przedstawiono metody badań skuteczności ochrony przeciwporażeniowej. Zwrócono uwagę na możliwe...

W artykule scharakteryzowano zasady budowy obwodów bardzo niskiego napięcia (ELV) oraz obszar ich zastosowań. Przedstawiono metody badań skuteczności ochrony przeciwporażeniowej. Zwrócono uwagę na możliwe stany pracy tego typu obwodów, mogące skutkować zagrożeniem pożarowym.

Zasady stosowania uziemiaczy podczas prac przy urządzeniach niskiego napięcia

Zasady stosowania uziemiaczy podczas prac przy urządzeniach niskiego napięcia

W artykule scharakteryzowano zasady przygotowania stanowiska pracy przy urządzeniach elektroenergetycznych niskiego napięcia, ze zwróceniem szczególnej uwagi na prace wykonywane przy wyłączonym napięciu....

W artykule scharakteryzowano zasady przygotowania stanowiska pracy przy urządzeniach elektroenergetycznych niskiego napięcia, ze zwróceniem szczególnej uwagi na prace wykonywane przy wyłączonym napięciu. Przedstawiono zasady uziemiania urządzeń lub obwodów wyłączonych spod napięcia, zawarte w aktualnych aktach prawnych. Zaprezentowano najważniejsze zasady doboru uziemiaczy oraz określono zakres ­badań sprzętu przeznaczonego do uziemiania i zwierania.

Zastosowanie II klasy ochronności w urządzeniach domowych powszechnego użytku

Zastosowanie II klasy ochronności w urządzeniach domowych powszechnego użytku

Autorzy scharakteryzowali zasady budowy urządzeń domowych powszechnego użytku, ponadto zwrócili uwagę na zagrożenia, jakie mogą występować przede wszystkim podczas uszkodzeń urządzeń, uszkodzeń instalacji...

Autorzy scharakteryzowali zasady budowy urządzeń domowych powszechnego użytku, ponadto zwrócili uwagę na zagrożenia, jakie mogą występować przede wszystkim podczas uszkodzeń urządzeń, uszkodzeń instalacji lub z powodu niewłaściwej eksploatacji urządzenia oraz wskazali obszary zastosowania modernizacji urządzeń I klasy ochronności, ­która umożliwiłaby minimalizację tych zagrożeń.

System przeciwpożarowy wykorzystujący wyłączniki różnicowoprądowe

System przeciwpożarowy wykorzystujący wyłączniki różnicowoprądowe

Jedną z metod wykrywania pożaru jest stosowanie czujników dymu lub ognia. Odcięcie dopływu energii elektrycznej po wykryciu zagrożenia przez czujnik wymaga zastosowania specjalnego systemu, przeznaczonego...

Jedną z metod wykrywania pożaru jest stosowanie czujników dymu lub ognia. Odcięcie dopływu energii elektrycznej po wykryciu zagrożenia przez czujnik wymaga zastosowania specjalnego systemu, przeznaczonego do tego celu. Oprócz samych czujników, w skład takiego systemu musi wchodzić centralka sterująca znajdującym się w rozdzielnicy wyłącznikiem z cewką wybijakową lub zanikową, a także medium służące do komunikacji pomiędzy elementami systemu. Komunikacja ta realizowana jest za pomocą dedykowanego...

Selektywność działania zabezpieczeń w instalacjach elektrycznych niskiego napięcia

Selektywność działania zabezpieczeń w instalacjach elektrycznych niskiego napięcia

Dobierając zabezpieczenia przetężeniowe obwodów i urządzeń elektrycznych należy zapewnić, by przy zwarciu lub przeciążeniu w zabezpieczanym obwodzie działało ono selektywnie (czyli wybiórczo).

Dobierając zabezpieczenia przetężeniowe obwodów i urządzeń elektrycznych należy zapewnić, by przy zwarciu lub przeciążeniu w zabezpieczanym obwodzie działało ono selektywnie (czyli wybiórczo).

Badanie rezystancji izolacji w instalacjach z automatyką budynkową

Badanie rezystancji izolacji w instalacjach z automatyką budynkową

Badanie rezystancji izolacji jest jednym z podstawowych badań instalacji elektrycznych niskiego napięcia, zarówno w ramach badań odbiorczych, jak i okresowych. Prawidłowy stan izolacji części czynnych...

Badanie rezystancji izolacji jest jednym z podstawowych badań instalacji elektrycznych niskiego napięcia, zarówno w ramach badań odbiorczych, jak i okresowych. Prawidłowy stan izolacji części czynnych instalacji oraz urządzeń odbiorczych jest zasadniczym czynnikiem warunkującym poziom zagrożenia porażeniowego, pożarowego, a w obiektach o zagrożeniu wybuchem – także zagrożenia wybuchowego.

