Podstawowe wiadomości o napowietrznej sieci dystrybucyjnej energetyki zawodowej

Fotografia pochodzi z artykułu "Perspektywy rozwoju linii wysokiego napięcia prądu stałego": http://www.elektro.info.pl/artykul/id5864,perspektywy-rozwoju-linii-wysokiego-napiecia-pradu-stalego
arch. redakcji
Konsekwencją rozwoju gospodarczego kraju jest systematyczny wzrost zapotrzebowania na energię elektryczną zarówno odbiorców indywidualnych (gospodarstw domowych), jak i przemysłu oraz instytucji i urzędów państwowych. Wiąże się to oczywiście z rozbudową sieci elektroenergetycznej lub modernizacją istniejącej infrastruktury, a w konsekwencji z coraz większym „odrutowaniem” krajobrazu (linie napowietrzne) lub „okablowaniem” (linie kablowe) wolnej przestrzeni na terenach zurbanizowanych [12].
Zobacz także
dr hab. inż. Andrzej Ł. Chojnacki Sezonowość oraz przyczyny uszkodzeń elektroenergetycznych sieci dystrybucyjnych (część 2.)

Sieci elektroenergetyczne są najbardziej rozpowszechnionymi systemami spośród wszystkich systemów energetycznych (ciepłownicze, gazownicze, naftowe). Ponadto w przypadku wielu odbiorców energia elektryczna...
Sieci elektroenergetyczne są najbardziej rozpowszechnionymi systemami spośród wszystkich systemów energetycznych (ciepłownicze, gazownicze, naftowe). Ponadto w przypadku wielu odbiorców energia elektryczna jest jedynym systemowym nośnikiem energii. Dlatego też problem niezawodności sieci elektroenergetycznych ma tak duże znaczenie. W drugiej części artykułu prezentujemy problematykę dystrybucyjnych linii kablowych SN oraz obiektów elektroenergetycznych nn (część 1. została opublikowana w numerze...
dr hab. inż. Andrzej Ł. Chojnacki Sezonowość oraz przyczyny uszkodzeń elektroenergetycznych sieci dystrybucyjnych – część 1.: linie napowietrzne

Sieci elektroenergetyczne są najbardziej rozpowszechnionymi systemami spośród wszystkich systemów energetycznych (ciepłownicze, gazownicze, naftowe). Ponadto w przypadku wielu odbiorców energia elektryczna...
Sieci elektroenergetyczne są najbardziej rozpowszechnionymi systemami spośród wszystkich systemów energetycznych (ciepłownicze, gazownicze, naftowe). Ponadto w przypadku wielu odbiorców energia elektryczna jest jedynym systemowym nośnikiem energii. Dlatego też problem niezawodności sieci elektroenergetycznych ma tak duże znaczenie. W pierwszej części artykułu prezentujemy ogólne wymagania oraz problematykę obiektów elektroenergetycznych 110 kV i linii napowietrznych SN.
Sirko Böhme – DNV GL Dresden, prof. Gerd Valtin – HTWK Leipzig, Moritz Pikisch – OMICRON electronics Deutschland GmbH Analiza porównawcza metod pomiarowych

