elektro.info

Zaawansowane wyszukiwanie

Dobór mocy zespołu prądotwórczego (część 1)

Projektowanie ochrony przeciwporażeniowej w instalacjach zasilanych z generatora zespołu prądotwórczego

Rys. 3. Ręczny przełącznik sieć/zespół prądotwórczy
J. Wiatr

Rys. 3. Ręczny przełącznik sieć/zespół prądotwórczy


J. Wiatr

Wielokrotnie zachodzi konieczność projektowania układów zasilania o zwiększonej pewności dostaw energii elektrycznej. Nie zawsze druga linia elektroenergetyczna doprowadzona do obiektu budowlanego spełnia oczekiwania odbiorcy. Często zachodzi potrzeba instalowania źródła zasilania awaryjnego, którym jest zespół prądotwórczy oraz zasilacza UPS. Obydwa te źródła wymagają odmiennego podejścia przy doborze ich mocy oraz innego sposobu projektowania i oceny ochrony przeciwporażeniowej w stosunku do systemu elektroenergetycznego. W artykule rozważania zostaną ograniczone do metodyki doboru mocy zespołu prądotwórczego oraz zasad projektowania ochrony przeciwporażeniowej w instalacji elektrycznej zasilanej z jego generatora zespołu prądotwórczego.

Zobacz także

dr inż. Karol Kuczyński Zespół prądotwórczy jako źródło zasilania awaryjnego budynku

Zespół prądotwórczy jako źródło zasilania awaryjnego budynku Zespół prądotwórczy jako źródło zasilania awaryjnego budynku

Niejednokrotnie zastosowanie zasilania z dwóch niezależnych linii elektroenergetycznych jest niewystarczające i należy instalować dodatkowe źródło energii w postaci zespołu prądotwórczego. W niektórych...

Niejednokrotnie zastosowanie zasilania z dwóch niezależnych linii elektroenergetycznych jest niewystarczające i należy instalować dodatkowe źródło energii w postaci zespołu prądotwórczego. W niektórych przypadkach stanowi on jedyne źródło zasilania odbiorników elektrycznych. Na rynku dostępne są zespoły o mocach od kilku kVA do 6 MVA przeznaczone do różnych sposobów eksploatacji oraz do zabudowy w pomieszczeniu lub zabudowane w wolno stojącym kontenerze. Sposób eksploatacji zespołu prądotwórczego...

Impakt SA Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii

Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii

Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych....

Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych. Zastosowana topologia podwójnej konwersji (VFI-SS-311) gwarantuje najwyższy poziom bezpieczeństwa, a wyspecjalizowane układy utrzymują współczynnik mocy PF na poziomie > 0.99. Oczywiście zależy on od podłączonych urządzeń odbiorczych. Wszelkie informacje o stanie UPS widoczne są na...

Riello Delta Power Sp. z o.o. Projekt przygotowania zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w elektrowni

Projekt przygotowania zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w elektrowni Projekt przygotowania zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w elektrowni

Firma Riello Delta Power Sp. z o.o. na przełomie lat 2022 i 2023 zrealizowała projekt zabudowy, produkcji, dostarczenia i instalacji dwóch zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków...

Firma Riello Delta Power Sp. z o.o. na przełomie lat 2022 i 2023 zrealizowała projekt zabudowy, produkcji, dostarczenia i instalacji dwóch zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w jednej z kluczowych dla polskiego systemu energetycznego elektrowni w Polsce północno-zachodniej.

Schemat układu zasilania budynku z wykorzystaniem zespołu prądotwórczego

Przystępując do opracowania układu zasilania obiektu budowlanego projektant musi przeprowadzić szczegółową analizę w zakresie wymagań pewności zasilania przez poszczególne odbiorniki planowane do zainstalowania w projektowanym obiekcie budowlanym.Zróżnicowane wymagania dotyczące pewności zasilania wymusiły wprowadzenie klasyfikacji odbiorników energii elektrycznej na kategorie zasilania, które można sklasyfikować zgodnie z kryterium przyjętym w gospodarce energetycznej:

  1. odbiorniki III kategorii zasilania – odbiorniki, w których dowolnie długa przerwa w dostawie energii elektrycznej nie spowoduje żadnych negatywnych skutków,
  2. odbiorniki II kategorii zasilania – odbiorniki, w których krótka przerwa w dostawie energii elektrycznej (do kilku minut) nie spowoduje negatywnych skutków,
  3. odbiorniki I kategorii zasilania – odbiorniki, w których nawet krótka przerwa w dostawie energii elektrycznej może spowodować zagrożenie życia ludzi lub znaczne straty materialne spowodowane np. przerwaniem procesu produkcyjnego.

Przykładowy układ zasilania obiektu budowlanego, w którym występują wszystkie kategorie zasilania, przedstawia rysunek 1.

Dobór mocy zespołu prądotwórczego

Za podstawę doboru mocy zespołu prądotwórczego należy przyjąć wartość mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej przez odbiorniki, które mają zostać objęte systemem zasilania awaryjnego. Moc czynną zapotrzebowaną należy wyznaczyć ze wzoru:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor1

Wzór 1

gdzie:

PZ – moc czynna zapotrzebowana czynna, w [kW],

kZ – współczynnik zapotrzebowania, w [-],

Pi – moc czynna i-tego odbiornika objętego systemem zasilania awaryjnego, w [kW].

