elektro.info

Badania metalograficzne śladów powstałych od zwarcia elektrycznego oraz interpretacja wyników

(część 3.)

Niektóre z brył stopionego metalu otrzymane w wyniku symulowanego zwarcia elektrycznego, przy różnym stężeniu tlenowym – obraz otrzymany przy powiększeniu 50×
W. Jaskółowski, P. Bąkowski

Niektóre z brył stopionego metalu otrzymane w wyniku symulowanego zwarcia elektrycznego, przy różnym stężeniu tlenowym – obraz otrzymany przy powiększeniu 50×


W. Jaskółowski, P. Bąkowski

Do chwili obecnej nie zostało ustalone, przy jakim wskaźniku liczbowym stężenia tlenowego dochodzi do utleniania miedzi. Dotychczasowa wiedza kryminalistyczna pozwalała ujawniać tlenki miedziawe powstałe w bogatej lub ubogiej atmosferze tlenowej. Na podstawie powyższego stwierdzenia wnioskuje się, że stopienia zwarciowe powstały przed pożarem lub w jego ogniu na skutek termicznego uszkodzenia izolacji żył.

Zobacz także

Podstawowe aspekty ochrony przeciwpożarowej elektrowni wiatrowych

Podstawowe aspekty ochrony przeciwpożarowej elektrowni wiatrowych Podstawowe aspekty ochrony przeciwpożarowej elektrowni wiatrowych

Rozkwit energetyki wiatrowej w ciągu ostatniej dekady postawił przed tą branżą wiele nowych wyzwań, także w zakresie ochrony przeciwpożarowej. Kwestia ta rzadko pojawia się w literaturze fachowej, która...

Rozkwit energetyki wiatrowej w ciągu ostatniej dekady postawił przed tą branżą wiele nowych wyzwań, także w zakresie ochrony przeciwpożarowej. Kwestia ta rzadko pojawia się w literaturze fachowej, która podobnie jak różnego rodzaju badania prowadzone w tym zakresie, skupia się przede wszystkim na optymalizacji doboru miejsca inwestycji i maksymalizacji jej wykorzystania do produkcji jak największej ilości energii elektrycznej.

Zasady projektowania sterowań instalacji do odprowadzania dymu i ciepła

Zasady projektowania sterowań instalacji do odprowadzania dymu i ciepła Zasady projektowania sterowań instalacji do odprowadzania dymu i ciepła

Głównym zagrożeniem w czasie pożaru, przyczyniającym się do większości wypadków śmiertelnych, jest zadymienie. W skład dymu wchodzą produkty spalania, gazy pożarowe i tlenek węgla. Bardzo niebezpieczna...

Głównym zagrożeniem w czasie pożaru, przyczyniającym się do większości wypadków śmiertelnych, jest zadymienie. W skład dymu wchodzą produkty spalania, gazy pożarowe i tlenek węgla. Bardzo niebezpieczna jest też ich wysoka temperatura, która stwarza dodatkowe zagrożenie, np. poprzez rozgorzenie. Silne zadymienie utrudnia sprawne przeprowadzenie ewakuacji oraz walkę z pożarem, dlatego przepisy z zakresu ochrony przeciwpożarowej w niektórych przypadkach nakładają obowiązek stosowania specjalnych instalacji...

Zagrożenie pożarem i eksplozją beziskiernikowych ograniczników przepięć (część 1.)

Zagrożenie pożarem i eksplozją beziskiernikowych ograniczników przepięć (część 1.) Zagrożenie pożarem i eksplozją beziskiernikowych ograniczników przepięć (część 1.)

Ograniczniki przepięć podczas ich normalnego działania w sieciach elektroenergetycznych średnich i wysokich napięć nie stwarzają zagrożeń dla sąsiadujących z nimi obiektów czy personelu. Ich stosowanie...

Ograniczniki przepięć podczas ich normalnego działania w sieciach elektroenergetycznych średnich i wysokich napięć nie stwarzają zagrożeń dla sąsiadujących z nimi obiektów czy personelu. Ich stosowanie przyczynia się wręcz do eliminacji awarii innych aparatów w wyniku uszkodzeń ich izolacji i związanych z tym zagrożeń. Poprawnie skonstruowane ograniczniki przepięć, dobrane do lokalnych warunków sieciowych i zainstalowane, wykonane z zastosowaniem właściwej technologii, są przez kilkadziesiąt...

Metalografia, jako dział metaloznawstwa, zajmuje się makroskopowym i mikroskopowym badaniem struktury metali stopów w świetle białym odbitym. Badania te polegają na obserwacji na mikroskopie metalograficznym o powiększeniu 50 - 500 razy powierzchni stopionego metalu odpowiednio spreparowanego i szukaniu obecności rozgałęzionego tlenku miedziawego CuO2.