Rozdzielnice wysokiego napięcia pełnią funkcję węzłów w sieciach przesyłowych i dystrybucyjnych, dlatego są tak istotne dla zapewnienia wysokiej jakości zasilania. Większość tych urządzeń ma konstrukcję...
Rozdzielnice wysokiego napięcia pełnią funkcję węzłów w sieciach przesyłowych i dystrybucyjnych, dlatego są tak istotne dla zapewnienia wysokiej jakości zasilania. Większość tych urządzeń ma konstrukcję izolowaną powietrzem, zgodnie z normą DIN VDE 0101. Od ponad 40 lat możliwe jest również wykonywanie rozdzielnic WN w izolacji gazowej, w zamkniętych obudowach metalowych, zgodnie z normą DIN VDE 62271 – część 203 (konstrukcja kompaktowa) oraz produkcja rozdzielnic o konstrukcji modułowej, znanych...
Obecność infrastruktury energetycznej stanowi zawsze zagrożenie dla osób biorących udział w akcji ratowniczej ze względu na możliwość bezpośredniego lub pośredniego rażenia prądem elektrycznym. Dlatego autorzy postanowili w artykule przedstawić podstawowe wiadomości na temat napowietrznej sieci dystrybucyjnej, a więc linii napowietrznych różnych poziomów napięcia.
Cechy charakterystyczne sieci dystrybucyjnej
Linie napowietrzne wysokiego napięcia 110 kV
Zadaniem linii wysokiego napięcia 110 kV jest przesył mocy od elektrowni, farm wiatrowych lub stacji transformatorowo-rozdzielczych najwyższych napięć NN/WN (np. 220/110 kV) do stacji transformatorowo-rozdzielczych WN/SN (110/15 kV), tak zwanych Głównych Punktów Zasilających (GPZ-tów) lub bezpośrednio do dużych zakładów przemysłowych o zapotrzebowaniu mocy od około 5 MW do około 150 MW [12, 14].
Czynności łączeniowe, przełączeniowe planowe lub awaryjne (tak zwane ruchowe) w liniach 110 kV koordynuje Oddziałowa Dyspozycja Mocy (ODM), jeżeli linia ma charakter lokalny (obejmuje obszar działania jednego ODM-u) lub Krajowa Dyspozycja Mocy (KDM), jeżeli sieć wykracza poza obszar działania jednego ODM-u [12]. Informacje do ODM-u lub KDM-u przekazuje Rejonowa Dyspozycja Ruchu (RDR), na której terenie doszło do zdarzenia, np. kolizji drogowej.
Przyjęte do powszechnego stosowania konstrukcje wsporcze (słupy) w liniach 110 kV są wykonywane z metalu w formie:
o wysokościach od 15 m do 27 m (nie wyklucza się wyższych) i są projektowane jako:

Fot. 1. Widok konstrukcji wsporczych linii 110 kV: po lewej (fot. 1a) - stanowisko przelotowe jednotorowe o konstrukcji kratowej, w środku (fot. 1b) - stanowisko przelotowe dwutorowe o konstrukcji kratowej, po prawej (fot. 1c) - stanowisko odporowe jednotorowe o konstrukcji rurowej; fot. J.J. Zawodniak,Ł. Rogalski, P. Górny

Fot. 2. Widok konstrukcji wsporczych linii 110 kV: po lewej (fot. 2a) - stanowisko przelotowe jednotorowe, po prawej (fot. 2b) - stanowisko funkcyjne odporowe. UWAGA! Stanowiska słupowe przedstawione na fotografiach 2a i 3b są konstrukcyjnie zbliżone do siebie, jedyna różnica między nimi wynika z długości izolatorów; fot. J.J. Zawodniak,Ł. Rogalski, P. Górny
Odległość pomiędzy słupami standardowo wynosi ok. 300 m w przypadku linii jednotorowej i ok. 250 m, jeżeli linia jest dwutorowa. Natomiast odległość między najbliższymi przewodami roboczymi wynosi minimum 3 m [10, 11].
Przewód przymocowany na samej górze słupa (bez izolatora) pełni funkcję piorunochronu dla przewodów roboczych linii.
W liniach jednotorowych występuje jeden przewód odgromowy, w dwutorowych – dwa [11].
Przez energetykę zawodową nadal są eksploatowane linie napowietrzne 110 kV starszej generacji, tak zwane bramkowe o wysokości 14 m lub drewniane.