Kolejnym krokiem jest obliczenie mocy biernej zapotrzebowanej, którą należy wyznaczyć w następujący sposób:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor2

Wzór 2

gdzie:

QZ – moc bierna zapotrzebowana, w [kvar],

cosφi – współczynnik mocy i-tego odbiornika objętego systemem zasilania awaryjnego, w [-].

Uwaga! W przypadku projektowania układu zasilania z przyłączonym zespołem prądotwórczym zgodnie z rysunkiem 1b, w obliczeniach należy uwzględnić moc strat transformatorów po wcześniejszym dobraniu ich mocy zgodnie z ogólnymi zasadami.

Na podstawie obliczonej wartości mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej należy obliczyć współczynnik mocy cosφZ:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor3

Wzór 3

gdzie:

cosφZ – współczynnik mocy obliczony na podstawie mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej, w [-].

Kolejnym krokiem jest obliczenie minimalnej mocy czynnej, jaką musi dysponować generator zespołu prądotwórczego. Generator zespołu prądotwórczego musi pokryć zapotrzebowanie mocy czynnej PZ oraz mocy biernej QZ. W przypadku, gdy generator wytwarza energię przy współczynniku mocy cosφZ<cosφnG, zmniejsza się zdolność wykorzystania mocy czynnej generatora ze względu na obciążalność cieplną stojana.

Silnik spalinowy napędzający generator jest dostosowany do mocy czynnej generatora, czyli do pracy generatora przy znamionowym współczynniku mocy cosφnG, zatem wytwarzanie energii elektrycznej przy współczynniku cosφZ<cosφnG skutkuje zmniejszeniem jego wykorzystania.

Względne obciążenie generatora mocą czynną można określić współczynnikiem wykorzystania, który należy obliczyć ze wzoru:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor4

Wzór 4

Wymagana minimalna moc czynna zespołu prądotwórczego musi spełniać następującą nierówność:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor5

Wzór 5

Obliczony ze wzoru (4) współczynnik wykorzystania p, należy podstawić do wzoru (5). W przypadku gdy p≥1, do wzoru (5) należy wstawić wartość 1.

Wartość współczynnika mocy cosφnG należy przyjąć zgodnie z DTR zespołu prądotwórczego.

W przypadku braku informacji w tym zakresie można przyjmować cosφnG=0,8. Moc pozorna zespołu prądotwórczego musi spełniać następującą nierówność:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor6

Wzór 6

gdzie:

PGmin – minimalna mocy czynna, jaką musi pokryć generator zespołu prądotwórczego, w [kW].

Mała wartość współczynnika mocy cosφZ powoduje zmniejszenie siły elektromotorycznej generatora wskutek rozmagnesowującego działania składowej biernej prądu obciążenia. Jeżeli generator oddaje większą moc bierną niż znamionowa, ze względu na konieczność utrzymania napięcia znamionowego i nieprzeciążanie wirnika należy zmniejszyć moc czynną obciążenia. W dopuszczalnych dla prądów wirnika granicach, automatyka zespołu prądotwórczego reguluje wartość prądu wzbudzenia utrzymując na stałym poziomie wartość napięcia wyjściowego generatora.

Zatem wytwarzanie energii elektrycznej przez generator zespołu prądotwórczego przy współczynniku mocy cosφZ<cosφnG skutkuje koniecznością zwiększenia jego mocy pozornej do wartości umożliwiającej pełne pokrycie mocy czynnej zapotrzebowanej PZ oraz mocy biernej zapotrzebowanej QZ.

Wprowadzanie układów kompensacji mocy biernej (szczególnie indukcyjnej) jest niewskazane ze względu na charakter pracy źródła zasilającego i w konsekwencji może doprowadzić do przedwczesnego zniszczenia kondensatorów. W przypadku, gdy zespół prądotwórczy służy do zasilania silników elektrycznych, za podstawę doboru mocy należy przyjmować prądy rozruchowe silników, które nie mogą przekraczać wartości prądu znamionowego generatora z uwzględnieniem jego chwilowego przeciążenia określonego w DTR producenta.

Natomiast, gdy zespół prądotwórczy zasila odbiorniki nieliniowe, powstają zniekształcenia prądu pobieranego ze źródła. Zniekształcenia te powodują pojawianie się w sieci zasilającej oraz instalacji odbiorczej harmonicznych, interharmonicznych i subharmonicznych, które na ogół nie są w fazie z napięciem. Zjawisko wyższych harmonicznych powoduje, że oprócz mocy czynnej i biernej pojawia się moc deformacji V, co oznacza, że moc pozorna nie może być określona jako iloczyn prądu i napięcia podstawowej harmonicznej. Wartość mocy deformacji V zależy od stopnia odkształcenia przebiegów napięcia i prądów, czyli od zawartości wyższych harmonicznych, a w układach wielofazowych – również od stopnia asymetrii.

