elektro.info

BradyPrinter A8500: Pełna automatyzacja identyfikowalności płytek drukowanych w liniach SMT

BradyPrinter A8500: Pełna automatyzacja identyfikowalności płytek drukowanych w liniach SMT

Drukarka i aplikator etykiet BradyPrinter A8500 niezawodnie automatyzuje oznaczanie płytek z obwodami drukowanymi, co pozwala uzyskać pełną identyfikowalność. Urządzenie w sposób spójny drukuje i nakłada...

Drukarka i aplikator etykiet BradyPrinter A8500 niezawodnie automatyzuje oznaczanie płytek z obwodami drukowanymi, co pozwala uzyskać pełną identyfikowalność. Urządzenie w sposób spójny drukuje i nakłada nawet najmniejsze etykiety z naszej gamy automatycznie nakładanych etykiet poliimidowych, które są odporne na cały proces produkcji płytek drukowanych.

XIII Konferencja Innowacyjne Rozwiązania Dla Budownictwa

XIII Konferencja Innowacyjne Rozwiązania Dla Budownictwa

W dniach 9–10 października 2019 roku w OPALENICY k. Nowego Tomyśla odbyła się „XIII KONFERENCJA INNOWACYJNE ROZWIĄZANIA DLA BUDOWNICTWA”, tradycyjnie zorganizowana przez Zakłady Kablowe Bitner Sp. z o.o.,...

W dniach 9–10 października 2019 roku w OPALENICY k. Nowego Tomyśla odbyła się „XIII KONFERENCJA INNOWACYJNE ROZWIĄZANIA DLA BUDOWNICTWA”, tradycyjnie zorganizowana przez Zakłady Kablowe Bitner Sp. z o.o., firmę Miwi Urmet Sp. z o.o. oraz Kontakt-Simon S.A. Bieżąca edycja odbywała się pod patronatem medialnym „elektro.info”, przy udziale następujących firm: EATON Electric Sp. z o.o., THEUSLED „TNC INVESTMENTS” Sp. z o.o. Sp. K., GMP DEFENCE Sp. z o.o. Sp. K., HYBRYD Sp. z o.o., ETI Polam Sp. z o.o.,...

Asortyment walizek narzędziowych KNIPEX

Asortyment walizek narzędziowych KNIPEX

Walizki narzędziowe KNIPEX oferują równowagę między dużą pojemnością, mocną konstrukcją, kompaktowymi wymiarami i stosunkowo małą wagą. W zależności od potrzeb użytkowników, występują w różnych rozmiarach...

Walizki narzędziowe KNIPEX oferują równowagę między dużą pojemnością, mocną konstrukcją, kompaktowymi wymiarami i stosunkowo małą wagą. W zależności od potrzeb użytkowników, występują w różnych rozmiarach i możliwościach wyposażenia. Wykorzystywane są w branży: elektrycznej, sanitarnej, grzewczej i wielu innych.

Termowizyjna diagnostyka urządzeń elektrycznych

Przykład fotografii termowizyjnej.

Kamera termowizyjna jest urządzeniem służącym do bezkontaktowego zobrazowania rozkładu temperatury na obserwowanej powierzchni na podstawie pomiaru mocy promieniowania podczerwonego emitowanego przez poszczególne elementy tej powierzchni. Dzięki temu możliwe jest zobrazowanie miejsc o wyższej temperaturze, szybki przegląd dużych powierzchni oraz znalezienie ewentualnego źródła ciepła. Po skierowaniu kamery na jakiś obiekt, podzespół, część instalacji, budynek, linię technologiczną czy energetyczną linię przesyłową, na ciekłokrystalicznym wyświetlaczu ukazuje się obraz odwzorowujący promieniowanie obiektu w podczerwieni [1, 2].

Wyniki badań przy użyciu kamery termowizyjnej otrzymujemy w postaci barwnych obrazów zwanych termogramami. Każdej barwie zarejestrowanej na termogramie odpowiada na skali temperatur określona temperatura zarejestrowana przez kamerę termowizyjną. Z reguły barwami jasnymi oznacza się powierzchnie o wysokiej temperaturze, natomiast kolorami ciemniejszymi – powierzchnie o temperaturze niższej. Ponadto do analizy zarejestrowanych obrazów termalnych wykorzystuje się specjalistyczne programy komputerowe, które umożliwiają precyzyjne określenie temperatury w wyznaczonym miejscu.

Porównując termogramy wykonane w różnym czasie lub na różnych obiektach łatwo wyłowić tendencje i różnice, dzięki określeniu pola temperatury na powierzchni urządzenia [1, 2].

Emisyjność

Rzeczywiste obiekty nie tylko emitują promieniowanie, ale również je częściowo pochłaniają, odbijają i przepuszczają.

Emitowany strumień promieniowania cieplnego jest zazwyczaj różny dla poszczególnych obiektów i zależny od ich własności fizykochemicznych. Nawet gdy temperatura tych ciał jest taka sama, każdy z obiektów ma określoną, własną zdolność do emitowania promieniowania, którą to zdolność opisuje się współczynnikiem zwanym emisyjnością.