Rys. 1. Łańcuchy izolacyjne instalowane w liniach 110 kV: a) łańcuch przelotowy jednorzędowy, b) łańcuch odciągowy dwurzędowy. UWAGA! Długość elementu izolacyjnego (tego z „daszkami”) w liniach 110 kV wynosi ok. 1,1 m [16]; rys. J.J. Zawodniak,Ł. Rogalski, P. Górny
Stanowiska przelotowe skonstruowane są z dwóch żerdzi połączonych ze sobą u góry poprzecznikiem metalowym (fot. 2a), natomiast stanowiska funkcyjne (fot. 2b) w zależności od roli, jaką odgrywają w linii, skonstruowane są z czterech lub nawet sześciu żerdzi i mogą być wyposażone w odciągi (liny). Odległość pomiędzy słupami wynosi do 200 m [10].
Elementem łączącym przewody robocze z konstrukcją wsporczą (słupem) są izolatory (kompozytowe, ceramiczne, szklane) o długości ok. 1,1 m, które stanowią podstawowy element łańcuchów izolacyjnych różnego typu.
Zastosowanie poszczególnych typów łańcuchów izolacyjnych wynika z wymogów normatywnych, nakazujących w określonych miejscach stosowanie pewniejszego zawieszenia przewodu do konstrukcji wsporczej (słupa), np. przy krzyżowaniu się linii energetycznej z drogami asfaltowymi [10, 11]. Wybrane przykładowe typy łańcuchów izolacyjnych instalowanych w liniach 110 kV przedstawiono na rys. 1.
Najważniejsze cechy linii 110 kV:
- izolatory o długości ok. 1,1 m, wiszące w pozycji: pionowej, poziomej lub pod kątem 45o,
- trzy lub sześć przewodów roboczych (przymocowanych do izolatorów),
- jeden lub dwa przewody odgromowe (przymocowane bezpośrednio do słupa u góry),
- przewód odgromowy nie występuje w liniach starszej generacji – „bramkowych”,
- zarówno odległość między słupami, jak i ich wysokość jest duża.
Linie napowietrzne średniego napięcia 15–30 kV
Zadaniem linii napowietrznych średniego napięcia 15–30 kV jest przesył i rozdział mocy od stacji transformatorowo-rozdzielczych WN/SN (110/15 kV) do stacji transformatorowo-rozdzielczych SN/nn (15/0,4 kV) lub bezpośrednio do średnich zakładów przemysłowych o zapotrzebowaniu mocy od około 2 MW do 15 MW [12, 14]. Czynności ruchowe (przełączeniowe, wyłączeniowe) w liniach 15–30 kV koordynuje Rejonowa Dyspozycja Ruchu (RDR).
Przyjęte do powszechnego stosowania konstrukcje wsporcze (słupy) w liniach 15–30 kV są wykonywane z betonu, drewna, a w uzasadnionych przypadkach z metalu jako słupy rurowe lub karatowe. Standardowo mają wysokość od 10 m do 15 m (nie wyklucza się wyższych) i są używane zarówno w liniach jednotorowych (fot. 3a, fot. 3b, fot. 3c, fot. 3d, fot. 3e i fot. 3f), jak i dwutorowych, o tej samej wartości napięcia (fot. 4a i fot. 4b) lub różnych wartościach napięcia (SN i nn). Stanowiska przelotowe są projektowane z pojedynczych żerdzi lub zbliźniaczonych, natomiast słupy funkcyjne z jednej, dwóch lub nawet czterech żerdzi i mogą mieć odciągi (liny). Odległość pomiędzy słupami standardowo wynosi od 50 m do 200 m, a między przewodami roboczymi gołymi od 1,7 m (układ trójkątny przewodów) do 2,3 m (układ płaski przewodów), ewentualnie 0,5 m, jeżeli linia wykonana jest przewodem w osłonie izolacyjnej w układzie płaskim lub pionowym [1, 2, 4].
Elementami łączącymi przewody robocze (gołe w osłonie izolacyjnej) z konstrukcją wsporczą (słupem) są izolatory (kompozytowe, ceramiczne, szklane) o długości ok. 0,5 m lub wysokości ok. 0,3 m.
Izolatory ceramiczne na zewnątrz są pokryte szkliwem koloru: białego, zielonego lub brązowego, kompozytowe standardowo wykonywane są w kolorze popielatym lub niebieskim, sporadycznie brązowym, a szklane ze szkła o odcieniu zielonkawym [10, 13, 16].
W zależności od wymogów normatywnych (zwiększenie bezpieczeństwa zawieszenia przewodu) na jeden przewód roboczy może przypadać jeden lub dwa izolatory (wiszący lub wsporczy „stojący”).