W przypadku obciążeń asymetrycznych, współczynnik mocy cosφ nie jest jednakowy dla poszczególnych faz. W każdej fazie jego wartość może być różna i uzależniona od wartości mocy czynnej i biernej obciążającej fazę. Niepożądanym skutkiem niesymetrycznego obciążenia jest wzrost wartości napięcia ponad wartość znamionową w fazie najmniej obciążonej. Oszacowanie wartości mocy deformacji powodowanej niesymetrycznym obciążeniem jest dość trudne, zatem zgodnie z zaleceniami producentów zespołów prądotwórczych podczas projektowania układu zasilania awaryjnego należy zadbać, by przy zasilaniu odbiorników przez zespół prądotwórczy asymetria obciążenia nie przekraczała 20%. Moc pozorną zapotrzebowaną przez odbiornik nieliniowy należy określić wzorem:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor7

Wzór 7

Moc czynna przebiegu odkształconego jest sumą mocy czynnych harmonicznych napięcia i prądu o tej samej częstotliwości, czyli:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor8

Wzór 8

Natomiast moc bierną przebiegu odkształconego obliczamy z powszechnie akceptowalnego wzoru (10):

elektro 09 2013 dobor mocy zespolu pradotworczego wzor9

Wzór 9

Natomiast moc pozorna obwodu liniowego jest określona następującym wzorem:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor10

Wzór 10

W tym przypadku moc deformacji V=0.

Ilustrację graficzną mocy P, Q, V, S1 oraz S przedstawia rysunek 2.

Rysunek 2. wyjaśnia również, że dla obwodów nieliniowych współczynnik mocy nie może zostać określony wzorem 3, który jest słuszny dla obwodów liniowych:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor11

Wzór 11

W obwodach nieliniowych współczynnik mocy jest definiowany jako (rys. 2.):

elektro 09 2013 dobor mocy zespolu pradotworczego wzor12

Wzór 12

gdzie:

φk – przesunięcie fazowe pomiędzy napięciem i prądem dla harmonicznej rzędu k, 

Prąd znamionowy urządzenia trójfazowego pobierającego prąd odkształcony należy wyrazić wzorem:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor13

Wzór 13

Z równań (12) oraz (13) wynika, że przy ustalonej wartości prądu znamionowego In urządzenia i wzroście odkształcenia prądu rzeczywiście przepływającego przez to urządzenie zmniejsza się moc znamionowa czynna, którą można je obciążyć. 

Zatem odbiorniki nieliniowe pobierające prąd zniekształcony z generatora powodują zmniejszenie możliwości wykorzystania mocy czynnej generatora zespołu prądotwórczego. W celu pokrycia mocy zapotrzebowanej przez te odbiorniki moc generatora musi ulec zwiększeniu. Minimalną moc czynną generatora niezbędną do pokrycia mocy zapotrzebowanej przez te odbiorniki należy wyznaczyć ze wzoru:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor14

Wzór 14

gdzie:

p – współczynnik wykorzystania określony wzorem (4), w [-],

Pz – moc czynna zapotrzebowana przez odbiorniki objęte systemem zasilania awaryjnego, w [kW],

PGmin – wymagana minimalna moc czynna generatora zespołu prądotwórczego, w [kW],

elektro 09 2013 dobor mocy zespolu pradotworczego wspolczynnik znieksztalcenia

– współczynnik zniekształcenia, w [-], w którym:

THDi% – współczynnik odkształcenia prądu, w [-].

Natomiast moc pozorną zespołu prądotwórczego określamy zgodnie ze wzorem (6). Wartość współczynnika THDi% zawartości harmonicznych w odkształconym przebiegu prądu należy wyznaczyć ze wzoru:

elektro 09 2013 dobor mocy zespolu pradotworczego wzor15

Wzór 15

gdzie:

Ik – wartość skuteczna k-tej harmonicznej prądu, w [A],

I1 – wartość skuteczna harmonicznej podstawowej prądu, w [A],

k – rząd harmonicznej, w [-].

Przykładowe wartość współczynnika W, w zależności od wartości współczynnika THDi% przedstawia tabela 1.

Wraz ze wzrostem współczynnika THDi% maleje współczynnik zniekształceń W, a zatem moc generatora niezbędna do pokrycia mocy zapotrzebowanej ulega zwiększeniu.

Tandem UPS-zespół prądotwórczy

W celu uzyskania większej niezawodności do systemu zasilania gwarantowanego wprowadza się dodatkowe źródła zasilania awaryjnego, tj. zespół prądotwórczy. Taki układ daje bardzo duże bezpieczeństwo i pewność, że w razie awarii sytemu zasilania podstawowego urządzenia o znaczeniu krytycznym będą zasilane bez przerw, co uchroni odbiorców od wielu, niejednokrotnie poważnych strat, a tym samym strat spowodowanych przerwami w dostawie energii elektrycznej.

Zasilacz UPS powinien być dobierany do oszacowanej mocy odbiorników. Należy pamiętać, by sumaryczna moc odbiorników nie przekraczała ani wyjściowej mocy czynnej, ani wyjściowej mocy pozornej zasilacza. Wskazane jest niewielkie przewymiarowanie zasilacza (10–20%), które stanowiłoby rezerwę na okresowy wzrost lub błędy w szacowaniu mocy odbiorników.