Aktualne wymagania stosowane przy pracach związanych z narażeniem na pole elektromagnetyczne

Aktualne wymagania stosowane przy pracach związanych z narażeniem na pole elektromagnetyczne

W celu dostosowania minimalnych wymagań w zakresie ochrony zdrowia i bezpieczeństwa dotyczących narażenia pracowników na zagrożenia spowodowane czynnikami fizycznymi (polami elektromagnetycznymi) określonymi...

W celu dostosowania minimalnych wymagań w zakresie ochrony zdrowia i bezpieczeństwa dotyczących narażenia pracowników na zagrożenia spowodowane czynnikami fizycznymi (polami elektromagnetycznymi) określonymi w dyrektywie Parlamentu Europejskiego i Rady 2013/35/UE z dnia 26 czerwca 2013 [1], w czerwcu 2016 r. Minister Rodziny, Pracy i Polityki Społecznej wydał rozporządzenie w sprawie bezpieczeństwa i higieny pracy przy pracach związanych z narażeniem na pole elektromagnetyczne [2].

Inteligentne urządzenia domowe

Inteligentne urządzenia domowe

Powszechne zastosowanie układów mikroprocesorowych w sprzęcie domowym codziennego użytku stało się faktem. Urządzenia AGD, dzięki wyposażeniu ich w coraz większą liczbę czujników i coraz bardziej wyrafinowane...

Powszechne zastosowanie układów mikroprocesorowych w sprzęcie domowym codziennego użytku stało się faktem. Urządzenia AGD, dzięki wyposażeniu ich w coraz większą liczbę czujników i coraz bardziej wyrafinowane oprogramowanie, wykonują coraz więcej coraz bardziej skomplikowanych funkcji. Co jest też bardzo istotne, w wielu przypadkach ich obsługa - pomimo zwiększonej funkcjonalności - jest prostsza, bo ustawienia szczegółowych parametrów pozostawiamy procesorom.

Przegląd wybranych przepisów i aktów normatywnych dotyczących ochrony przeciwporażeniowej do 1 kV stosowanych w latach 1960–2019

Przegląd wybranych przepisów i aktów normatywnych dotyczących ochrony przeciwporażeniowej do 1 kV stosowanych w latach 1960–2019

W dzisiejszych czasach trudno sobie wyobrazić życie bez elektryczności, ale musimy pamiętać o tym, że energia elektryczna może stanowić potencjalne źródło zagrożeń zarówno dla zdrowia, jak i życia ludzkiego....

W dzisiejszych czasach trudno sobie wyobrazić życie bez elektryczności, ale musimy pamiętać o tym, że energia elektryczna może stanowić potencjalne źródło zagrożeń zarówno dla zdrowia, jak i życia ludzkiego. Zapewnienie prawidłowej ochrony przeciwporażeniowej staje się więc bardzo ważnym elementem składowym szeroko rozumianego bezpieczeństwa elektrycznego. Od roku 1960 do chwili obecnej w naszym kraju wielokrotnie miały miejsce zmiany uregulowań prawnych dotyczących ochrony przeciwporażeniowej, wynikające...

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.)

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.)

Od wielu lat obserwujemy ożywioną dyskusję dotyczącą rozwiązań technicznych przeciwpożarowych wyłączników prądu, w której to dyskusji ścierają się różne poglądy środowiska zawodowego pożarników oraz środowiska...

Od wielu lat obserwujemy ożywioną dyskusję dotyczącą rozwiązań technicznych przeciwpożarowych wyłączników prądu, w której to dyskusji ścierają się różne poglądy środowiska zawodowego pożarników oraz środowiska zawodowego elektryków. Wiele ­zamieszania w tym zakresie wprowadziło Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 roku, w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym. Mimo upływu dwóch...

Testy bezpieczeństwa sprzętu medycznego

Testy bezpieczeństwa sprzętu medycznego

Zapewnienie bezpieczeństwa użytkowania i prawidłowej eksploatacji elektrycznego i elektronicznego sprzętu medycznego jest jednym z najważniejszych zadań stawianych zarówno przed producentami wyrobów medycznych,...

Zapewnienie bezpieczeństwa użytkowania i prawidłowej eksploatacji elektrycznego i elektronicznego sprzętu medycznego jest jednym z najważniejszych zadań stawianych zarówno przed producentami wyrobów medycznych, jak i ich późniejszymi użytkownikami. Uszkodzona lub niesprawna aparatura medyczna wykorzystywana do leczenia lub przeprowadzania diagnostyki może stać się potencjalnym zagrożeniem nie tylko dla zdrowia, ale także dla życia pacjentów, jak i pracowników.