Fot. 3 (a,b,c,d,e,f). Widok stanowisk słupowych linii SN: u góry od lewej (3a) - stanowisko narożne w układzie trójkątnym przewodów z izolacją wsporczą (stojącą), po środku (3b) - stanowisko przelotowe, bramkowe w układzie płaskim przewodów z izolacją wiszącą (kołpakową), po prawej (3c) - stanowisko przelotowe w układzie płaskim przewodów z izolacją wiszącą; u dołu od lewej (3d) - stanowisko przelotowe w układzie płaskim przewodów z izolacją wsporczą (stojącą), po środku (3e) - stanowisko odporowe na słupie kratowym z izolacją wsporczą „stojącą”, po prawej (3f) stanowisko narożne z przewodami w osłonie izolacyjnej; Fot. J.J. Zawodniak,Ł. Rogalski, P. Górny UWAGA! Stanowiska słupowe przedstawione na fotografiach 2a i 3b są konstrukcyjnie zbliżone do siebie, jedyna różnica między nimi wynika z długości izolatorów

Fot. 4 (a,b). Stanowiska słupowe linii dwutorowych o tej samej wartości napięcia – 15 kV: po lewej (4a) - z przewodami gołymi oraz podwieszonym światłowodem, po prawej (4b) - z przewodami w osłonie izolacyjnej; Fot. J.J. Zawodniak,Ł. Rogalski, P. Górny
Izolatory wiszące, tak jak w przypadku linii 110 kV, stanowią podstawowy element łańcuchów izolacyjnych różnego typu. Z tą różnicą, że ich długość jest znacznie mniejsza [1, 2].
Podstawowe typy łańcuchów izolacyjnych instalowanych w liniach średniego napięcia przedstawiono na rys. 2a-b i rys. 2c, a na rys. 3a-b i rys. 3c przedstawiono zawieszenie przewodów na izolatorach wsporczych „stojących”.
W liniach średniego napięcia nadal są eksploatowane izolatory wiszące, wykonane ze szkła lub porcelany, tak zwane izolatory kołpakowe, jak i izolatory wsporcze „stojące” deltowe. Izolatory swoją nazwę zawdzięczają wyglądowi, ponieważ swoją konstrukcją zbliżone są do kołpaka albo dużej greckiej litery delta (rys. 4a, rys. 4b i rys.4c) [4, 9].
UWAGA |
W pobliżu linii napowietrznych 110 kV detektory napięcia działające na zasadzie wykrywania obecności pola elektrycznego, np. typu AC Hot Stick, będą wskazywały poprawnie obecność lub brak napięcia w sieci. |
Aktualnie coraz częściej w liniach średniego napięcia stosuje się tak zwane kable uniwersalne, są to kable przystosowane do podwieszania na konstrukcjach wsporczych (słupach) za pomocą specjalnych uchwytów. Są one produkowane w formie skrętki składającej się z trzech kabli oraz linki stalowej, stanowiącej element nośny (rys. 5a) lub jednolitego kabla (rys. 5b). Kable te mają pełną izolację zgodnie z wymaganiami normatywnymi, więc nie ma potrzeby stosowania izolatorów wiszących ani wsporczych „stojących” na stanowiskach słupowych [5, 6].
Na wspólnej konstrukcji wsporczej (słupie) może być zainstalowana linia średniego napięcia, wykonana przewodem w osłonie izolacyjnej [mocowana na trzech izolatorach oddalonych od siebie o ok. 0,5 m (fot. 5a)] lub kablem „uniwersalnym” (fot. 5b), oraz linia niskiego napięcia przewodem pełnoizolowanym (rys. 7.). Zawsze linia średniego napięcia, niezależnie od zastosowanego rozwiązania technicznego (kabel „uniwersalny”, przewody w osłonie izolacyjnej), jest umieszczana nad linią niskiego napięcia [6].