UPS przeznaczony do współpracy z zespołem prądotwórczym powinien stanowić barierę między odbiorami a zespołem. Chodzi o maksymalne wyeliminowanie wpływu na zespół odkształconych prądów pobieranych przez odbiory nieliniowe (np. urządzenia komputerowe). Powinien to być UPS, który nie wiąże kształtu prądu wejściowego z kształtem prądu pobieranego przez odbiory.

Zespół prądotwórczy powinien bezpiecznie pokrywać zapotrzebowanie zasilacza UPS i odbiorników kategorii II. Jego moc jest sumą mocy pobieranej przez UPS-a w stanie pełnego obciążenia i mocy odbiorników kategorii II.

ei 09 2013 dobor mocy zespolu wzor16

Wzór 16

gdzie:

PUPSwe – moc wejściowa zasilacza UPS, w [kW],

PII – moc sumaryczna odbiorników kategorii II, w [kW].Moc wejściową zasilacza UPS obliczamy korzystając z zależności:

ei 09 2013 dobor mocy zespolu wzor17

Wzór 17

gdzie:

PUPSwy – wyjściowa moc czynna zasilacza UPS, w [kW],

η – sprawność zasilacza UPS, w [-],

W – współczynnik przewymiarowania zespołu prądotwórczego biorący pod uwagę między innymi odkształcenie prądu wejściowego zasilacza UPS, 

PB – dodatkowa moc wejściowa zasilacza związana z ładowaniem baterii (co najmniej 25% mocy znamionowej zasilacza), w [kW].

Jeżeli zasilacz UPS ma możliwość rozbudowy (zwiększenie mocy wyjściowej przewidziane w konstrukcji urządzenia), należy brać pod uwagę największą moc wyjściową zasilacza. Zalecane jest też stosowanie zasilaczy wyposażonych w specjalny interfejs do współpracy z zespołem prądotwórczym, pozwalający aktywnie ograniczyć prąd wejściowy przez zablokowanie funkcji ładowania baterii do chwili powrotu napięcia sieci. Wówczas można zrezygnować z 25-procentowej nadwyżki mocy zespołu, niezbędnej do ewentualnego ładowania baterii.

Do współpracy z zespołem prądotwórczym zaleca się stosowanie zasilaczy UPS wyposażonych w filtr redukujący zawartość harmonicznych w prądzie wejściowym do poziomu około 10% (głębsza redukcja jest bezcelowa, nie wpływa znacząco na poprawę charakterystyki współpracy zasilacza z agregatem, nie jest więc uzasadniona ekonomicznie). Nie powinno się stosować innych topologii zasilaczy niż online, gdyż tylko taka gwarantuje, że poprawność współpracy zasilacza UPS z zespołem prądotwórczym nie zachwieje się w wyniku zmiany charakterystyki odbiorników.

Zalecane jest stosowanie zespołów prądotwórczych wyposażonych w elektroniczne regulatory prędkości obrotowej, z nowoczesnymi prądnicami przystosowanymi do nieliniowych obciążeń. Generalnie poleca się stosowanie urządzeń sprawdzonych we współpracy i zapewniających stabilność zasilania w każdych warunkach.

UWAGA

W przypadku zastosowania zespołu prądotwórczego wyposażonego w generator przystosowany do obciążeń nieliniowych, stopień przewymiarowania zespołu może być mniejszy, jednak powinien on być uzgodniony z producentem lub dostawcą

Przykład 

Należy dobrać moc zespołu prądotwórczego przeznaczonego do awaryjnego zasilania następujących odbiorników:

  1. 3 silniki indukcyjne klatkowe o następujących parametrach: Pns=7,5 kW; kr=6; cosφ=0,8; η=0,8; Un=3400 V; sn=5%; kMr=2,3,
  2. zasilacz UPS o następujących parametrach: Pn=15 kW; cosφ=0,95; THDi=8%; Un=3x400/230 V; η=0,9,
  3. odbiorniki oświetleniowe o łącznej mocy P=5 kW; cos =0,7 Un=230V (odbiorniki pogrupowane są symetrycznie co zapewnia jednakowe obciążenie poszczególnych faz).

Moc znamionowa pojedynczego silnika:

Prąd rozruchowy przy połączeniu w trójkąt:

Jest to duży prąd, który należy ograniczyć. Jednym ze sposobów jest zastosowanie przełącznika gwiazda/trójkąt, dzięki czemu uzyskuje się 3-krotne zmniejszenie prądu rozruchowego, zatem:

Ze względu na znaczny prąd rozruchowy pojedynczego silnika należy zastosować układ uniemożliwiający jednoczesny rozruch wszystkich silników. Zatem przy założeniu sekwencyjnego rozruchu silników, moc szczytowa obciążenia wyniesie:

Moc zapotrzebowana przez zasilacz UPS:

Całkowita moc czynna zapotrzebowana:

Na podstawie katalogu producenta zespołów prądotwórczych warunki spełnia zespół o mocy 80 kVA.

