elektro.info

Jak chronić się przed przepięciami w instalacjach?

Jak chronić się przed przepięciami w instalacjach?

Miedź przejmuje kontrolę nad samochodami elektrycznymi »

Miedź przejmuje kontrolę nad samochodami elektrycznymi »

news Konferencja „Zasilanie budynków oraz samochodów elektrycznych w energię elektryczną”

Konferencja „Zasilanie budynków oraz samochodów elektrycznych w energię elektryczną”

Zapraszamy Państwa na kolejną konferencję techniczno-szkoleniową organizowaną przez redakcję „elektro.info”, która została poświęcona dwóm problemom: zasilaniu budynków w energię elektryczną w warunkach...

Zapraszamy Państwa na kolejną konferencję techniczno-szkoleniową organizowaną przez redakcję „elektro.info”, która została poświęcona dwóm problemom: zasilaniu budynków w energię elektryczną w warunkach normalnych i w czasie pożaru oraz ładowaniu samochodów elektrycznych. Konferencja odbędzie się 1 kwietnia (to nie prima aprilis!) w Warszawie, Centrum Konferencyjne WEST GATE, Al. Jerozolimskie 92.

Ochrona odgromowa budynków (część 2)

Systemy LPS

Układ zwodów zgodnie z metodą toczącej się kuli

Zewnętrzny LPS jest przeznaczony do przejmowania bezpośrednich wyładowań piorunowych w obiekt, włącznie z wyładowaniami w bok obiektu, i odprowadzenia prądu pioruna od punktu trafienia do ziemi oraz rozpraszania tego prądu w ziemi. Może być mocowany do obiektu poddawanego ochronie. Izolowany zewnętrzny LPS powinien być brany pod uwagę, gdy cieplne i wybuchowe skutki w punkcie uderzenia lub w przewodach z prądem pioruna mogą powodować uszkodzenia obiektu lub jego zawartości. Typowe przykłady dotyczą obiektów z pokryciem palnym oraz obiektów z palnymi ścianami i obszarami zagrożonymi wybuchem lub pożarem.

Zobacz także

Użytkowanie energii elektrycznej na placu budowy (część 5.)

Użytkowanie energii elektrycznej na placu budowy (część 5.)

Na placu budowy ochrony przed skutkami wyładowań atmosferycznych oraz przepięć wywołanych czynnościami łączeniowymi w sieci zasilającej wymagają przede wszystkim obiekty zaplecza budowy oraz, w większości...

Na placu budowy ochrony przed skutkami wyładowań atmosferycznych oraz przepięć wywołanych czynnościami łączeniowymi w sieci zasilającej wymagają przede wszystkim obiekty zaplecza budowy oraz, w większości przypadków, także nowo wznoszone obiekty. Rozróżniamy przy tym ochronę zewnętrzną, mającą na celu zminimalizowanie skutków bezpośredniego trafienia pioruna w obiekt, oraz ochronę wewnętrzną, zabezpieczającą czułe elektroniczne urządzenia przed przepięciami powodowanymi przez zjawiska atmosferyczne...

Nowe normy dotyczące ochrony odgromowej obiektów budowlanych

Nowe normy dotyczące ochrony odgromowej obiektów budowlanych

Urządzenie piorunochronne powinno przejąć i odprowadzić do ziemi prąd wyładowania piorunowego w sposób bezpieczny dla ludzi oraz eliminujący możliwość uszkodzenia chronionego obiektu budowlanego oraz urządzeń...

Urządzenie piorunochronne powinno przejąć i odprowadzić do ziemi prąd wyładowania piorunowego w sposób bezpieczny dla ludzi oraz eliminujący możliwość uszkodzenia chronionego obiektu budowlanego oraz urządzeń w nim zainstalowanych. Obecnie wprowadzane są cztery nowe normy serii PN-EN 62305, określające zasady ochrony odgromowej obiektów budowlanych. W normach tych szczególną uwagę zwrócono na ochronę przed piorunowym impulsem elektromagnetycznym, którego oddziaływanie może spowodować uszkodzenie...

Jak chronić obiekty budowlane przed przepięciami i wyładowaniami? (część 1.)

Jak chronić obiekty budowlane przed przepięciami i wyładowaniami? (część 1.)

Projekt ochrony odgromowej obiektu budowlanego należy wykonywać zgodnie z wymaganiami normy PN-xx/E 05003 Instalacje odgromowe obiektów budowlanych lub zgodnie z normą PN-IEC 60124 Instalacje odgromowe....

Projekt ochrony odgromowej obiektu budowlanego należy wykonywać zgodnie z wymaganiami normy PN-xx/E 05003 Instalacje odgromowe obiektów budowlanych lub zgodnie z normą PN-IEC 60124 Instalacje odgromowe. Żadna z tych norm nie obejmuje jednak wszystkich zagadnień związanych z ochroną odgromową. Wręcz przeciwnie, w normach tych występuje różne podejście do oceny zagrożenia piorunowego, które stanowi podstawę do przyjęcia określonego poziomu ochrony odgromowej.

Izolowany zewnętrzny LPS może być również brany pwod uwagę, gdy wrażliwość zawartości obiektu zobowiązuje do redukcji pola elektromagnetycznego promieniowanego przez impuls prądu pioruna płynącego w przewodzie odprowadzającym. Naturalne elementy wykonane z materiałów przewodzących, które występują w obiekcie, mogą być użyte jako części LPS. Zewnętrzny LPS składa się z:

  • zwodów,
  • przewodów odprowadzających,
  • uziemienia.
ochrona odgromowa 2015

Ochrona odgromowa obiektów budowlanych >> SPRAWDŹ ZAWARTOŚĆ >>

Zwody

Zwody mogą być utworzone przez dowolną kombinację następujących elementów: prętów (włącznie z wolno stojącymi masztami), przewodów zawieszonych oraz przewodów w układzie oczkowym. Elementy układu zwodów instalowanych na dachu powinny być umieszczane w narożnikach, wystających punktach i krawędziach (szczególnie na górnym poziomie każdej fasady), zgodnie z następującymi metodami:

  • kąta ochronnego,
  • toczącej się kuli,
  • oczkowej.