Bryła stopionego metalu, uprzednio spolerowana, staje się zgładem metalograficznym, którego powierzchnia przyjmuje postać „lustra”. Metoda metalograficzna ze względu na konieczność wykonania zgładu, jest metodą niszczącą materiał dowodowy. Natomiast umożliwia odczytanie informacji znajdujących się w bryle stopionej miedzi, które pomocne są w ustalaniu zjawisk wywołujących pożar.

Charakterystyka materiału badawczego

Miedź z uwagi na swoje właściwości fizyczne jest materiałem wytrzymałym na działanie ognia pożaru i dlatego stanowi bardzo ważne źródło informacji dla biegłych, którzy na podstawie deformacji i zniszczeń popożarowych instalacji miedzianej mogą wypowiedzieć się, jakie występowały w przybliżeniu temperatury w czasie trwania pożaru.

Miedź jest pierwiastkiem chemicznym o liczbie atomowej 29, masie atomowej 63,54 i gęstości 8,96 g/cm3 oraz należy do grupy miedziowców. Jest metalem półszlachetnym, dość miękkim, kowalnym, ciągliwym o barwie czerwonawej. Temperatura topnienia miedzi wynosi 1083°C, a wrzenia 2567°C. Spośród pierwiastków jest najlepszym po srebrze przewodnikiem ciepła i elektryczności. W temperaturze pokojowej jest odporna na działanie tlenu, a także wodoru, azotu i węgla. W wilgotnym powietrzu pokrywa się tzw. patyną. Ogrzewana miedź reaguje z tlenem. W przyrodzie miedź jest mało rozpowszechniona, w stanie rodzimym występuje rzadko oraz tworzy ponad 150 minerałów, z których największe znaczenie mają m.in. chalkopiryt, bornit, kowelin kupryt.

Z rud miedzi metodą pirometalurgiczną z dodatkiem koksu i topników wytapia się kamień miedziawy stanowiący stop siarczków miedzi i żelaza. Natomiast z roztopionego kamienia w temperaturze topnienia 950 - 1100°C uzyskuje się w konwektorze miedź surową o składzie 99,5 % jej zawartości i do 0,05 % żelaza, 0,1 % siarki oraz metale szlachetne, nikiej kobalt, które następnie poddaje się oczyszczeniu poprzez rafinację elektrolityczną.

Miedź hutnicza oprócz wymienionych zanieczyszczeń, zawiera tlenek miedzi. Obecność tlenu w miedzi zmniejsza właściwości przewodzenia prądu elektrycznego i dlatego usuwa się go przez dodanie do surówki drewna brzozowego. Uzyskaną miedź odpowiednio się formuje w matrycach, w celu uzyskania odpowiedniego kształtu i średnicy. W procesie tworzenia przewodów miedzianych miedź przeciągana jest przez matryce. Nieregularnie rozmieszczone kryształki w strukturze miedzi podczas procesu formowania przemieszczają się w kierunku przeciągania drutu i przybierają strukturę liniową.

Tlen w połączeniu z miedzią tworzy tlenek miedziawy (Cu2O), który z miedzią daje mieszaninę eutektyczną Cu - Cu2O. Z równowagowego układu fazowego miedź – tlen miedzi hutniczej wynika, że od strony miedzi występuje eutetyka o zawartości 0,39 % tlenu, 3,5 % Cu2O, złożona z kryształków roztworu stałego granicznego tlenu w miedzi (kryształków tlenku miedziawego Cu2O). W temperaturze ok. 375°C następuje dalszy rozkład tlenku miedziawego na tlenek miedziowy i miedź:

W temperaturach niższych rozkład ten przebiega zbyt wolno, aby go zaobserwować. W procesie tworzenia się tlenków miedzi istotny jest czas natleniania. Tlenek miedziawy Cu2O tworzy się na powierzchni i dość równomiernie przenika w głąb roztopionego metalu. Po jego zakrzepnięciu proces dyfuzji tlenu w głąb miedzi praktycznie ustaje. Bardzo ważnym czynnikiem dla przenikania tlenku miedziawego jest czas trwania łuku elektrycznego oraz intensywność schładzania stopionej bryły metalu, zależna od jej masy i objętości.

Rozpuszczalność tlenu w miedzi w zależności od temperatury

W temperaturze 1065°C rozpuszczalność tlenu w miedzi wynosi 0,0036%, a w temperaturze 600°C – poniżej 0,001% tlenu. Przewód elektryczny ma strukturę liniową miedzi. Pod wpływem ognia działającego bezpośrednio na miedź struktura ulega zmianie. W metalografii wyróżnia się trzy następujące struktury stopu miedzi z tlenem:

  • strukturę podeutektyczną (rys. 1.),
  • strukturę eutektyczną (rys. 2.).
  • strukturę nadeutektyczną.