Układy współpracy sieć-zespół prądotwórczy

Zespół prądotwórczy, który stanowi źródło zasilania awaryjnego, nie może dostarczać energii do sieci elektroenergetycznej. Powoduje to konieczność projektowania układów uniemożliwiających pracę równoległą źródeł lub wsteczne podanie napięcia do sieci, podczas gdy została ona wyłączona. W przypadku ZP uruchamianych ręcznie należy stosować ręczne przełączniki (rys. 3.).

Natomiast zespoły wyposażone w układy samorozruchu i samozatrzymania należy wyposażyć w układy automatyki SZR z blokadą mechaniczną i elektryczną. Przykład takiego układu został przedstawiony na rysunkach 4.5.

W przypadku zespołów prądotwórczych wyposażonych w automatykę samorozruchu i samozatrzymania należy pamiętać, że część układów automatyki zainstalowana jest w zespole i w przypadku pozostawania zespołu w warunkach gotowości do pracy wymaga zasilania z sieci elektroenergetycznej (grzałki, detektor zaniku faz itp.). Obwody te należy zabezpieczyć od przeciążeń, przepięć i porażeń oraz wykonać w układzie TN-S.

Ochrona przeciwporażeniowa w instalacjach elektrycznych nn zasilanych ze źródeł awaryjnych (ZP) i rezerwowych (UPS)

Zasilanie ze źródeł awaryjnych (zespołów prądotwórczych)

Zespół prądotwórczy w stosunku do systemu elektroenergetycznego jest źródłem „miękkim”, w którym impedancja obwodu zwarciowego ulega szybkim zmianom w czasie zwarcia (przyjmuje się, że system elektroenergetyczny charakteryzuje się stałą impedancją obwodu zwarciowego z uwagi na dużą wartość mocy zwarciowej).

W chwili wystąpienia zwarcia ulega zmianie rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego. Rozpływy strumieni w generatorze podczas zwarcia przedstawia rysunek 6.

W początkowej fazie zwarcia nazywanej stanem podprzejściowym, wskutek działania klatki tłumiącej strumień główny wytwarzany przez prądy płynące w uzwojeniu stojana jest wypychany poza wirnik (rys. 6a). W stanie tym reaktancja generatora charakteryzuje się małą wartością, wynoszącą przeciętnie (10–15)% znamionowej wartości reaktancji generatora. Stan ten trwa bardzo krótko ze względu na małą wartość elektromagnetycznej stałej czasowej T, wynoszącej dla generatorów nn, średnio 0,01 s.

Działanie klatki tłumiącej ze względu na małą wartość jej rezystancji szybko ustaje, co skutkuje powolnym wchodzeniem strumienia głównego w wirnik. Stan ten nazywany stanem przejściowym. W tym stanie reaktancja generatora wynosi przeciętnie (30¸40)% jego wartości znamionowej.

Generator w krótkim czasie przechodzi w stan ustalony zwarcia, co objawia się dalszym wzrostem reaktancji obwodu zwarciowego. W stanie ustalonym zwarcia strumień główny oraz strumień wzbudzenia zamykają się przez wirnik generatora. Ponieważ kierunki tych strumieni są przeciwne, strumień wypadkowy ulega silnemu zmniejszeniu. Zjawisko to prowadzi do gwałtownego wzrostu reaktancji generatora, która dla generatorów nn wynosi (200–300)% znamionowej wartości reaktancji generatora.

W zespołach prądotwórczych konstruowanych obecnie, instalowany jest regulator prądu wzbudzenia wyposażony w układ forsowania, który pozwala podczas zwarcia na utrzymanie określonej wartości reaktancji generatora. Wartość ta charakteryzowana jest krotnością prądu znamionowego generatora, utrzymywaną przez czas nie dłuższy niż 10 s. Ograniczenie czasowe utrzymywania określonej wartości reaktancji generatora podczas zwarcia wynika z warunku wytrzymałości izolacji uzwojeń generatora. Wydłużenie tego czasu może skutkować zniszczeniem izolacji uzwojeń generatora.

Na rysunku 7. przedstawiono unormowane charakterystyki zmienności reaktancji zwarciowej w generatorze nowoczesnego zespołu prądotwórczego oraz zmienności prądu zwarciowego na jego zaciskach. Parametry obwodu zwarciowego ulegają szybkim zmianom, co powoduje trudności w uzyskaniu skutecznej ochrony przeciwporażeniowej w odległej instalacji odbiorczej realizowanej przez samoczynne wyłączenie zasilania.

 Uwaga

W ogólnym przypadku, przy założeniu Ik=n · InG można zapisać wzór na reaktancję generatora dla zwarć jednofazowych jako:

 Wzór 18

(gdzie n – krotność prądu znamionowego utrzymywana podczas zwarć na zaciskach generatora, podawana przez producenta ZP w DTR).

Problemy te uwypuklają się szczególnie w zespołach starego typu, sukcesywnie wycofywanych z eksploatacji. Dlatego ważne jest, aby ludzie zajmujący się eksploatacją tego typu zespołów prądotwórczych (np. wiejscy elektrycy) mieli świadomość zagrożenia, jakie może stwarzać zespół prądotwórczy.