Metoda toczącej się kuli jest odpowiednia w każdym przypadku. Metoda kąta ochronnego jest odpowiednia dla budynków o prostych kształtach, ale podlega ograniczeniom wysokości zwodu (tab. 1.). Metoda oczkowa jest odpowiednia tam, gdzie ochronie są poddawane płaskie powierzchnie. Wartości kąta ochronnego, promienia toczącej się kuli i wymiarów siatki zwodów dla każdej klasy LPS podano w tabeli 1.

Rozmieszczanie zwodów przy zastosowaniu metody kąta ochronnego

Przestrzeń chroniona przez zwód pionowy ma kształt okrągłego stożka z wierzchołkiem umieszczonym na osi zwodu. Określa ją kąt ochronny α, równy połowie kąta wierzchołkowego stożka i zależny od klasy LPS oraz od wysokości zwodu, jak podano w tabeli 1. oraz na rysunku 1. i rysunku 2. Przestrzeń chroniona przez zwód poziomy wysoki wynika z nałożenia przestrzeni chronionych przez pozorne zwody pionowe, mające wierzchołki na zwodzie poziomym. Przykład przestrzeni chronionej takim zwodem jest pokazany na rysunku 3.

Rozmieszczanie zwodów przy zastosowaniu metody toczącej się kuli

Przy stosowaniu metody toczącej się kuli, rozmieszczenie zwodów jest właściwe, jeżeli żaden punkt obiektu poddawanego ochronie nie styka się z kulą o promieniu r, toczoną wokół i po górnej powierzchni obiektu we wszystkich możliwych kierunkach, przy czym promień r zależy od klasy LPS (tab. 1.). W ten sposób kula dotyka jedynie układu zwodów, jak pokazano na rysunku 4.

Rozmieszczanie zwodów przy zastosowaniu metody oczkowej

Metoda oczkowa jest właściwa dla poziomych i nachylonych dachów bez krzywizny oraz do ochrony płaskich bocznych powierzchni przed wyładowaniami bocznymi. Przy ochronie powierzchni płaskich odpowiednia jest sieć zwodów poziomych, obejmująca całą powierzchnię z uwzględnieniem następujących postanowień:

a) przewody zwodów są układane:

  • na krawędziach dachu,
  • na częściach wystających dachu,
  • na kalenicy dachu, jeżeli nachylenie dachu przekracza 1/10. W tym przypadku, zamiast sieci mogą być stosowane równoległe przewody zwodów, pod warunkiem, że odległość między nimi nie jest większa niż wymagana szerokość oka,

b) wymiary oka sieci zwodów nie są większe niż podane w tabeli 1.,

c) sieć zwodów jest ukształtowana tak, że zawsze prąd pioruna będzie mógł odpłynąć do uziomu przez co najmniej dwie różne drogi przewodzące,

d) żadna instalacja metalowa nie wystaje na zewnątrz przestrzeni chronionej przez układ zwodów,

e) przewody układu zwodów przebiegają po możliwie najkrótszej i bezpośredniej drodze.

Zwody do ochrony przed wyładowaniami bocznymi w wysokie obiekty

Przy obiektach wyższych niż 60 m mogą pojawiać się wyładowania boczne, zwłaszcza trafiające w narożniki i krawędzie obiektu. Układ zwodów powinien być zainstalowany tak, aby ochronił górną część wysokich obiektów (tj. 20% wysokości obiektu od góry) i umieszczonych na niej urządzeń. Reguły rozmieszczania zwodów na dachu mają zastosowanie do zwodów instalowanych na ścianach górnych części obiektów. Ponadto w przypadku obiektów wyższych niż 120 m powinny być chronione wszystkie części, które mogą być zagrożone powyżej 120 m.

Instalowanie zwodów

Zwody nieizolowane od poddawanego ochronie obiektu mogą być instalowane jak następuje:

  • jeżeli dach jest wykonany z materiału niepalnego, to zwody mogą być umieszczane na powierzchni dachu,
  • jeżeli dach jest wykonany z materiału łatwo palnego, to zwody należy instalować w odległości 0,10 m od powierzchni dachu, a dla dachów krytych strzechą ta odległość powinna wynosić 0,15 m,
  • łatwo palne części obiektu poddawanego ochronie nie powinny stykać się z elementami zewnętrznego LPS i nie powinny być umieszczone pod jakąkolwiek metalową powłoką dachu, która może być przebita przez wyładowanie piorunowe.

Wykorzystanie części przewodzących obiektu jako zwody

Następujące części przewodzące obiektu można wykorzystać jako naturalne elementy zwodów i części LPS:

a) metalowe warstwy pokrycia obiektu poddawanego ochronie pod warunkiem, że:

  • galwaniczna ciągłość połączeń między różnymi częściami jest trwała (np. jest wykonana za pomocą twardego lutowania, spawania, zgniatania, ząbkowania, skręcania lub śrubowania),
  • grubość metalowej warstwy jest nie mniejsza niż wartość t’ podana w tabeli 2., jeżeli jest dopuszczalne przebicie tej warstwy lub nie ma niebezpieczeństwa zapalenia pod spodem łatwo palnych substancji,
  • grubość metalowej warstwy jest nie mniejsza niż wartość t podana w tabeli 2., jeżeli jest konieczne przeciwdziałanie przebiciu tej warstwy lub wystąpieniu problemów związanych z punktowym jej przegrzaniem, 
  • nie są one pokryte materiałem izolacyjnym (cienkie pokrycie farbą ochronną lub asfaltem o grubości 1 mm, lub warstwą PVC grubości 0,5 mm nie jest uznawane za izolator),

b) metalowe elementy konstrukcji dachu pod spodem niemetalowego pokrycia dachu, pod warunkiem, że pokrycie to może być wyłączone z obiektu poddawanego ochronie,

c) metalowe części, takie jak: ozdoby, balustrady, rury, obróbki metalowe itp., o przekrojach nie mniejszych niż podane dla standardowych elementów zwodów,

d) rury i zbiorniki metalowe na dachu, pod warunkiem, że są one wykonane z materiału o grubościach i przekrojach zgodnych z tabelą 4.,

e) rury i zbiorniki metalowe zawierające łatwo palne lub wybuchowe mieszaniny, pod warunkiem, że są one wykonane z materiału o grubości nie mniejszej niż odpowiednia wartość t podana w tabeli 2. i że wzrost temperatury wewnętrznej powierzchni w punkcie uderzenia nie stworzy zagrożenia oraz uszczelki w połączeniach kołnierzowych są metalowe lub ich strony są w inny sposób należycie złączone.