Przykłady wymienionych struktur metalograficznych dotyczą warunków równowagowych, które występują podczas bardzo powolnego chłodzenia, otrzymanych w warunkach laboratoryjnych. Mniejsza szybkość chłodzenia sprzyja tworzeniu się struktur równowagowych o dużej ziarnistości. Jaśniejsze obszary na rysunku 1. to kryształy roztworu stałego(α) tlenu w miedzi o zawartości poniżej 0,001% tlenu, obszary ciemniejsze to eutektyka złożona z kryształów roztworu stałego α i kryształów tlenku miedziawego Cu2O. Zawartość tlenu w eutektyce wynosi 0,39%, zaś zawartość Cu2O – 3,5%.

W procesie tworzenia się tlenków miedzi istotny jest czas natleniania. Tlenek miedziawy Cu2O tworzy się na powierzchni i dość równomiernie przenika w głąb roztopionego metalu. Po zakrzepnięciu metalu proces dyfuzji tlenu w głąb miedzi praktycznie ustaje. Tlenki mogą się tworzyć już tylko na powierzchni. Struktura eutektyczna tlenu i miedzi nie ulega zmianie po zastygnięciu roztopionego metalu, mimo że oddziałuje na nią ciągle płomień. Przykład struktury rozsianego tlenku miedziawego w stopieniu zwarciowym powstałym o dużej zawartości tlenu oraz struktury materiału rodzimego (miedzi) przedstawiono na rysunku 3.

Badania doświadczalne

W Szkole Głównej Służby Pożarniczej w Zakładzie Spalania i Teorii Pożarów przeprowadzono badania doświadczalne mające na celu przygotowanie próbek – stopień zwarciowych, symulowanych w atmosferze o różnym stężeniu tlenowym. Dążono podczas prób, aby bryły stopionego metalu na jednodrutowych żyłach miedzianych przyjmowały wymiary możliwe do przeprowadzenia badań metalograficznych. Symulację zwarcia elektrycznego przeprowadzono przy prądzie rzędu 100 A. Zmienne stężenie tlenowe uzyskano poprzez zastosowanie urządzenia OXYGEN INDEX TEST APPARATUS firmy FIRE, a jako źródło prądu zwarciowego zastosowano spawarkę transformatorową, zasilaną napięciem przemiennym trójfazowym o wartości skutecznej 3×230 V∼. Na końcach jednodrutowych żył miedzianych o przekroju s=1,5 mm2 i długościach od 30 do 50 cm, przez które płynął prąd zwarciowy o wartości 100 A symulowano zwarcia elektryczne. Tak otrzymane bryły stopionego metalu od łuku elektrycznego zabezpieczano w odpowiednio oznaczonych 10 pakietach. Zwarcia elektryczne przeprowadzono dla stężeń tlenowych od 22% do 13%, łącznie wykonano ich dziesięć. Górną 22% granicę stężenia tlenowego przyjęto z uwagi na 21% zawartość tlenu w powietrzu. Natomiast dolną granicę stężenia tlenowego, tj. 13%, przyjęto z uwagi na brak zdolności utrzymywania się płomienia dla niektórych materiałów palnych. Poniżej tej granicy niektóre materiały palne nie palą się z uwagi na zbyt niski poziom tlenu w powietrzu.

Bryły stopionego metalu, otrzymane na skutek symulowanego zwarcia elektrycznego, mają niewielkie wymiary, nieodbiegające w sposób znaczny od średnicy żył (rys. 4.). W badanych próbkach stopienia przybierają kształty: kraterów, kropli o wymiarach porównywalnych ze średnicą żył i kropli o wymiarach mniejszych od średnicy żył. Tak otrzymanych 10 próbek z prób zwarciowych winkludowano w żywicę tak, aby wykonać zgłady metalograficzne stopień i materiału rodzimego żył. Do wykonania zgładów użyto szlifierko-polerki. Po wypolerowaniu powierzchnie próbek zabezpieczono lakierem do zgładów metalograficznych przed następstwami utleniania i zabrudzenia.

Następnie każdą odpowiednio wypolerowaną próbkę poddano obserwacjom na mikroskopie metalograficznym z torem wizyjnym pod powiększeniem: 100×, 200× i 500×. Do badań mikroskopowych zastosowano światło odbite „białe”. Uzyskane obrazy metalograficzne badanych próbek zostały zarejestrowane za pomocą odpowiedniego oprogramowania w postaci plików graficznych w pamięci jednostki komputera. Na rysunku 5., rysunku 6., rysunku 7., rysunku 8., rysunku 9. i rysunku 10. widoczne są struktury zgładów metalograficznych, na podstawie których oszacowano graniczne warunki stężenia tlenowego potrzebne do wytworzenia rozgałęzionej siatki tlenku miedziawego w całym stopieniu oraz jedynie w jego zewnętrznej warstwie. W próbkach otrzymanych przy stężeniu tlenowym od 15 do 19% stwierdzono coraz mniejsze obszary rozgałęzionej siatki tlenku miedziawego, usytuowane na powierzchni bryły stopionego metalu. W próbce otrzymanej przy stężeniu tlenowym 14% nie stwierdzono śladowych ilości rozgałęzionej siatki tlenu miedziawego. Struktury uzyskane w badanych stopieniach są nietypowe i przy ich odpowiedniej interpretacji można było ustalić graniczną wartość stężenia tlenowego, przy której poszukiwana eutektyka, zwana rozgałęzioną siatką tlenku miedziawego, wypełniała całe stopienie.