Przebiegi prądów zwarciowych na zaciskach generatora w wybranych zespołach prądotwórczych starszego typu zostały przedstawione na rysunku 8.

W zespołach tych prąd zwarciowy ulega szybkiej stabilizacji i uzyskuje określoną wartość na tyle małą, że zadziałanie zabezpieczeń w czasie określonym przez PN-HD 60364-4-41:2009 jest niemożliwe. Warunki zwarciowe dla samoczynnego wyłączenia zasilania ulegają znacznemu pogorszeniu przy zwarciu w odległej instalacji wskutek znacznej wartości impedancji obwodu zwarciowego.

W nowoczesnych zespołach zespół prądotwórczych producent zapewnia (wskutek działania układów automatyki) utrzymanie prądu zwarciowego na zaciskach generatora o wartości 3 · In przez 10 s (dłuższe utrzymywanie takiego stanu grozi zniszczeniem izolacji uzwojeń). Dzięki czemu do obliczeń skuteczności samoczynnego wyłączenia można przyjmować wartość reaktancji zwarciowej generatora Xk1G (na jego zaciskach) wyliczoną ze wzoru:

gdzie:

UnG – napięcie znamionowe generatora zespołu prądotwórczego, w [kV],

SnG – moc znamionowa generatora zespołu prądotwórczego, w [MVA].

Wynika to z następującego rozumowania:

zatem, jeżeli podczas zwarć na zaciskach generatora:

Częstym błędem popełnianym podczas wykonywania obliczeń zwarciowych jest przyjmowanie impedancji zwarciowej generatora na podstawie impedancji transformatora o mocy równej mocy generatora zespołu prądotwórczego. Dla porównania tych wartości w tabeli 2. zostały przedstawione impedancje wybranych transformatorów oraz generatorów.

Porównując dane przedstawione w tabeli 2. widać, jak duże rozbieżności występują w wartościach impedancji zwarciowych obydwu źródeł (Zk1G/ZkT»7,33). W przypadku, gdy zespół prądotwórczy jest oddalony o kilkanaście metrów od zasilanej rozdzielnicy, wartość impedancji obwodu zwarciowego w dalszym ciągu rośnie i powoduje dalsze zmniejszanie się prądów zwarciowych. Znaczna wartość reaktancji obwodu zwarciowego zasilanego przez generator zespołu prądotwórczego może być powodem nieskutecznej ochrony przeciwporażeniowej w instalacji, w której zastosowano samoczynne wyłączenie. Obwód zwarciowy dla potrzeb ochrony przeciwporażeniowej przedstawia rysunek 9.

Odmienność warunków zasilania z zespołu prądotwórczego w odniesieniu do Systemu Elektroenergetycznego

System Elektroenergetyczny (SEE) jest zasilany przez kilkadziesiąt generatorów przyłączonych za pośrednictwem transformatorów blokowych do sieci elektroenergetycznych WN pracujących w systemie zamkniętym. Moc zwarciowa SEE w uproszczeniu jest określana jako nieskończona. Wartość jej w różnych punktach sieci przyłączonych do SEE posiada wartości skończone, ale wartości ich są dość duże. Przeciętnie wartość mocy zwarciowej odniesiona do GPZ kształtuje się na poziomie (150–250) MVA. Zespół prądotwórczy po przejęciu zasilania stanowi jedyne źródło zasilania odbiorników objętych systemem zasilania awaryjnego. Dysponowana przez jego generator moc zwarciowa zależy od mocy generatora i posiada wartość skończoną. Dla wybranych generatorów niskiego napięcia, moc zwarciowa została przedstawiona w tabeli 3.

Wartość mocy zwarciowej rośnie wraz z mocą zespołu prądotwórczego, ale maleje wraz z odległością miejsca powstania zwarcia od zacisków generatora.

Dla powszechnie stosowanych zespołów prądotwórczych moc zwarciowa na zaciskach generatora nie przekracza 5,0 MVA.

Ponieważ z chwilą wejścia generatora w stan przejściowy podczas zwarcia moc zwarciowa znacząco maleje wskutek wzrastającej impedancji źródła, podczas gdy przy zasilaniu z SEE wartość mocy zwarciowej pozostaje praktycznie niezmienna przez czas trwania zawarcia.

Parametry zwarciowe transformatora oraz przewodów zasilających ulegają nieznacznej zmianie głównie wskutek termicznego działania prądu.