Przewody odprowadzające

Przewody odprowadzające powinny być rozmieszczone w taki sposób, aby od punktu uderzenia pioruna do ziemi:

  • istniało kilka równoległych dróg prądowych,
  • długość dróg prądowych była jak najmniejsza,
  • wykonane były połączenia wyrównawcze z przewodzącymi częściami obiektu.

Boczne połączenia przewodów odprowadzających należy wykonywać na poziomie ziemi i w odstępach co 10 do 20 m wysokości zgodnie z tabelą 3. Zainstalowanie możliwie najwięcej przewodów odprowadzających w jednakowych odstępach wokół obwodu, wzajemnie połączonych przewodami otokowymi, redukuje prawdopodobieństwo wystąpienia niebezpiecznego iskrzenia i ułatwia ochronę wewnętrznych instalacji. Warunek ten jest spełniony w obiektach o szkieletach metalowych i w obiektach żelbetowych, w których wzajemnie połączona stal jest galwanicznie ciągła. Typowe odległości między przewodami odprowadzającymi i między przewodami otokowymi podano w tabeli 3.

Rozmieszczenie przewodów odprowadzających w izolowanym LPS

  • Jeżeli zwody pionowe znajdują się na oddzielnych masztach (lub na jednym maszcie) niewykonanych z metalu lub z wzajemnie połączonej stali zbrojeniowej, to jest niezbędny przynajmniej jeden przewód odprowadzający dla każdego masztu. Dla masztów wykonanych z metalu lub z wzajemnie połączonej stali zbrojeniowej nie są wymagane żadne dodatkowe przewody odprowadzające.
  • Jeżeli zwody składają się z zawieszonych wysoko przewodów poziomych (lub jednego przewodu), to niezbędny jest przynajmniej jeden przewód odprowadzający dla każdej konstrukcji wsporczej.
  • Jeżeli zawieszone wysoko zwody poziome tworzą sieć oczkową, to jest niezbędny przynajmniej jeden przewód odprowadzający na każdym podpartym końcu zwodu.

Rozmieszczenie przewodów odprowadzających w nieizolowanym LPS

Liczba przewodów odprowadzających w każdym nieizolowanym LPS nie powinna być mniejsza niż dwa. Przewody powinny być równomiernie rozmieszczone wokół obwodu obiektu poddawanego ochronie przy uwzględnieniu architektonicznych i praktycznych ograniczeń. Typowe odległości pomiędzy przewodami odprowadzającymi podano w tabeli 3. Przewód odprowadzający powinien być instalowany w miarę możliwości przy każdym odsłoniętym narożniku obiektu.

Instalowanie przewodów odprowadzających

Przewody odprowadzające powinny być instalowane wzdłuż odcinków prostych i pionowych tak, aby zapewniły one najkrótszą i najbardziej bezpośrednią drogę do ziemi. Tworzenie pętli powinno być eliminowane. W przypadku sytuacji pokazanej na rysunku 5. odstęp S, mierzony w przerwie pomiędzy dwoma punktami przewodu, i długość l przewodu pomiędzy tymi punktami powinny odpowiadać postanowieniom podanym w punkcie dotyczącym izolacji elektrycznej zewnętrznego LPS. Przewody odprowadzające nie powinny być instalowane ani w rynnach, ani w rurach spustowych, nawet jeżeli są one przykryte materiałem izolacyjnym. Przewody odprowadzające LPS nieizolowane od obiektu poddawanego ochronie mogą być instalowane następująco:

  • jeżeli ściana jest wykonana z materiału niepalnego, to przewody odprowadzające mogą być umieszczone na powierzchni ściany lub w ścianie,
  • jeżeli ściana jest wykonana z materiału łatwo palnego, to przewody odprowadzające mogą być umieszczone na powierzchni ściany, pod warunkiem, że wzrost ich temperatury pod wpływem przepływu prądu pioruna nie jest niebezpieczny dla materiału ściany, 
  • jeżeli ściana jest wykonana z materiału łatwo palnego, a wzrost temperatury przewodów odprowadzających jest niebezpieczny, to przewody odprowadzające powinny być umieszczone w taki sposób, aby odstęp między nimi a ścianą był zawsze większy niż 0,1 m.

Wsporniki montażowe mogą mieć kontakt ze ścianą. Jeżeli nie można zapewnić wymaganego odstępu przewodu odprowadzającego od palnej ściany, to przekrój przewodu nie powinien być mniejszy niż 100 mm2.

Wykorzystanie części przewodzących obiektu jako przewodów odprowadzających

Następujące części przewodzące obiektu powinny być brane pod uwagę jako naturalne przewody odprowadzające:

  • instalacje metalowe, pod warunkiem, że:
    • galwaniczna ciągłość pomiędzy różnymi częściami jest trwała,
    • ich wymiary są przynajmniej równe wymiarom dla standardowych przewodów odprowadzających. Rurociągi metalowe zawierające mieszaniny łatwo palne lub wybuchowe mogą być brane pod uwagę jako element naturalny przewodu odprowadzającego, jeżeli uszczelki w połączeniach kołnierzowych są metalowe lub ich strony są w inny sposób należycie złączone,
  • zbrojenie stalowe w obiektach żelbetowych; galwaniczna ciągłość prętów stalowego zbrojenia powinna być zapewniona za pomocą zacisków lub spawania
  • wzajemnie połączony stalowy szkielet konstrukcji obiektu; jeżeli metalowy szkielet konstrukcji obiektów stalowych lub wzajemnie połączona stal zbrojenia obiektu są wykorzystywane jako przewody odprowadzające, nie są konieczne przewody otokowe,
  • elementy fasady jak: szyny profilowe i metalowe elementy konstrukcyjne fasad, pod warunkiem, że:
    • ich wymiary odpowiadają wymaganiom dla przewodów odprowadzających,
    • grubości warstw metalowych lub rur metalowych nie są mniejsze niż 0,5 mm,
    • jest zapewniona galwaniczna ciągłość ich połączeń w kierunku pionowym.