Wyniki i interpretacja badań

Badania metalograficzne stopień zwarciowych wymagają wysokiej jakości aparatury do wykonania zgładów i odpowiednio precyzyjnego mikroskopu badawczego o dużej głębi ostrości. Struktury zgładów metalograficznych można obserwować w zakresie powiększeń 200 - 500 razy. Urządzenie do wytwarzania zmiennego stężenia tlenowego, znajdujące się na wyposażeniu Zakładu Spalania SGSP w Warszawie, zapewniło przybliżone warunki (z uwzględnieniem poziomu tlenu w powietrzu), jakie występują podczas pożaru. Na podstawie przeprowadzonych badań ustalono, że:

  • rozgałęziona siatka tlenku miedziawego występuje na całej powierzchni zgładów metalograficznych, przy zawartości tlenu w powietrzu w granicach 22 - 20%,
  • rozgałęzioną siatkę tlenku miedziawego można było stwierdzić na zewnętrznej powierzchni bryły stopionego metalu, przy zawartości tlenu w powietrzu w granicach 15 - 19%,
  • eutektyka w ogóle nie wytworzyła się przy stężeniu tlenowym poniżej 14%.

Z uwagi na małe wymiary stopień zwarciowych oraz szybkie ich schładzanie, w warunkach przeprowadzonych prób uzyskano struktury nierównowagowe, podeutektyczne i znacznie różniące się od struktur wzorcowych. Pomimo ograniczeń w wykorzystaniu badań metalograficznych przy ustalaniu przyczyn powstania pożaru, metoda ta jest jak najbardziej słuszna. Wyniki tych badań pozwolą spojrzeć szerzej na problematykę przyczyn pożarów powstałych od zwarcia elektrycznego. Pojęcie „zwarcie powstałe w atmosferze o dużej lub małej zawartości tlenu”, do chwili obecnej tak formułowane w opiniach kryminalistycznych, będzie można zastąpić wskaźnikiem liczbowym stężenia tlenowego, w którego obecności powstało zwarcie elektryczne. Wyniki tych badań powinny wspomóc biegłych policyjnych i sądowych podczas wydawania opinii w zakresie przyczyn pożarów, wywołanych od awarii w instalacji elektrycznej. Należy jednak pamiętać, że metoda badań metalograficznych nie może być jedyną oceną materiału dowodowego w ustalaniu przyczyn pożaru. Wydający opinię winni zapoznać się z całym materiałem zgromadzonym w aktach prowadzonego postępowania przygotowawczego i sądowego oraz w sposób rzetelny i obiektywy odnieść się do niego.

***

Autorzy wyrażają szczególne podziękowanie dla eksperta kryminalistyki mgr. inż. Tadeusza Hojarczyka, który swoją wiedzą i doświadczeniem w znaczący sposób przyczynił się do powstania artykułu.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Systemy oświetlenia awaryjnego i przeszkodowego

Systemy oświetlenia awaryjnego i przeszkodowego Systemy oświetlenia awaryjnego i przeszkodowego

Oświetlenie awaryjne jest przeznaczone do użytkowania podczas awarii oświetlenia podstawowego. Zastosowanie odpowiedniej technologii oświetlenia ewakuacyjnego oraz zapasowego może przyczynić się do znacznych...

Oświetlenie awaryjne jest przeznaczone do użytkowania podczas awarii oświetlenia podstawowego. Zastosowanie odpowiedniej technologii oświetlenia ewakuacyjnego oraz zapasowego może przyczynić się do znacznych oszczędności i znacząco wpłynąć na redukcję kosztów utrzymania takiego oświetlenia w zakładach przemysłowych, urzędach czy hotelach. Zarówno w budynkach, jak i tunelach oświetlenie awaryjne jest często projektowane niezgodnie z przepisami i obowiązującymi normami, a niejednokrotnie pomijane przez...