Porażenia prądem elektrycznym w zakładach górniczych w latach 2005 – 2017

Porażenia prądem elektrycznym w zakładach górniczych w latach 2005 – 2017

Mechanizacja i automatyzacja procesów wydobywczych w górnictwie oraz stosowanie coraz wydajniejszych maszyn związane są ze znacznym wzrostem zapotrzebowania na energię elektryczną. Korzystanie z niesprawnych,...

Mechanizacja i automatyzacja procesów wydobywczych w górnictwie oraz stosowanie coraz wydajniejszych maszyn związane są ze znacznym wzrostem zapotrzebowania na energię elektryczną. Korzystanie z niesprawnych, uszkodzonych lub nieprawidłowo zamontowanych urządzeń i instalacji elektrycznych może być przyczyną niebezpiecznych dla ludzi zatrudnionych w przedsiębiorstwach górniczych wypadków spowodowanych oddziaływaniem prądu elektrycznego na organizm człowieka.

Zasady i kryteria doboru wyłączników różnicowoprądowych do selektywnej współpracy (część 2.)

Zasady i kryteria doboru wyłączników różnicowoprądowych do selektywnej współpracy (część 2.)

Artykuł przedstawia zasady i kryteria doboru wyłączników różnicowoprądowych w instalacjach elektrycznych dla uzyskania pełnej lub częściowej selektywności ich działania, na podstawie danych normatywnych...

Artykuł przedstawia zasady i kryteria doboru wyłączników różnicowoprądowych w instalacjach elektrycznych dla uzyskania pełnej lub częściowej selektywności ich działania, na podstawie danych normatywnych wg PN-HD 61008‑1. Dobór wyłączników różnicowoprądowych w szczególności został uzależniony od kształtu prądu różnicowego oraz typu wyłącznika.

Ochrona przeciporażeniowa w urządzeniach przytorowych niskiego napięcia zelektryfikowanych linii kolejowych

Ochrona przeciporażeniowa w urządzeniach przytorowych niskiego napięcia zelektryfikowanych linii kolejowych

W artykule przedstawiono zasady ochrony przeciwporażeniowej w instalacjach urządzeń pomocniczych niskiego napięcia, obsługujących zelektryfikowany szlak kolejowy.

W artykule przedstawiono zasady ochrony przeciwporażeniowej w instalacjach urządzeń pomocniczych niskiego napięcia, obsługujących zelektryfikowany szlak kolejowy.

Skutki patologiczne u porażonego w pierwszych chwilach zdarzenia

Skutki patologiczne u porażonego w pierwszych chwilach zdarzenia

W artykule opisano zmiany patologiczne występujące u porażonych prądem elektrycznym. Omówiono zjawiska histopatologiczne powstające w układzie nerwowym człowieka spowodowane prądem rażeniowym. Przedstawiono...

W artykule opisano zmiany patologiczne występujące u porażonych prądem elektrycznym. Omówiono zjawiska histopatologiczne powstające w układzie nerwowym człowieka spowodowane prądem rażeniowym. Przedstawiono sposoby rozpoznawania zatrzymania układu krążenia u człowieka.

Wykorzystanie elektryczności w terapii medycznej

Wykorzystanie elektryczności w terapii medycznej

Autor naszkicował historię wykorzystania elektryczności w terapii i diagnostyce medycznej, opisał rozwój metod i urządzeń do elektrostymulacji oraz defibrylacji serca, przedstawił stosowanie prądu elektrycznego...

Autor naszkicował historię wykorzystania elektryczności w terapii i diagnostyce medycznej, opisał rozwój metod i urządzeń do elektrostymulacji oraz defibrylacji serca, przedstawił stosowanie prądu elektrycznego w terapii psychiatrycznej, omówił terapię z wykorzystaniem prądów wysokiej częstotliwości i kliniczne zastosowanie pól elektromagnetycznych w terapii medycznej.

Wyłączniki różnicowoprądowe do obwodów z przekształtnikami energoelektronicznymi

Wyłączniki różnicowoprądowe do obwodów z przekształtnikami energoelektronicznymi

Artykuł zawiera wiedzę dotyczącą klasyfikacji wyłączników różnicowoprądowych z punktu widzenia ich przydatności do wykrywania określonego przebiegu prądu różnicowego. Autor przedstawił wyniki badań działania...

Artykuł zawiera wiedzę dotyczącą klasyfikacji wyłączników różnicowoprądowych z punktu widzenia ich przydatności do wykrywania określonego przebiegu prądu różnicowego. Autor przedstawił wyniki badań działania wyłączników różnicowoprądowych przy odkształconych prądach różnicowych oraz opisał dwa nowe typy wyłączników różnicowoprądowych, które niedawno pojawiły się w normach.

Rezystancyjne zwarcie doziemne napięcia falownika MSI

Rezystancyjne zwarcie doziemne napięcia falownika MSI

W napędowych przemiennikach częstotliwości napięciowy falownik MSI jest przekształtnikiem napięcia stałego na napięcie przemienne (DC/AC), do którego dołączony jest silnik. Harmoniczna podstawowa napięcia...