Zaciski probiercze

Przy połączeniu z uziomem każdy przewód odprowadzający, z wyjątkiem naturalnych przewodów odprowadzających zespolonych z uziomami fundamentowymi, powinien być wyposażony w zacisk probierczy. Do celów pomiarowych konstrukcja zacisku powinna zapewnić możliwość jego rozłączania za pomocą narzędzi. W normalnym użytkowaniu powinien być on zamknięty.

Uziemienie

Z punktu widzenia ochrony odgromowej preferowany jest prosty zintegrowany układ uziomów, odpowiedni do wszystkich zastosowań, tj. do ochrony odgromowej, układów elektroenergetycznych i układów telekomunikacyjnych. Zalecana jest mała rezystancja uziemienia, mniejsza niż 10 Ω.

Układy uziomów w warunkach ogólnych

W układach uziomów mają zastosowanie dwa podstawowe ich typy.

Układ uziomów typu A

Ten typ układu zawiera uziomy poziome i pionowe instalowane na zewnątrz obiektu poddawanego ochronie i przyłączane do każdego przewodu odprowadzającego. W układach typu A całkowita liczba uziomów nie powinna być mniejsza niż dwa. Minimalna długość każdego uziomu od podstawy każdego przewodu odprowadzającego jest równa: l1 dla uziomów poziomych lub 0,5 l1 dla uziomów pionowych (lub nachylonych), gdzie l1 jest minimalną długością uziomów poziomych pokazanych na rysunku 6. W przypadku uziomów złożonych składających się z uziomów poziomych i pionowych powinna być brana pod uwagę ich całkowita długość. Zmniejszenie rezystancji uziemienia przez wydłużenie uziomów jest praktycznie możliwe do 60 m. Minimalne długości określone na rysunku 6. mogą nie być brane pod uwagę pod warunkiem, że uzyskana została rezystancja uziemienia mniejsza niż 10 Ω.

Układ uziomów typu B

Ten typ układu zawiera albo uziom otokowy, ułożony na zewnątrz obiektu poddawanego ochronie i pozostający w kontakcie z ziemią na długości równej przynajmniej 80% całkowitej jego długości, albo uziom fundamentowy. Takie uziomy mogą również tworzyć kratę. W przypadku uziomu otokowego lub uziomu fundamentowego średni promień re obszaru objętego tym uziomem nie powinien być mniejszy niż wartość l1, tj.: re≥l1.

Instalowanie uziomów

Uziom otokowy typu B powinien być zakopany wokół obiektu na głębokości nie mniejszej niż 0,6 m i w odległości 1 m od zewnętrznych ścian obiektu. Uziomy typu A powinny być instalowane przy usytuowaniu górnego ich krańca na głębokości nie mniejszej niż 0,6 m i zachowaniu najbardziej równomiernego ich rozkładu w celu zminimalizowania skutków sprzężenia elektrycznego w ziemi. Uziomy powinny być instalowane w sposób pozwalający na ich sprawdzanie podczas budowy. Głębokość osadzenia i typ uziomów powinny być tak dobrane, aby zminimalizowały skutki korozji oraz wysychania i zamarzania gruntu, a przez to ustabilizowały klasyczną rezystancję uziemienia.

Uziomy naturalne

Wzajemnie połączona stal zbrojeniowa w fundamentach betonowych lub inne odpowiednie metalowe struktury podziemne powinny być wykorzystywane jako uziomy. Jeżeli jako uziom jest wykorzystywane metalowe zbrojenie w betonie, to szczególną uwagę należy zwrócić na wzajemne połączenia stali zbrojeniowej, aby zapobiec mechanicznemu rozłupywaniu betonu. Preferowaną metodą do połączeń przewodzących prądy piorunów jest spawanie i łączenie zaciskowe. Połączenia zewnętrznych obwodów ze wzajemnie połączonym zbrojeniem powinny być wykonane za pomocą zacisków lub spawania. Spoiny w betonie powinny mieć długość równą co najmniej 30 mm. Krzyżujące się pręty powinny być wygięte przed spawaniem tak, aby na długości co najmniej 50 mm przebiegały równolegle.

Elementy LPS

Elementy LPS powinny wytrzymywać skutki elektromagnetyczne prądu pioruna i przewidywalne przypadkowe naprężenia bez ulegania uszkodzeniom. Materiał i kształt oraz minimalne wymiary przewodów i prętów na zwody i przewody odprowadzające są podane w tabeli 4. Przykłady wykorzystania elementów przewodzących obiektu jako naturalnych części urządzenia piorunochronnego przedstawiono w tabeli 5.

Wewnętrzny LPS

Wewnętrzny LPS powinien eliminować możliwość pojawienia się niebezpiecznego iskrzenia w poddawanym ochronie obiekcie wskutek przepływu prądu w zewnętrznym LPS lub w innych częściach przewodzących obiektu. Niebezpieczne iskrzenie między różnymi częściami może być wyeliminowane za pomocą połączeń wyrównawczych lub izolacji elektrycznej zewnętrznego LPS.

Połączenia wyrównawcze

Wyrównanie potencjałów jest uzyskiwane przez wzajemne połączenie LPS z:

  • metalowymi częściami konstrukcyjnymi,
  • metalowymi instalacjami,
  • przyłączonymi do obiektu zewnętrznymi przewodzącymi częściami i liniami.

Środkami wzajemnych połączeń mogą być: przewody łączące, tam, gdzie ciągłość galwaniczna połączeń nie jest zapewniona w sposób naturalny, lub urządzenia do ograniczania przepięć (SPD), tam, gdzie bezpośrednie połączenie za pomocą przewodów łączących nie jest możliwe. Urządzenia do ograniczania przepięć (SPD) powinny być instalowane w taki sposób, aby mogły być sprawdzane. W przypadku izolowanego zewnętrznego LPS połączenie wyrównawcze powinno być wykonane jedynie na poziomie ziemi. W przypadku zewnętrznego LPS, który nie jest izolowany, połączenie wyrównawcze powinno być instalowane w części przyziemnej obiektu oraz tam, gdzie nie są spełnione wymagania dotyczące odstępów izolacyjnych.