Zasilanie elektryczne urządzeń energetyki funkcjonujących w czasie pożaru

Zasilanie elektryczne urządzeń energetyki funkcjonujących w czasie pożaru Zasilanie elektryczne urządzeń energetyki funkcjonujących w czasie pożaru

Rozbudowa systemu elektroenergetycznego, jaka ma obecnie miejsce, jest związana z wprowadzaniem coraz nowocześniejszych technologii wytwarzania i przesyłu energii elektrycznej. Podyktowane jest to potrzebami...

Rozbudowa systemu elektroenergetycznego, jaka ma obecnie miejsce, jest związana z wprowadzaniem coraz nowocześniejszych technologii wytwarzania i przesyłu energii elektrycznej. Podyktowane jest to potrzebami rynku energetycznego, wymagającego dużej dyspozycyjności i niezawodności zasilania elektrycznego. Rozwiązania wprowadzane w obiektach energetyki muszą być niezawodne, a przy tym bardzo bezpieczne.

Zasady projektowania sterowań instalacji do odprowadzania dymu i ciepła

Zasady projektowania sterowań instalacji do odprowadzania dymu i ciepła Zasady projektowania sterowań instalacji do odprowadzania dymu i ciepła

Głównym zagrożeniem w czasie pożaru, przyczyniającym się do większości wypadków śmiertelnych, jest zadymienie. W skład dymu wchodzą produkty spalania, gazy pożarowe i tlenek węgla. Bardzo niebezpieczna...

Głównym zagrożeniem w czasie pożaru, przyczyniającym się do większości wypadków śmiertelnych, jest zadymienie. W skład dymu wchodzą produkty spalania, gazy pożarowe i tlenek węgla. Bardzo niebezpieczna jest też ich wysoka temperatura, która stwarza dodatkowe zagrożenie, np. poprzez rozgorzenie. Silne zadymienie utrudnia sprawne przeprowadzenie ewakuacji oraz walkę z pożarem, dlatego przepisy z zakresu ochrony przeciwpożarowej w niektórych przypadkach nakładają obowiązek stosowania specjalnych instalacji...

Porażenia prądem elektrycznym o wysokiej częstotliwości

Porażenia prądem elektrycznym o wysokiej częstotliwości Porażenia prądem elektrycznym o wysokiej częstotliwości

Rozwój urządzeń elektronicznych i telekomunikacyjnych w ostatnich latach spowodował powszechność stosowania napięć o częstotliwości większej od przemysłowej. Skutki urazu elektrycznego u człowieka powodowane...

Rozwój urządzeń elektronicznych i telekomunikacyjnych w ostatnich latach spowodował powszechność stosowania napięć o częstotliwości większej od przemysłowej. Skutki urazu elektrycznego u człowieka powodowane prądem rażeniowym o wysokiej częstotliwości różnią się od skutków, które wywołuje prąd przemienny 50 Hz.

Statystyki pożarów budynków

Statystyki pożarów budynków Statystyki pożarów budynków

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów,...

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów, występowania urządzeń przeciwpożarowych, czasu przybycia i sprawności działania jednostek ochrony przeciwpożarowej.

Przeciwpożarowy wyłącznik prądu i zagrożenia stwarzane przez wyłącznik epo zasilaczy ups oraz ich neutralizacja

Przeciwpożarowy wyłącznik prądu i zagrożenia stwarzane przez wyłącznik epo zasilaczy ups oraz ich neutralizacja Przeciwpożarowy wyłącznik prądu i zagrożenia stwarzane przez wyłącznik epo zasilaczy ups oraz ich neutralizacja

Problematyka przeciwpożarowego wyłącznika prądu była wielokrotnie opisywana w literaturze. Mimo to w dalszym ciągu spotykamy się z wątpliwościami w zakresie projektowania i wykonywania tego urządzenia....

Problematyka przeciwpożarowego wyłącznika prądu była wielokrotnie opisywana w literaturze. Mimo to w dalszym ciągu spotykamy się z wątpliwościami w zakresie projektowania i wykonywania tego urządzenia. Szczególnym problemem jest kwestia związana z przeciwpożarowym wyłącznikiem prądu dla zasilaczy UPS. Niniejszy artykuł stanowi próbę przybliżenia tego zagadnienia.

Ochrona przed pożarem z wykorzystaniem wyłączników różnicowoprądowych i urządzeń do detekcji zwarć łukowych

Ochrona przed pożarem z wykorzystaniem wyłączników różnicowoprądowych i urządzeń do detekcji zwarć łukowych Ochrona przed pożarem z wykorzystaniem wyłączników różnicowoprądowych i urządzeń do detekcji zwarć łukowych

Jeżeli na drodze prądu upływowego znajdują się elementy o charakterze rezystancyjnym i są palne, to prąd ten może nagrzać je do wysokiej temperatury i wywołać pożar. Zapalić może się pył przewodzący, zwęglona...