U góry: Rys. 2. Przykładowe typy łańcuchów izolacyjnych stosowanych w liniach średniego napięcia z przewodami gołymi: a) łańcuch przelotowy jednorzędowy, b) łańcuch odciągowy jednorzędowy, c) łańcuch przelotowo-odciągowy. UWAGA! Długość elementu izolacyjnego (tego z „daszkami”) w liniach 15–30 kV wynosi ok. 0,5 m, elementy trzymające przewód w osłonie izolacyjnej są inne, ale długość izolatora taka sama [1, 2] U dołu: Rys. 3. Sposoby mocowania przewodów w linii średniego napięcia do izolatorów wsporczych „stojących”: a) zawieszenie przelotowe stosowane w liniach z przewodami gołymi, b) zawieszenie przelotowe stosowane w liniach z przewodami gołymi oraz w osłonie izolacyjnej, c) zawieszenie odciągowe stosowane na słupach funkcyjnych w sieci. UWAGA! Wysokośćizolatora wsporczego w liniach 15–30 kV wynosi ok. 0,3 m [1, 2]

Rys. 4. Izolatory będące nadal w eksploatacji w liniach średniego napięcia: a) kołpakowy szklany, b) deltowy szklany lub porcelanowy występujący w liniach z przewodami gołymi, c) deltowy porcelanowy eksploatowany w liniach z przewodami w osłonie izolacyjnej [8, 13]

Rys. 5. Kable „uniwersalne” stosowane w liniach napowietrznych średniego napięcia: a) kabel z linką nośną stalową, b) kabel jednolity z powłoką kablową otaczającą wszystkie trzy żyły kabla [6, 15]
Najważniejsze cechy linii 15–30 kV:
- izolatory wsporcze „stojące” o wysokości ok. 0,3 m lub wiszące, o długości ok. 0,6 m w pozycji: pionowej, poziomej lub pod kątem 45o,
- trzy lub sześć przewodów roboczych (przymocowanych do izolatorów) lub w przypadku kabli bezpośrednio do żerdzi za pomocą haka i uchwytu,
- możliwość poprowadzenia na wspólnej konstrukcji wsporczej (słupie) linii SN i nn oraz infrastruktury obcej, np. przewodów telekomunikacyjnych,
- brak przewodu odgromowego,
- z reguły słupy betonowe lub drewniane o wysokości od 10 m do 15 m.
UWAGA |
W liniach napowietrznych średniego napięcia stosuje się trzy podstawowe typy przewodów, tj.: przewody gołe (bez izolacji), przewody w osłonie izolacyjnej (z ekranem lub bez ekranu) i tak zwane kable uniwersalne, z ekranem oraz pełną izolacją. W przypadku linii napowietrznych z przewodami gołymi oraz w osłonie izolacyjnej, ale bez ekranu, detektory napięcia działające na zasadzie wykrywania obecności pola elektrycznego, np. typu AC Hot Stick, będą wskazywały poprawnie obecność lub brak napięcia w sieci. Natomiast w linii z przewodami w osłonie izolacyjnej z ekranem lub kablem „uniwersalnym” detektory napięcia nie będą poprawnie wskazywały obecności lub braku napięcia – wskażą raczej zawsze brak napięcia. Dlaczego? Ekran dla pola elektrycznego