Dla budynków wyższych niż 30 m zaleca się stosowanie połączeń wyrównawczych na poziomie 20 m i co 20 m powyżej tego poziomu. Galwanicznie ciągłe przewodzące części obiektu mogą być użyte do realizacji połączeń wyrównawczych. Jeżeli w rurociągach gazowych i wodnych występują wstawki izolacyjne, to powinny być one mostkowane za pomocą SPD.

Izolacja elektryczna zewnętrznego LPS

Izolacja elektryczna pomiędzy zwodem lub przewodem odprowadzającym a konstrukcyjnymi częściami metalowymi i instalacjami metalowymi może być uzyskana przez zapewnienie pomiędzy częściami odstępu d większego niż wymagany odstęp izolacyjny S:

gdzie:

kj – zależy od wybranej klasy LPS (tab. 6.),

kc – zależy od prądu pioruna płynącego w przewodach odprowadzających (tab. 7.),

km – zależy od materiału izolacji elektrycznej (tab. 8.),

l – długość, w [m], mierzona wzdłuż zwodu lub przewodu odprowadzającego od punktu, w którym jest rozpatrywany odstęp izolacyjny, do punktu najbliższego połączenia wyrównawczego.

W obiektach z metalowym lub ciągłym galwanicznie szkieletem zbrojenia betonu odstęp izolacyjny nie jest wymagany.

Urządzenia do ograniczania przepięć SPD

Skuteczną ochronę przed przepięciami powodującymi awarie urządzeń wewnętrznych uzyskuje się za pomocą skoordynowanych SPD, ograniczających napięcia poniżej znamionowej wytrzymałości udarowej układu poddawanego ochronie. Jeżeli w tym samym obwodzie są instalowane, jeden za drugim, dwa lub więcej SPD, to powinny być one skoordynowane tak, aby nastąpił między nimi podział energii zgodny z ich zdolnością do jej pochłaniania. W celu zapewnienia skutecznej koordynacji niezbędne jest uwzględnienie:

  • właściwości poszczególnych SPD podawanych przez producenta,
  • zagrożenia w miejscu zainstalowania SPD,
  • charakterystyki urządzeń poddawanych ochronie.

Podstawowe zagrożenie piorunowe wiąże się z trzema typowymi udarami prądu pioruna:

  • z pierwszym udarem krótkotrwałym,
  • z następnymi udarami krótkotrwałymi,
  • z udarem długotrwałym.

W koordynacji SPD, rozpatrywanej w kierunku odbiorów, czynnikiem dominującym przy rozważaniu podziału energii jest pierwszy udar krótkotrwały. Prąd pierwszego udaru krótkotrwałego bezpośredniego wyładowania piorunowego może być symulowany przy użyciu fali o kształcie 10/350 µs. Koordynacja energetyczna jest osiągnięta, jeżeli część energii, na której oddziaływanie każdy SPD jest narażony, jest mniejsza lub równa energii przez niego wytrzymywanej. Wytrzymywana energia powinna być ustalona na podstawie:

  • badania elektrycznego,
  • informacji technicznej dostarczonej przez producenta SPD.

Koordynacja pomiędzy SPD może być osiągnięta przy użyciu jednej z następujących metod:

  • koordynacja charakterystyk napięciowo-prądowych (bez elementów odsprzęgających),
  • koordynacja wykorzystująca specjalne elementy odsprzęgające (rezystancyjne lub indukcyjne),
  • koordynacja wykorzystująca wyzwalane SPD (bez elementów odsprzęgających).

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Zagrożenie pożarowe oraz porażeniowe pochodzące od ograniczników przepięć (SPD)

Zagrożenie pożarowe oraz porażeniowe pochodzące od ograniczników przepięć (SPD)

Autor scharakteryzował ograniczniki przepięć iskiernikowe i warystorowe, kwestie dobezpieczania ograniczników przepięć, podał przykład wyznaczenia minimalnego przekroju przewodu w torze ogranicznika przepięć...

Autor scharakteryzował ograniczniki przepięć iskiernikowe i warystorowe, kwestie dobezpieczania ograniczników przepięć, podał przykład wyznaczenia minimalnego przekroju przewodu w torze ogranicznika przepięć i omówił ograniczniki przepięć w instalacjach zasilanych w układzie TT.

Podstawowe zasady ochrony odgromowej i przepięciowej w instalacjach fotowoltaicznych

Podstawowe zasady ochrony odgromowej i przepięciowej w instalacjach fotowoltaicznych

Autor wskazał w jaki sposób należy określać wielkości oraz kształty stref ochronnych zgodnie z wymaganiami normy PN-EN 62305-3:2009 Ochrona odgromowa. Część 3: Uszkodzenia fizyczne obiektów budowlanych...

Autor wskazał w jaki sposób należy określać wielkości oraz kształty stref ochronnych zgodnie z wymaganiami normy PN-EN 62305-3:2009 Ochrona odgromowa. Część 3: Uszkodzenia fizyczne obiektów budowlanych i zagrożenie życia.

Zagrożenia związane z ochroną odgromową stadionu piłkarskiego - wyzwania naukowe w procesie projektowania sieci i instalacji elektrycznych

Zagrożenia związane z ochroną odgromową stadionu piłkarskiego - wyzwania naukowe w procesie projektowania sieci i instalacji elektrycznych

Tematem tego opracowania jest przegląd zagrożeń związanych z ochroną odgromową stadionu piłkarskiego w Gdańsku wybudowanego na potrzeby mistrzostw Europy w 2012 r. – noszący wówczas roboczą nazwę Baltic...

Tematem tego opracowania jest przegląd zagrożeń związanych z ochroną odgromową stadionu piłkarskiego w Gdańsku wybudowanego na potrzeby mistrzostw Europy w 2012 r. – noszący wówczas roboczą nazwę Baltic Arena, a obecnie Stadion Energa Gdańsk.

Projektowanie instalacji odgromowych według PN-EN 62305

Projektowanie instalacji odgromowych według PN-EN 62305

Artykuł traktuje o wprowadzonej do stosowania normie PN-EN 62305, która przedstawia nowe zasady projektowania i wykonywania instalacji odgromowych. Czytamy w nim o stanie prawnym dotyczącym projektowania...