Jeżeli na drodze prądu upływowego znajdują się elementy o charakterze rezystancyjnym i są palne, to prąd ten może nagrzać je do wysokiej temperatury i wywołać pożar. Zapalić może się pył przewodzący, zwęglona izolacja lub materiały stykające się z gorącym elementem, przez który przepływa prąd upływowy [2, 5, 6]. Pożar może również powstać w wyniku zwarcia doziemnego łukowego lub iskrzenia w obwodzie, w którym pogorszyło się połączenie przewodu bądź doszło do jego zmiażdżenia.

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.) Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi

Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi Analiza statystyczna danych historycznych oraz prognozy do roku 2021 liczby pożarów budynków spowodowanych niesprawną instalacją elektryczną lub przyłączonymi do niej urządzeniami elektrycznymi

Pożary budynków to zjawisko w dużym stopniu losowe. Wzrost liczby budynków na terenie Polski, wzrost liczby niefachowo wykonanych instalacji elektrycznych, wzrost niskiej jakości elementów zastosowanych...

Pożary budynków to zjawisko w dużym stopniu losowe. Wzrost liczby budynków na terenie Polski, wzrost liczby niefachowo wykonanych instalacji elektrycznych, wzrost niskiej jakości elementów zastosowanych do ich wykonania oraz malejąca jakość urządzeń elektrycznych mogą być potencjalną przyczyną wzrostu liczby pożarów budynków. Nowym, potencjalnym źródłem pożarów są również instalowane coraz bardziej masowo na dachach budynków systemy fotowoltaiczne oraz punkty ładowania pojazdów elektrycznych wewnątrz...

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 2.)

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 2.) Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 2.)

W drugiej części artykułu zostanie zwrócona uwaga na zagrożenia stwarzane przez baterie akumulatorów oraz konieczność badania ich stanu technicznego, o czym powszechnie zapomina się podczas eksploatacji....

W drugiej części artykułu zostanie zwrócona uwaga na zagrożenia stwarzane przez baterie akumulatorów oraz konieczność badania ich stanu technicznego, o czym powszechnie zapomina się podczas eksploatacji. W praktyce stosowanie zasilaczy UZS lub zasilaczy UPS w układzie sterowania PWP może być stosowane w sporadycznych, technicznie uzasadnionych przypadkach.

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.)

Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.) Przeciwpożarowy Wyłącznik Prądu – metodyka konstruowania (część 1.)

Od wielu lat obserwujemy ożywioną dyskusję dotyczącą rozwiązań technicznych przeciwpożarowych wyłączników prądu, w której to dyskusji ścierają się różne poglądy środowiska zawodowego pożarników oraz środowiska...

Od wielu lat obserwujemy ożywioną dyskusję dotyczącą rozwiązań technicznych przeciwpożarowych wyłączników prądu, w której to dyskusji ścierają się różne poglądy środowiska zawodowego pożarników oraz środowiska zawodowego elektryków. Wiele ­zamieszania w tym zakresie wprowadziło Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 roku, w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym. Mimo upływu dwóch...

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru

Przy projektowaniu układów zasilania budynków pojawia się szereg wątpliwości wynikających z oczekiwanego poziomu niezawodności dostaw energii elektrycznej. Brak wytycznych w tym zakresie często prowadzi...

Przy projektowaniu układów zasilania budynków pojawia się szereg wątpliwości wynikających z oczekiwanego poziomu niezawodności dostaw energii elektrycznej. Brak wytycznych w tym zakresie często prowadzi do błędnego rozumienia tego problemu przez inwestora oraz projektanta. Natomiast wymagania dotyczące ochrony ppoż. wymagają przystosowania budynku eksploatowanego w warunkach normalnych do zasilania pożarowego, gdzie warunki środowiskowe znacznie różnią się od warunków normalnych. W tym przypadku...

Zachowanie się przewodów i kabli elektrycznych w wysokich temperaturach (część 2.)

Zachowanie się przewodów i kabli elektrycznych w wysokich temperaturach (część 2.) Zachowanie się przewodów i kabli elektrycznych w wysokich temperaturach (część 2.)

Zachowanie się kabli i przewodów elektrycznych podczas pożarów określa się na podstawie badań różnych właściwości materiałów, z których zostały wyprodukowane. Podstawowym parametrem określającym zachowanie...

Zachowanie się kabli i przewodów elektrycznych podczas pożarów określa się na podstawie badań różnych właściwości materiałów, z których zostały wyprodukowane. Podstawowym parametrem określającym zachowanie się oprzewodowania podczas pożaru jest palność przewodów i kabli – czy są „samogasnące”, czy podtrzymują palenie itp. Kolejne kryteria określają ilość wydzielanego dymu podczas pożaru oraz zawartość w tym dymie substancji szkodliwych i korozyjnych. Bardzo istotną cechą wyznaczaną podczas badań...