stanowi barierę, która uniemożliwia przedostanie się na zewnątrz przewodu do otoczenia, pomimo tego, że fizycznie w przewodzie lub kablu jest napięcie, a więc pole, ale „zamknięte” w granicach izolacji przewodu, kabla. Chyba że ekran został uszkodzony, wówczas dojdzie do „wycieku” pola i detektor wskaże obecność napięcia w linii. I jeszcze jedna ważna informacja – linie z przewodami w osłonie izolacyjnej należy traktować jak linie z przewodami gołymi – tak jak gdyby nie posiadały izolacji. |
Linie napowietrzne niskiego napięcia 0,4 kV
Zadaniem linii napowietrznych niskiego napięcia 0,4 kV jest przesył i rozdział mocy od stacji transformatorowo-rozdzielczych SN/nn (15/0,4 kV) do gospodarstw domowych lub małych zakładów przemysłowych o zapotrzebowaniu mocy do 70 kW [12, 14]. Czynności ruchowe (przełączeniowe, wyłączeniowe) w liniach 0,4 kV koordynuje Rejonowa Dyspozycja Ruchu (RDR).
Przyjęte do powszechnego stosowania konstrukcje wsporcze (słupy) w liniach 0,4 kV są wykonywane aktualnie z betonu, standardowo o wysokości od 8 m do 10 m (nie wyklucza się wyższych) i są używane zarówno w liniach jednotorowych (fot. 6a, fot. 6b i fot. 6c) jak i dwutorowych, o tej samej wartości napięcia (fot. 7a, fot. 7b, fot. 7c) lub różnych wartościach napięcia.
W sieciach energetycznych niskiego napięcia nadal są eksploatowane słupy drewniane i kratowe. Stanowiska przelotowe są projektowane z pojedynczych żerdzi lub zbliźniaczonych, natomiast słupy funkcyjne z jednej, dwóch lub nawet trzech żerdzi i mogą mieć odciągi (liny).
Odległość pomiędzy słupami standardowo wynosi od 30 m do 50 m. Wyjątek stanowią linie z przewodami stalowo-aluminiowymi oraz przewodami izolowanymi, w których odległość między słupami wynosi nawet do 100 m [4, 10, 12].
UWAGA |
W liniach napowietrznych niskiego napięcia niezależnie od zastosowanego przewodu (goły, izolowany), detektory napięcia działające na zasadzie wykrywania obecności pola elektrycznego, np. typu AC Hot Stick, będą wskazywały poprawnie obecność lub brak napięcia w sieci. |
Elementem łączącym przewody robocze (gołe) z konstrukcją wsporczą (słupem) są izolatory (ceramiczne, szklane) o wysokości od 0,10 m do 0,15 m (rys. 6). Izolatory ceramiczne są pokryte na zewnątrz szkliwem koloru: białego, zielonego lub brązowego, szklane wykonane są ze szkła o odcieniu zielonym lub białym [13].
W liniach niskiego napięcia jednotorowych z przewodami izolowanymi (rys. 7.) stosuje się jeden przewód w formie skrętki, w dwutorowych – dwa, w trzytorowych – trzy, czterotorowych – cztery. Przewód przymocowuje się do żerdzi za pomocą specjalnych uchwytów (rys. 8.) [6, 15].