Artykuł traktuje o wprowadzonej do stosowania normie PN-EN 62305, która przedstawia nowe zasady projektowania i wykonywania instalacji odgromowych. Czytamy w nim o stanie prawnym dotyczącym projektowania instalacji odgromowych, analizie ryzyka według tej normy, projektowaniu instalacji odgromowych na etapie projektu budowlanego, ochronie odgromowej płaskich połaci dachowych, metodach wyznaczania stref ochronnych tworzonych przez zwody pionowe, ochronie odgromowej obiektów wyniesionych ponad dach,...

Zagrożenie bezpieczeństwa powodowane stosowaniem ograniczników przepięć "B+C"

Zagrożenie bezpieczeństwa powodowane stosowaniem ograniczników przepięć "B+C"

Ochrona odgromowa i przeciwprzepięciowa, ograniczniki przepięć, zagrożenie pożarowe, wytrzymałość udarowa oraz warystor stanowią główny wątek niniejszej publikacji. Jej autor przestawił wyniki badań wytrzymałości...

Ochrona odgromowa i przeciwprzepięciowa, ograniczniki przepięć, zagrożenie pożarowe, wytrzymałość udarowa oraz warystor stanowią główny wątek niniejszej publikacji. Jej autor przestawił wyniki badań wytrzymałości udarowej ograniczników oraz praktyczne przykłady zniszczeń powstałych w wyniku powszechnego stosowania ograniczników o mniejszej niż deklarowana wytrzymałości udarowej – tzw. „B+C”, składających się tylko z warystora.

Ochrona odgromowa systemów fotowoltaicznych na rozległych dachach płaskich

Ochrona odgromowa systemów fotowoltaicznych na rozległych dachach płaskich

Systemy fotowoltaiczne PV (ang. Photovoltaic) przetwarzają bezpośrednio promieniowanie słoneczne na energię elektryczną bez zanieczyszczeń, hałasu i innych zmian w środowisku naturalnym. Fakt ten, w połączeniu...

Systemy fotowoltaiczne PV (ang. Photovoltaic) przetwarzają bezpośrednio promieniowanie słoneczne na energię elektryczną bez zanieczyszczeń, hałasu i innych zmian w środowisku naturalnym. Fakt ten, w połączeniu ze spadkiem kosztów systemów PV, powoduje szybki rozwój tego rodzaju źródeł zasilania.

Zalecenia norm dotyczące materiałów stosowanych na uziomy sztuczne łączone z uziomem fundamentowym

Zalecenia norm dotyczące materiałów stosowanych na uziomy sztuczne łączone z uziomem fundamentowym

Uziom fundamentowy stanowi w wielu przypadkach skuteczne rozwiązanie dla uziemienia instalacji elektrycznych lub odgromowych, w związku z czym jest on aktualnie wymagany jako uziom podstawowy dla obiektów...

Uziom fundamentowy stanowi w wielu przypadkach skuteczne rozwiązanie dla uziemienia instalacji elektrycznych lub odgromowych, w związku z czym jest on aktualnie wymagany jako uziom podstawowy dla obiektów budowlanych. Często jednak taki uziom wymaga uzupełnienia o dodatkowe zewnętrzne uziomy sztuczne, umożliwiające uzyskanie dostatecznie małej rezystancji uziemienia lub spełnienie wymagań normatywnych odnoszących się do wymiarów geometrycznych uziomu. Podstawowym warunkiem dla zapewnienia układom...

Ochrona odgromowa i przeciwprzepięciowa, ochrona przeciwporażeniowa

Ochrona odgromowa i przeciwprzepięciowa, ochrona przeciwporażeniowa

Zestawienie norm zawiera wybrane Polskie Normy dotyczące ochrony odgromowej i przeciwprzepięciowej oraz ochrony przeciwporażeniowej, które zostały ogłoszone przez Polski Komitet Normalizacyjny oraz na...

Zestawienie norm zawiera wybrane Polskie Normy dotyczące ochrony odgromowej i przeciwprzepięciowej oraz ochrony przeciwporażeniowej, które zostały ogłoszone przez Polski Komitet Normalizacyjny oraz na podstawie informacji normalizacyjnych zamieszczonych w wersji elektronicznej miesięcznika „Wiadomości PKN – Normalizacja”.

Wymagania normy PN-EN 61643-21 dla ograniczników przepięć przeznaczonych do systemów niskosygnałowych

Wymagania normy PN-EN 61643-21 dla ograniczników przepięć przeznaczonych do systemów niskosygnałowych

Urządzenia stosowane w systemach niskosygnałowych, na przykład: teleinformatycznych, kontrolno-pomiarowych, automatyki, alarmu, włamania i napadu, nagłośnienia, czy sterowania, charakteryzują się zazwyczaj...

Urządzenia stosowane w systemach niskosygnałowych, na przykład: teleinformatycznych, kontrolno-pomiarowych, automatyki, alarmu, włamania i napadu, nagłośnienia, czy sterowania, charakteryzują się zazwyczaj niskimi poziomami odporności elektromagnetycznej od strony ich interfejsów sygnałowych. Jest to związane przede wszystkim ze stosowaniem w takich systemach coraz większej liczby wrażliwych układów elektronicznych podatnych na zakłócenia elektromagnetyczne.

Wyznaczanie wartości rezystancji uziemienia urządzenia piorunochronnego

Wyznaczanie wartości rezystancji uziemienia urządzenia piorunochronnego

Wartość rezystancji uziemienia w głównej mierze zależy od rezystywności gruntu, w którym zostanie umieszczony uziom, od jego wymiarów i sposobu umieszczenia w gruncie oraz od wartości szczytowej i kształtu...

Wartość rezystancji uziemienia w głównej mierze zależy od rezystywności gruntu, w którym zostanie umieszczony uziom, od jego wymiarów i sposobu umieszczenia w gruncie oraz od wartości szczytowej i kształtu prądu wprowadzonego do uziomu. W literaturze podawane są zależności pozwalające na wyznaczenie rezystancji uziomów o różnych kształtach, umieszczonych w ziemi o określonej rezystywności. W artykule wyznaczono numerycznie przy użyciu pakietu oprogramowania CDEGS [4], rezystancje uziemień [5, 7]...