Dystrybucja energii elektrycznej w systemach kontroli rozprzestrzeniania dymu i ciepła

Dystrybucja energii elektrycznej w systemach kontroli rozprzestrzeniania dymu i ciepła Dystrybucja energii elektrycznej w systemach kontroli rozprzestrzeniania dymu i ciepła

W trakcie konsultacji prowadzonych z projektantami oraz wykonawcami systemów wentylacji pożarowej pojawiają się wątpliwości oraz pytania dotyczące interpretacji zapisów normy PN-EN 12101-10:2007 Systemy...

W trakcie konsultacji prowadzonych z projektantami oraz wykonawcami systemów wentylacji pożarowej pojawiają się wątpliwości oraz pytania dotyczące interpretacji zapisów normy PN-EN 12101-10:2007 Systemy kontroli rozprzestrzeniania się dymu i ciepła. Część 10: Zasilanie [1]. Zalecane przez tę normę układy zasilania nie spełniają wymogów reguły niezawodnościowej n+1. W artykule zostanie wyjaśniony problem oraz metodyka jego rozwiązania spełniająca regułę n+1, która w odniesieniu do zasilania urządzeń...

Urządzenia i instalacje elektryczne a pożar (część 1.)

Urządzenia i instalacje elektryczne a pożar (część 1.) Urządzenia i instalacje elektryczne a pożar (część 1.)

Integralną częścią każdego budynku jest instalacja elektryczna, zapewniająca jego prawidłową i bezpieczną eksploatację. Każdy dom, biuro, zakład pracy posiada kilkanaście, czy nawet kilkaset odbiorników...

Integralną częścią każdego budynku jest instalacja elektryczna, zapewniająca jego prawidłową i bezpieczną eksploatację. Każdy dom, biuro, zakład pracy posiada kilkanaście, czy nawet kilkaset odbiorników energii elektrycznej. Projektując i montując instalacje oraz produkując urządzenia elektryczne, należy robić to w taki sposób, aby w całym okresie ich użytkowania spełniały wymagania określone w normach i przepisach, gwarantując wyznaczony komfort życia mieszkańców.

Certyfikacja źródeł zasilania stosowanych w ochronie przeciwpożarowej

Certyfikacja źródeł zasilania stosowanych w ochronie przeciwpożarowej Certyfikacja źródeł zasilania stosowanych w ochronie przeciwpożarowej

Tematyka związana z certyfikacją może przysporzyć nam wiele trudności, jeżeli nie poznamy podstawowych zasad, z jakich wynika obowiązek uzyskania odpowiednich dokumentów dla konkretnych produktów, urządzeń,...

Tematyka związana z certyfikacją może przysporzyć nam wiele trudności, jeżeli nie poznamy podstawowych zasad, z jakich wynika obowiązek uzyskania odpowiednich dokumentów dla konkretnych produktów, urządzeń, zestawów itp. Do określenia wymaganych dokumentów niezbędna jest jednoznaczna identyfikacja przedmiotu i określenia jego funkcji, jaką realizuje w środowisku, w którym współdziała. W zakresie określenia przedmiotu dość istotne znaczenie mają definicje, gdyż to z nich wynika identyfikacja przedmiotu....

Statystyki pożarów budynków, których przyczyną była niesprawna instalacja elektryczna lub przyłączone do niej urządzenia elektryczne

Statystyki pożarów budynków, których przyczyną była niesprawna instalacja elektryczna lub przyłączone do niej urządzenia elektryczne Statystyki pożarów budynków, których przyczyną była niesprawna instalacja  elektryczna lub przyłączone do niej urządzenia elektryczne

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów,...

Co roku w naszym kraju wybucha kilkaset tysięcy pożarów obiektów budowlanych, lasów, łąk, upraw rolnych oraz samochodów. Ich wielkość jest zróżnicowana i uzależniona od obciążenia ogniowego spalanych materiałów, występowania urządzeń przeciwpożarowych, czasu przybycia i sprawności działania jednostek ochrony przeciwpożarowej.

Szybkość rozwoju pożaru i spodziewana moc pożaru

Szybkość rozwoju pożaru i spodziewana moc pożaru Szybkość rozwoju pożaru i spodziewana moc pożaru

Parametrem pozwalającym opisać zagrożenie pożarowe jest szybkość rozprzestrzeniania się pożaru wyrażona przez szybkość wydzielania się ciepła i dymu w czasie. Dla pożarów rzeczywistych szybkość ich rozwoju...

Parametrem pozwalającym opisać zagrożenie pożarowe jest szybkość rozprzestrzeniania się pożaru wyrażona przez szybkość wydzielania się ciepła i dymu w czasie. Dla pożarów rzeczywistych szybkość ich rozwoju może w istotny sposób odbiegać od warunków przyjmowanych za wzorcowe. Parametr szybkości rozwoju pożaru jest powszechnie stosowanym prawie we wszystkich krajach wysoko rozwiniętych [16].