Graficznie porównanie obydwu źródeł przedstawia rysunek 10.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

  • jozef jozef, 11.12.2015r., 00:15:13 trochę żyję na tym świecie, i troche pojeździłem po 4 kontynentach. Nie da sie w jednym zdaniu powiedziec. ale spróbuje. W socjalizmie w Polsce był przemysł brakowało prądu, ale teraz jest kapitalizm i pradu nie brakuje. Dlaczego? bo przemysl w Polsce zostal zlikwidowany przez kapitalistyczne korporacje, ktore kupiły fabryki i w ich miejsce postawiły domki jednorodzinne. Poprzednio starano sie dostarczyc do fabryki 2 linie z systemu elektrycznego. Kapitalista obecnie Ķowi, że to za drogo wystarczy jedna, no i dołacza agregat pradotworczy, miekkie żródło pradu. No cóz w wiekszosci krajów świata, Ameryki południowej, Azji i Afryki potezne powierzchnie nie maja wcałe prądu bo kapitalista z zachodu mówi po co Azji, Ameryce, Afryce prąd tam sie nic nie produkuje bo tam nie bedziemy. Zrobi sie jednak problem bo po zabiciu araba Saddama Husseina i Kadafiego cała ta hałastra czarnego ludu arabów i murzynów załała Europę i nie pracujaca w swoich krajach przeniosła się do Europy by tu takze nic nie robic. Będziecie mieli trudno. Ja jestem stary w 2007 mówiłem że islam będzie w Europie za lat 10, pomyliłem się o lat 2. Islam już jest dzisiaj jest 2015 rok. i dużo kobiet w Polsce chodzi w szmatach na głowie, jeszcze chwilę i nie bedzie białych na ulicach. Patrzcie co knajpa to szisza,

Najnowsze produkty i technologie

Fakro Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu?

Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu? Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu?

Składane schody prowadzące na strych są popularną alternatywą dla tradycyjnych schodów, które zazwyczaj zajmują bardzo dużo miejsca. W jakie konstrukcje warto zainwestować? Czym się charakteryzują?

Składane schody prowadzące na strych są popularną alternatywą dla tradycyjnych schodów, które zazwyczaj zajmują bardzo dużo miejsca. W jakie konstrukcje warto zainwestować? Czym się charakteryzują?

PHOENIX CONTACT Sp.z o.o. Efektywność prefabrykacji przewodów

Efektywność prefabrykacji przewodów Efektywność prefabrykacji przewodów

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo...

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo niewiele można zrobić, aby wpłynąć na te aspekty, dlatego coraz częściej w centrum uwagi znajduje się produkcja własna ze wszystkimi procesami i strukturami, a także ogólna struktura kosztów.

Zakłady Kablowe BITNER Sp. z o.o. EMC na przykładzie kabli zasilających i sterowniczych

EMC na przykładzie kabli zasilających i sterowniczych EMC na przykładzie kabli zasilających i sterowniczych

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych...

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych w całość. Prawidłowe funkcjonowanie urządzeń może być zapewnione tylko i wyłącznie wtedy, gdy zakłócenia generowane przez otoczenie będą skutecznie blokowane. Generowane spodziewane zakłócenia elektromagnetyczne przez wyposażenie otaczające kable muszą zatem być w odpowiedni sposób odseparowane.

Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Jaki dysk zewnętrzny wybrać, robiąc backup danych? Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia...

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia kopii zapasowych. Czytaj dalej i dowiedz się, który z nich może odpowiadać Twoim potrzebom!

Renowa24.pl Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Dlaczego wybór okien dachowych jest ważny?

Dlaczego wybór okien dachowych jest ważny?

BayWa r.e. Solar Systems BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

BayWa r.e. Solar Systems otwiera magazyn w Gdańsku! BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie...

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie daje ponad 45 tys. m kw. powierzchni magazynowej BayWa r.e. Solar Systems w Polsce.

WAGO ELWAG Sp. z o.o. Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi...

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi – połączyć przewody o przekroju od 0,75 do 4 mm kw. Wystarczy po prostu odizolować końcówkę przewodu i bez użycia jakichkolwiek narzędzi wsunąć ją do złączki – i bezpieczne połączenie gotowe.

ASTAT Sp. z o.o. Modułowe filtry aktywne firmy Schaffner

Modułowe filtry aktywne firmy Schaffner Modułowe filtry aktywne firmy Schaffner

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej,...

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej, moc odbiorników czy budowa samej instalacji elektroenergetycznej. Dobór konkretnego rozwiązania powinien opierać się na analizie układu zasilającego zakład, reżimu pracy i zainstalowanych odbiorników. Bardzo ważnym punktem doboru jest wykonanie pomiarów Jakości Energii Elektrycznej i ich prawidłowa...

SIBA Polska Sp. z o.o. Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów...

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów zapewniających zasilanie całych zakładów. Jest zatem sprawą kluczową, aby systemy zasilania awaryjnego same działały bez zarzutu. Bezpieczniki produkowane przez firmę SIBA zabezpieczają urządzenia, które w przypadku awarii zasilania dostarczają energię kluczowym odbiorom.

IGE+XAO Polska Sp. z o.o. Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

SONEL S.A. Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV...

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV – pierwszy na świecie miernik przeznaczony do pomiarów impedancji pętli zwarcia w sieciach o napięciach dochodzących aż do 900 V AC, z kategorią pomiarową CAT IV 1000 V.

GROMTOR sp. z o.o. Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie...

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie zabezpieczać wszelkiego rodzaju obiekty, projektując i montując instalację odgromową zgodną z obowiązującymi przepisami.

Redakcja news Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami! Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa...

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa w nim wiosenna promocja, w której można wygrać supernagrody!