Ograniczanie przepięć w obwodach wielkiej częstotliwości

Ograniczanie przepięć w obwodach wielkiej częstotliwości

Dobierając rozwiązania ochrony odgromowej należy zwrócić uwagę na urządzenia nadawczo-odbiorcze, które podczas bezpośredniego wyładowania w obiekt mogą być narażona na działanie części prądu piorunowego...

Dobierając rozwiązania ochrony odgromowej należy zwrócić uwagę na urządzenia nadawczo-odbiorcze, które podczas bezpośredniego wyładowania w obiekt mogą być narażona na działanie części prądu piorunowego wpływającego do kabli antenowych.

Zasadność wykonywania diagnostyki ograniczników przepięć w eksploatacji w sieciach najwyższych napięć

Zasadność wykonywania diagnostyki ograniczników przepięć w eksploatacji w sieciach najwyższych napięć

Ograniczniki przepięć występują obecnie w dwóch rodzajach – jako odgromniki iskiernikowe (zaworowe i wydmuchowe) i ograniczniki beziskiernikowe. Ostatnim aktem prawnym określającym zakres prób dla odgromników...

Ograniczniki przepięć występują obecnie w dwóch rodzajach – jako odgromniki iskiernikowe (zaworowe i wydmuchowe) i ograniczniki beziskiernikowe. Ostatnim aktem prawnym określającym zakres prób dla odgromników było Zarządzenie Ministra Górnictwa i Energetyki z dnia 17 lipca 1987 r. (M.P. nr 25, poz. 200), które zostało uchylone przez Ustawę Prawo energetyczne w 1999 roku. Do 1999 roku zalecany był okres nie rzadziej niż 10 lat dla badań odgromników, natomiast nie było w przepisach wytycznych dla ograniczników...

Zagrożenie pożarowe oraz porażeniowe pochodzące od ograniczników przepięć (SPD)

Zagrożenie pożarowe oraz porażeniowe pochodzące od ograniczników przepięć (SPD)

Wyładowanie piorunowe lub przepięcie pochodzące z sieci elektroenergetycznej może spowodować zniszczenie urządzeń, narazić ludzi znajdujących się w obiekcie na niebezpieczeństwo, a w skrajnych przypadkach...

Wyładowanie piorunowe lub przepięcie pochodzące z sieci elektroenergetycznej może spowodować zniszczenie urządzeń, narazić ludzi znajdujących się w obiekcie na niebezpieczeństwo, a w skrajnych przypadkach wywołać pożar. Ochrona odgromowa i przeciwprzepięciowa ma na celu zabezpieczenie budynku przed skutkami takich zjawisk. Okazuje się jednak, że niewłaściwie zaprojektowana lub niewłaściwie wykonana może stwarzać niebezpieczeństwo dla budynku oraz dla ludzi, zwierząt lub urządzeń, które się w nim...

Ochrona odgromowa obiektów zawierających strefy zagrożone wybuchem

Ochrona odgromowa obiektów zawierających strefy zagrożone wybuchem

Podstawowym zadaniem urządzenia piorunochronnego jest przejęcie i odprowadzenie do ziemi prądu piorunowego w sposób bezpieczny dla ludzi, a także eliminujący możliwość uszkodzenia chronionego obiektu budowlanego...

Podstawowym zadaniem urządzenia piorunochronnego jest przejęcie i odprowadzenie do ziemi prądu piorunowego w sposób bezpieczny dla ludzi, a także eliminujący możliwość uszkodzenia chronionego obiektu budowlanego oraz zainstalowanych w nim urządzeń.

Ochrona przeciwprzepięciowa i przetężeniowa w instalacjach inteligentnych

Ochrona przeciwprzepięciowa i przetężeniowa w instalacjach inteligentnych

W ostatnich dekadach nastąpił gwałtowny postęp technologiczny w dziedzinie techniki instalacyjnej, związany między innymi z wprowadzeniem systemów automatyki budynkowej, które przyjęło się określać jako...

W ostatnich dekadach nastąpił gwałtowny postęp technologiczny w dziedzinie techniki instalacyjnej, związany między innymi z wprowadzeniem systemów automatyki budynkowej, które przyjęło się określać jako „instalacje inteligentne”. W potocznym rozumieniu, zastosowanie „instalacji inteligentnej” w danym budynku sprawia, że jest on traktowany jako budynek bądź też dom „inteligentny”, czyli wyposażony w takie układy instalacyjne, które są w stanie samoczynnie wykonywać zaprogramowane funkcje sterowania,...

Nowoczesne układy hybrydowych ograniczników przepięć

Nowoczesne układy hybrydowych ograniczników przepięć

Ograniczniki przeciwprzepięciowe (SPD – Surge Protective Devices) są elementami biernymi, które stają się aktywne przy przepięciu powstającym podczas wyładowania atmosfercznego lub przepięcia łączeniowego...

Ograniczniki przeciwprzepięciowe (SPD – Surge Protective Devices) są elementami biernymi, które stają się aktywne przy przepięciu powstającym podczas wyładowania atmosfercznego lub przepięcia łączeniowego w sieci zasilającej. Pojedynczy ogranicznik może jednak okazać się niewystarczający do skutecznego zabezpieczenia całej instalacji w obiekcie budowlanym, ponieważ ogranicza on częściowo przepływ prądu udarowego, który mimo zredukowanego napięcia może spowodować uszkodzenie urządzenia elektrycznego.

Zwody poziome

Zwody poziome

Do ochrony obiektów budowlanych przed skutkami bezpośrednich wyładowań piorunowych można wykorzystać przewodzące elementy konstrukcyjne obiektu (tzw. zwody sztuczne) lub przewody umieszczone specjalnie...

Do ochrony obiektów budowlanych przed skutkami bezpośrednich wyładowań piorunowych można wykorzystać przewodzące elementy konstrukcyjne obiektu (tzw. zwody sztuczne) lub przewody umieszczone specjalnie na dachach w celu ochrony przed działaniem prądu piorunowego (tzw. zwody sztuczne).