Podstawy teorii pożaru

Podstawy teorii pożaru Podstawy teorii pożaru

Do powstania pożaru potrzebne są trzy czynniki: materiał palny, utleniacz oraz źródło ciepła o dostatecznie dużej energii umożliwiającej zapłon materiału palnego. Materiały palne są to substancje, które...

Do powstania pożaru potrzebne są trzy czynniki: materiał palny, utleniacz oraz źródło ciepła o dostatecznie dużej energii umożliwiającej zapłon materiału palnego. Materiały palne są to substancje, które ogrzane ciepłem dostarczonym z zewnątrz zaczynają wydzielać gazy w ilości wystarczającej do ich trwałego zapalenia się. Tlen z kolei jest jednym z najaktywniejszych pierwiastków chemicznych. Wchodzi w reakcję z wieloma pierwiastkami i związkami.

Zasady wprowadzania do obrotu i stosowania urządzeń przeciwpożarowych

Zasady wprowadzania do obrotu i stosowania urządzeń przeciwpożarowych Zasady wprowadzania do obrotu i stosowania urządzeń przeciwpożarowych

Elementy instalacji oraz innych urządzeń przeciwpożarowych muszą spełniać wymagania wysokiej niezawodności i gwarantować wspomaganie akcji ratowniczo gaśniczej w płonącym budynku. Zatem wymagania stawiane...

Elementy instalacji oraz innych urządzeń przeciwpożarowych muszą spełniać wymagania wysokiej niezawodności i gwarantować wspomaganie akcji ratowniczo gaśniczej w płonącym budynku. Zatem wymagania stawiane tym wyrobom budowlanym są bardzo wysokie i niejednokrotnie przewyższają wymagania stawiane wyrobom powszechnego użytku.

Co z certyfikacją zestawu tworzącego przeciwpożarowy wyłącznik prądu?

Co z certyfikacją zestawu tworzącego przeciwpożarowy wyłącznik prądu? Co z certyfikacją zestawu tworzącego przeciwpożarowy wyłącznik prądu?

Na zaproszenie zastępcy Komendanta Głównego Państwowej Straty Pożarnej st. bryg. Tadeusza Jopka, 6 lipca 2018 roku w Biurze Rozpoznawania Zagrożeń KG PSP odbyło się spotkanie poświęcone problematyce przeciwpożarowego...

Na zaproszenie zastępcy Komendanta Głównego Państwowej Straty Pożarnej st. bryg. Tadeusza Jopka, 6 lipca 2018 roku w Biurze Rozpoznawania Zagrożeń KG PSP odbyło się spotkanie poświęcone problematyce przeciwpożarowego wyłącznika prądu (PWP), który został zakwalifikowany przez Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 roku w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym (DzU z 2016 roku, poz....

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Właściwości pożarowe i zagrożenia związane ze stosowaniem materiałów eksploatacyjnych w energetyce

Statystyka pożarów w Polsce w latach 2000–2017

Statystyka pożarów w Polsce w latach 2000–2017 Statystyka pożarów w Polsce w latach 2000–2017

O tym jak ważna jest ochrona przeciwpożarowa i bezpieczeństwo pożarowe świadczą statystyki pożarów. Przedstawiając dane statystyczne autor zwraca uwagę na problem właściwej eksploatacji i projektowania...

O tym jak ważna jest ochrona przeciwpożarowa i bezpieczeństwo pożarowe świadczą statystyki pożarów. Przedstawiając dane statystyczne autor zwraca uwagę na problem właściwej eksploatacji i projektowania instalacji elektrycznych aby uniknąć takich zdarzeń.

Dodatkowa ochrona przeciwpożarowa i przeciwporażeniowa w nowoczesnych budynkach

Dodatkowa ochrona przeciwpożarowa i przeciwporażeniowa w nowoczesnych budynkach Dodatkowa ochrona przeciwpożarowa i przeciwporażeniowa w nowoczesnych budynkach

Nowoczesne, inteligentne budynki, stawiają coraz większe wymagania związane z pewnością zasilania oraz bezpieczeństwem ludzi. Różnorodność instalacji i sprzętów, a także rozległość sieci powoduje coraz...

Nowoczesne, inteligentne budynki, stawiają coraz większe wymagania związane z pewnością zasilania oraz bezpieczeństwem ludzi. Różnorodność instalacji i sprzętów, a także rozległość sieci powoduje coraz większe problemy z zapewnieniem odpowiedniego poziomu bezpieczeństwa pożarowego i porażeniowego. W konsekwencji może to prowadzić nie tylko do braku zasilania, ale także do zagrożenia życia ludzi. W artykule zostały przedstawione rozwiązania pozwalające rozpoznać występujące zagrożenia i ­dostarczyć...

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.