Solfinity sp. z o.o. sp.k. Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Inwertery hybrydowe: przyszłość zrównoważonej energetyki Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są...

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są przyszłością zrównoważonej energetyki.

CSI S.A Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210 Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel®...

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel® Celeron® N6210 o mocy 6,5 W.

Ewimar Sp. z o.o. Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Nowe ograniczniki przepięć do systemów automatyki i nie tylko Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Pewny Lokal Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków? Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych...

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych optymalizacja zużycia energii staje się priorytetem. Jednym z ważniejszych kroków prowadzących do obniżenia klasy energetycznej budynków jest wprowadzenie świadectwa energetycznego i nowoczesnych instalacji elektrycznych.

Fronius Polska Sp. z o.o. Fronius GEN24

Fronius GEN24 Fronius GEN24

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius...

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius GEN24.

Dominik Mamcarz, Ekspert ds. Techniczno-Rozwojowych w Alseva EPC CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem...

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem energii ze źródeł odnawialnych jest gromadzenie i przesyłanie wyprodukowanej energii elektrycznej. W tym kontekście technologia cable pooling zyskuje na znaczeniu, umożliwiając zoptymalizowane zarządzanie przesyłem energii elektrycznej ze źródeł OZE.

leroymerlin.pl Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz,...

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz, mają różne rozmiary, dzięki czemu można je dopasować do praktycznie każdego rodzaju lamp, są energooszczędne, a to tylko kilka z wielu ich zalet. Na co zwracać uwagę przy zakupie tego rodzaju żarówek i jak dopasować ich parametry do swoich potrzeb?

Bankier.pl Które produkty bankowe przydają się podczas remontu?

Które produkty bankowe przydają się podczas remontu? Które produkty bankowe przydają się podczas remontu?

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić...

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić niektóre produkty bankowe. O których z nich mowa? Tego lepiej dowiedzieć się jeszcze przed rozpoczęciem prac budowalnych.

NNV Sp z o.o. Czy fotowoltaika podnosi wartość nieruchomości?

Czy fotowoltaika podnosi wartość nieruchomości? Czy fotowoltaika podnosi wartość nieruchomości?

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest...

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest to ekologiczne źródło energii. Montaż paneli fotowoltaicznych na działce lub dachu domu ma jeszcze jedną zaletę – w przypadku sprzedaży nieruchomości podnosi jej wartość.

APATOR SA Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego...

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego producenta dla krajowych Operatorów Sieci Dystrybucji, którzy poszukują skutecznych rozwiązań technicznych do bilansowania sieci oraz redukcji nadmiernych obciążeń w szczytach produkcji energii z odnawialnych źródeł.

PHOENIX CONTACT Sp.z o.o. Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych....

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych. Dodatkowo w różnych materiałach marketingowych również można znaleźć nie zawsze pełne informacje na temat wymagań stawianych SPD, co nie pomaga w właściwym doborze odpowiedniego modelu do aplikacji. W tym artykule postaramy się przybliżyć najważniejsze zagadnienia, które pozwolą dobrać bezpieczne ograniczniki...

PHOENIX CONTACT Sp.z o.o. Modularny system drukujący – Thermomark E series

Modularny system drukujący – Thermomark E series Modularny system drukujący – Thermomark E series

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym...

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym cyklu roboczym. Rozwiązanie to umożliwia proste i bardzo wydajne oznaczanie przemysłowe, dzięki czemu efektywność naszej produkcji może wzrosnąć diametralnie.

Brother Polska Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Drukarki etykiet dla elektryków i elektroinstalatorów Brother Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch...

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch E550WVP to przenośne i szybkie urządzenia, które oferują specjalne funkcje do druku najpopularniejszych typów etykiet. Urządzenia pozwalają na szybkie i bezproblemowe drukowanie oznaczeń kabli, przewodów, gniazdek elektrycznych, przełączników oraz paneli krosowniczych.

F&F Pabianice MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa...

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa wykazują dużą determinację do zmian prowadzących do optymalizacji kosztów, co zapewnić ma im zachowanie przewagi konkurencyjnej, wynikającej np. z przyjętej strategii przewagi kosztowej.

Finder Polska Sp. z o.o. Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni...

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni z tradycyjnego domu budynku pasywnego. Niewątpliwie jednak należy pamiętać, że elementy automatyki budynkowej są składową pasywnych budowli i nawet zwykłe mieszkanie potrafią uczynić bardziej oszczędnym i ekologicznym.

Grupa Pracuj S.A. W jakich zawodach niezwykle ważna jest odporność na stres?

W jakich zawodach niezwykle ważna jest odporność na stres? W jakich zawodach niezwykle ważna jest odporność na stres?

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest...

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest wtedy odporność psychiczna osoby zatrudnionej na danym stanowisku. To cecha, jaką doceni wielu pracodawców. Dowiedzmy się więc, w jakich kategoriach zawodowych jest ona szczególnie istotna i jak może wpłynąć na Twoją karierę!

BayWa r.e. Solar Systems SMA – pełne portfolio dla rynku PV

SMA – pełne portfolio dla rynku PV SMA – pełne portfolio dla rynku PV

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.