W napędowych przemiennikach częstotliwości napięciowy falownik MSI jest przekształtnikiem napięcia stałego na napięcie przemienne (DC/AC), do którego dołączony jest silnik. Harmoniczna podstawowa napięcia fazowego falowników MSI osiąga częstotliwość kilkunastu kiloherców [1]. Napędy z przemiennikami częstotliwości są powszechnie ­zasilane z transformatorów o układzie sieciowym TN [2]. Przy wystąpieniu rezystancyjnego zwarcia doziemnego napięcia fazowego falownika powstający prąd zwarciowy ma ograniczoną...

Problemy dobezpieczania wyłączników różnicowoprądowych

Problemy dobezpieczania wyłączników różnicowoprądowych

Wyłączniki różnicowoprądowe z wbudowanym zabezpieczeniem nadprądowym (RCBO – ang. residual current operated circuit-breakers with integral overcurrent protection) mają zdolność wyłączania porównywalną...

Wyłączniki różnicowoprądowe z wbudowanym zabezpieczeniem nadprądowym (RCBO – ang. residual current operated circuit-breakers with integral overcurrent protection) mają zdolność wyłączania porównywalną z wyłącznikami nadprądowymi. Producent podaje informację o prądzie znamionowym zwarciowym umownym, np. 6 kA lub 10 kA, do którego nie jest wymagane dobezpieczenie [3, 5, 7]. Wyłączniki różnicowoprądowe bez wbudowanego zabezpieczenia nadprądowego (RCCB – ang. residual current operated circuit-breakers...

Przyczyny porażeń prądem elektrycznym

Przyczyny porażeń prądem elektrycznym

Praca w obecności urządzeń i instalacji elektroenergetycznych może być przyczyną niebezpiecznych dla człowieka skutków związanych z działaniem na niego prądu. W artykule przeanalizowano wypadki przy pracy...

Praca w obecności urządzeń i instalacji elektroenergetycznych może być przyczyną niebezpiecznych dla człowieka skutków związanych z działaniem na niego prądu. W artykule przeanalizowano wypadki przy pracy będące odchyleniem od stanu normalnego związane z elektrycznością (np. uszkodzenia wyposażenia prowadzące do kontaktu bezpośredniego lub pośredniego) w latach 2005–2012.

Wyłączniki nadmiarowo-prądowe

Wyłączniki nadmiarowo-prądowe

Klasa ograniczenia energii, jest parametrem dotyczącym wyłączników nadmiarowo-prądowych przeznaczonych do stosowania w instalacjach elektrycznych domowych i podobnych. Sposób jej oznaczania oraz badania...

Klasa ograniczenia energii, jest parametrem dotyczącym wyłączników nadmiarowo-prądowych przeznaczonych do stosowania w instalacjach elektrycznych domowych i podobnych. Sposób jej oznaczania oraz badania parametrów związanych z klasą ograniczenia energii (znamionowa zdolność wyłączania prądów zwarciowych), a także parametry, jakie musi spełniać wyłącznik nadmiarowo-prądowy, aby mógł być oznaczony klasą ograniczenia energii, określa norma PN-EN 60898-1.

Czy w instalacji elektrycznej funkcję rozłącznika może pełnić wyłącznik różnicowoprądowy?

Czy w instalacji elektrycznej funkcję rozłącznika może pełnić wyłącznik różnicowoprądowy?

Powszechność stosowania wyłączników różnicowoprądowych w instalacjach elektrycznych często powoduje przypisywanie im również funkcji rozłącznika. Takie podejście jest niewłaściwe. W artykule zostanie wyjaśniony...

Powszechność stosowania wyłączników różnicowoprądowych w instalacjach elektrycznych często powoduje przypisywanie im również funkcji rozłącznika. Takie podejście jest niewłaściwe. W artykule zostanie wyjaśniony problem budowy tych aparatów oraz ich przeznaczenia.

Wyłączniki różnicowoprądowe – zagadnienia wybrane

Wyłączniki różnicowoprądowe – zagadnienia wybrane

Wyłącznik różnicowoprądowy definiowany jest również jako łącznik zabezpieczeniowy przystosowany do pracy długotrwałej w stanie zamkniętym, przeznaczony do załączania, przewodzenia i wyłączania prądów w...

Wyłącznik różnicowoprądowy definiowany jest również jako łącznik zabezpieczeniowy przystosowany do pracy długotrwałej w stanie zamkniętym, przeznaczony do załączania, przewodzenia i wyłączania prądów w normalnych warunkach pracy i powodujący otwarcie zestyków, gdy prąd różnicowy osiągnie określoną wartość.

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.