U góry: Fot. 6 (a,b,c). Linie niskiego napięcia jednotorowe z przewodami gołymi: a) w układzie płaskim, b) w układzie naprzemianległym, c) z przewodami stalowo-aluminiowymi (odległość między słupami do 100 m) U dołu: Fot. 7 (a,b,c). Linie niskiego napięcia z przewodami gołymi i izolowanymi: a) dwutorowa w układzie płaskim, b) dwutorowa w układzie płaskim i przewodem izolowanym, c) trzytorowa z przewodami izolowanymi: Fot. J.J. Zawodniak,Ł. Rogalski, P. Górny

U góry: Rys. 6. Izolatory instalowane w liniach niskiego napięcia z przewodami gołymi: a) izolator porcelanowy stosowany na stanowiskach funkcyjnych w linii, b) izolator porcelanowy montowany na stanowiskach przelotowych w linii, c) izolator porcelanowy (lub szklany) stosowany na stanowiskach przelotowych w linii [13] U dołu: Rys. 8. Przykładowe uchwyty stosowane do zawieszenia przewodu samonośnego izolowanego linii niskiego napięcia: a) uchwyt odciągowy, b) uchwyt przelotowy, c) uchwyt przelotowo-narożny; Fot. J. J. Zawodniak,Ł. Rogalski, P. Górny
Na słupach linii niskiego napięcia umieszczane są oprawy oświetlenia drogowego lub inne elementy infrastruktury obcej, np. przewody telefoniczne. Z stanowisk słupowych wyprowadzane są przyłącza do zasilania gospodarstw domowych:
- wykonane przewodami gołymi (cztery lub dwa oddzielne przewody) mocowane na elewacji budynku lub stojaka dachowego z izolatorami,
- przewodem izolowanym, mocowane na elewacji budynku lub stojaka dachowego za pomocą uchwytu,
- kablem podziemnym, który jest przymocowany do słupa i doprowadzony do złącza kablowo-pomiarowego.
- Najważniejsze cechy linii 0,4 kV:
- izolatory o wysokości od 0,10 m do 0,15 m w przypadku przewodów gołych lub ich brak, jeżeli linia jest wykonana przewodem izolowanym,
- cztery, osiem lub w przypadku oświetlenia drogowego dodatkowy jeden lub dwa przewody robocze,
- możliwość poprowadzenia na jednym słupie linii SN, nn oraz infrastruktury obcej,
- brak przewodu odgromowego,
- słupy betonowe, drewniane, kratowe o wysokości od 8 m do 10 m.
Wnioski
Zadaniem artykułu jest przybliżenie funkcjonariuszom Straży Pożarnej, a zwłaszcza dowódcom akcji ratowniczo-gaśniczych, cech charakterystycznych napowietrznych linii wysokiego, średniego i niskiego napięcia. W artykule nie przedstawiono wszystkich rozwiązań technicznych w zakresie budownictwa sieciowego, które są stosowane w sieci dystrybucyjnej na terenie naszego kraju, tylko podstawowe.
Literatura
- Album linii napowietrznych średniego napięcia 15–20 kV z przewodami gołymi w układzie trójkątnym na żerdziach wirowanych LSN 35 (50), tom I, Polskie Towarzystwo Przesyłu i Rozdziału Energii Elektrycznej, Poznań 2002.
- Album linii napowietrznych średniego napięcia 15–20 kV z przewodami gołymi w układzie płaskim na żerdziach wirowanych LSN 50 (70), tom I, Polskie Towarzystwo Przesyłu i Rozdziału Energii Elektrycznej, Poznań 2008.
- ALPAR, katalog osprzętu linii napowietrznych niskiego napięcia, 2013.
- Elektroenergetyczne układy przesyłowe, pod red. Sz. Kujszczyk, Wydawnictwo Naukowo-Techniczne, Warszawa 1997.
- ENSTO, Katalog do projektowania linii SN z kablami uniwersalnymi EXCEL i AXCES na żerdziach wirowanych, ŻN i BSW, Poznań 2011.
- ENSTO, Niezawodne systemy Ensto, katalog osprzętu do linii energetycznych nn i SN, 2011.
- R. Gałczyński R., J. Zawodniak, Prowadzenie akcji gaśniczych w pobliżu infrastruktury energetycznej, „Energia Elektryczna” nr 10/2013, s. 23–25.
- GLOBAL INSULATOR GROUP, Catalogue insula tors for Power transmission lines and substations with voltage from 0,4 kV to 1150 kV, 2012.
- Inżynieria wysokich napięć w elektroenergetyce, tom I, pod red. H. Mościckiej-Grzesiak, Wydawnictwo Politechniki Poznańskiej, Poznań 1996.
- L. Kacejko, T. Kahl, Elektroenergetyczne linie napowietrzne, Państwowe Wydawnictwa Techniczne, Warszawa 1961.
- Z. Mendera, L. Szojda, G. Wandzik, Stalowe konstrukcje wsporcze napowietrznych linii elektroenergetycznych wysokiego napięcia, Wydawnictwo Naukowe PWN, Warszawa 2012.
- J. Niebrzydowski, Sieci elektroenergetyczne, Dział Wydawnictw i Poligrafii Politechniki Białostockiej, Białystok 2000.
- RADPOL, Katalog izolatorów liniowych, wsporczych, kompozytowych, przepustowych transformatorowych, 2013.
- J. Strojny, J. Strzałka, Projektowanie urządzeń elektroenergetycznych, wyd. 6., Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Kraków 2001.
- TELE-FONIKA-KABLE, katalog Kable i przewody elektroenergetyczne, 2013.
- ZAPEL, Katalog łańcuchów WN, www.zapel.com.pl/katalogi-wyrobow (dostęp 13.06.2014).