Piorunochrony i wcześniejsze sposoby ochrony przed wyładowaniami atmosferycznymi

Piorunochrony i wcześniejsze sposoby ochrony przed wyładowaniami atmosferycznymi

Wyładowania atmosferyczne zawsze fascynowały, ale też przerażały ludzi. Nawet w dzisiejszych czasach budzą lęk. Od dawna wiedziano, że pioruny uderzają tylko w wysokie przedmioty. Zachowała się wypowiedź...

Wyładowania atmosferyczne zawsze fascynowały, ale też przerażały ludzi. Nawet w dzisiejszych czasach budzą lęk. Od dawna wiedziano, że pioruny uderzają tylko w wysokie przedmioty. Zachowała się wypowiedź Artabanisa, doradcy Kserksesa, z czasów dawnych wojen Persów z Grekami. Twierdził on, że Bóg razi swymi błyskawicami tylko najwyższe domy i najwyższe drzewa, gdyż Bóg umniejsza wszystko to, co się nadmiernie wynosi.

Wyrównywanie potencjałów w budynkach

Wyrównywanie potencjałów w budynkach

Artykuł przedstawia problem tworzenia systemu wyrównywania potencjałów w budynku, jako nieodzownej części kompleksowej ochrony odgromowej, przeciwprzepięciowej i przeciwporażeniowej. Opisano w nim ogólne...

Artykuł przedstawia problem tworzenia systemu wyrównywania potencjałów w budynku, jako nieodzownej części kompleksowej ochrony odgromowej, przeciwprzepięciowej i przeciwporażeniowej. Opisano w nim ogólne zasady tworzenia systemu ekwipotencjalizacji z wykorzystaniem elementów i połączeń zarówno sztucznych, jak i naturalnych.

Zakłócanie transmisji sygnałów analogowych spowodowane bezpośrednim wyładowaniem piorunowym w przewód odgromowy linii WN

Zakłócanie transmisji sygnałów analogowych spowodowane bezpośrednim wyładowaniem piorunowym w przewód odgromowy linii WN

W artykule przedstawiono model linii 110 kV oraz modele nadawczego i odbiorczego urządzenia elektroenergetycznej telefonii nośnej ETN wraz z urządzeniem sprzęgającym ETN z przewodem fazowym linii WN. W...

W artykule przedstawiono model linii 110 kV oraz modele nadawczego i odbiorczego urządzenia elektroenergetycznej telefonii nośnej ETN wraz z urządzeniem sprzęgającym ETN z przewodem fazowym linii WN. W badaniach uwzględniono interferencyjne zakłócenia sygnałów analogowych (mowy ludzkiej). Zakłóceniem był sygnał będący odpowiedzią układu linia WN – ETN na wymuszenie, jakim jest bezpośrednie wyładowanie piorunowe w wybrane elementy tej linii.

Przewody o izolacji wysokonapięciowej w ochronie odgromowej obiektów budowlanych

Przewody o izolacji wysokonapięciowej w ochronie odgromowej obiektów budowlanych

Elementy urządzenia piorunochronnego powinny zapewnić odprowadzenie prądu piorunowego do uziomu bez możliwości jego niekontrolowanego rozpływu w instalacji elektrycznej oraz obwodach sygnałowych ułożonych...

Elementy urządzenia piorunochronnego powinny zapewnić odprowadzenie prądu piorunowego do uziomu bez możliwości jego niekontrolowanego rozpływu w instalacji elektrycznej oraz obwodach sygnałowych ułożonych na dachu, ścianach bocznych oraz wewnątrz obiektu budowlanego. Spełniając powyższe zalecenie należy zapewnić ochronę wszelkiego rodzaju nadbudówek dachowych, anten oraz instalacji przed bezpośrednim oddziaływaniem rozpływającego się prądu piorunowego.

Ochrona systemów kontrolno-pomiarowych przed narażeniami piorunowymi

Ochrona systemów kontrolno-pomiarowych przed narażeniami piorunowymi

Cechą charakterystyczną współczesnych urządzeń systemów kontrolno-pomiarowych jest ich stosunkowo niewielka odporność na działanie napięć i prądów udarowych, dochodzących z sieci zasilającej oraz z...

Cechą charakterystyczną współczesnych urządzeń systemów kontrolno-pomiarowych jest ich stosunkowo niewielka odporność na działanie napięć i prądów udarowych, dochodzących z sieci zasilającej oraz z linii przesyłu sygnałów. Znaczną część uszkodzeń urządzeń wywołują napięcia i prądy udarowe powstające podczas wyładowań piorunowych. Zagrożenie stwarzane przez bezpośrednie oddziaływanie rozpływającego się prądu piorunowego lub przepięcia atmosferyczne jest szczególnie groźne dla urządzeń pracujących...

Porażenia piorunem ludzi w Polsce w latach 2001 - 2006

Porażenia piorunem ludzi w Polsce w latach 2001 - 2006

W artykule porównano dane o doziemnych wyładowaniach piorunowych zarejestrowanych w Polsce przez system automatycznej detekcji piorunów ze statystycznymi danymi dotyczącymi porażeń ludzi przez pioruny....

W artykule porównano dane o doziemnych wyładowaniach piorunowych zarejestrowanych w Polsce przez system automatycznej detekcji piorunów ze statystycznymi danymi dotyczącymi porażeń ludzi przez pioruny. Jest ono próbą oszacowania zagrożenia piorunowego dla mieszkańców naszego kraju.

Nowe normy dotyczące ochrony odgromowej obiektów budowlanych

Nowe normy dotyczące ochrony odgromowej obiektów budowlanych

Urządzenie piorunochronne powinno przejąć i odprowadzić do ziemi prąd wyładowania piorunowego w sposób bezpieczny dla ludzi oraz eliminujący możliwość uszkodzenia chronionego obiektu budowlanego oraz urządzeń...

Urządzenie piorunochronne powinno przejąć i odprowadzić do ziemi prąd wyładowania piorunowego w sposób bezpieczny dla ludzi oraz eliminujący możliwość uszkodzenia chronionego obiektu budowlanego oraz urządzeń w nim zainstalowanych. Obecnie wprowadzane są cztery nowe normy serii PN-EN 62305, określające zasady ochrony odgromowej obiektów budowlanych. W normach tych szczególną uwagę zwrócono na ochronę przed piorunowym impulsem elektromagnetycznym, którego oddziaływanie może spowodować uszkodzenie...

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.