Emisyjność zależy od temperatury, składu chemicznego, stanu fizycznego powierzchni (chropowatości, warstwy tlenków, zanieczyszczeń) i wielu innych czynników, a także od kierunku obserwacji [2, 3].

Wynika z tego, że każdy obiekt mierzony ma niepowtarzalną i charakterystyczną tylko dla tego przedmiotu emisyjność. Można stąd wyciągnąć wniosek, że dla pomiaru technikami wykorzystującymi moc promieniowania emitowanymi przez obiekt (na przykład wyznaczanie temperatury obiektu w pomiarach termowizyjnych) niepewność określenia emisyjności decyduje o niepewności całego pomiaru.

Najdokładniejsze wyznaczanie emisyjności kierunkowej materiałów uzyskuje się poprzez pomiar współczynnika odbicia za pomocą spektrometrów podczerwieni, ale prostsze, uśrednione emisyjności materiałów można wykonać również kamerami termowizyjnymi lub poprzez porównanie ze stykowymi metodami pomiaru temperatury, gdzie należy tak dobrać emisyjność w kamerze, aby wskazywała tę samą temperaturę, jaką uzyskano inną metodą pomiarową [3].

Czynniki wpływające na pomiar

Kolejnym czynnikiem utrudniającym pomiary mocy promieniowania emitowanego przez obiekt jest tłumienie propagacji promieniowania podczerwonego przez atmosferę spowodowane jej rozpraszaniem i pochłanianiem.

W zakresie podczerwieni promieniowanie pochłanianie jest głównie poprzez molekuły pary wodnej, dwutlenku węgla, tlenków azotu, ozonu oraz cząsteczek z dymów przemysłowych.

Wiadomo też, że zawartość składników atmosfery ulega zmianom wraz z pogodą czy bliskością obiektów przemysłowych. Warstwę powietrza można traktować jako filtr o bardzo złożonym widmowym współczynniku przepuszczalności i do tego niekoniecznie jednakowych właściwościach przy kolejnych pomiarach.

Dla niektórych zakresów długości fal, nazwanych „oknami atmosferycznymi” przepuszczalność promieniowania jest względnie wysoka. Stąd też powstał podział kamer termowizyjnych na pracujące w zakresach 3–5 μm oraz 8–15 μm [3].

Również promieniowanie słoneczne odbite bądź bezpośrednio oświetlające mierzone obiekty zakłóca pomiary, szczególnie dla obiektów o małej emisyjności i dla kamer pracujących w bliższym zakresie podczerwieni.

Zobacz także: Możliwości diagnozowania urządzeń i instalacji elektrycznych przy zastosowaniu kamer termowizyjnych

W praktyce pomiarowej niektóre zakłócenia są na tyle małe, że można je pominąć, a odpowiednio przeszkolony operator uwzględni te czynniki, których pominąć się nie powinno. Operator zmieniając kierunek obserwacji, dobierając odpowiedni czas na wykonanie pomiarów bądź ekranując od kamery silne źródła promieniowania może uniknąć wielu zakłóceń, które są szkodliwe dla pomiarów [2, 3].

Zazwyczaj stosowane termowizyjne metody pomiarów są metodami pasywnymi, gdyż rejestrowane obrazy powstają poprzez analizę promieniowania odbitego.

Najczęściej w praktyce warsztatowej obraz termiczny wykorzystywany jest do obserwacji odstępstw od prawidłowego stanu obiektu lub porównywania kilku obrazów termicznych. Często w takich pomiarach stosowane są stosunkowo proste kamery obserwacyjne, ze specjalnie dostosowanym do potrzeb oprogramowaniem.

Większość obecnie stosowanych kamer to kamery wyposażone w matryce detektorów od 60x60 do 800x600 pikseli, które przetwarzają energię promieniowania na inną wielkość fizyczną. Wyświetlany obraz termiczny może znacznie różnić się od obserwowanego w świetle widzialnym, często więc kamerę termowizyjną wyposaża się również w prostą kamerę światła widzialnego i zapisuje rejestrowane obrazy jednocześnie. Obrazy termiczne wyświetla się najczęściej w postaci barwnej, aby łatwiej zauważyć niewielkie zmiany termiczne poszczególnych fragmentów obiektu [3].

Przeczytaj drugą stronę tego artykułu: Zastosowanie w diagnostyce. Termowizja stosowana jest przede wszystkim w diagnostyce podczas inspekcji urządzeń...

Czytaj też: Diagnostyka termowizyjna instalacji elektroenergetycznych przy zastosowaniu kamer termowizyjnych >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Wyniki badań przy użyciu kamery termowizyjnej otrzymujemy w postaci barwnych obrazów zwanych termogramami. Każdej barwie zarejestrowanej na termogramie odpowiada na skali temperatur określona temperatura zarejestrowana przez kamerę termowizyjną. Z reguły barwami jasnymi oznacza się powierzchnie o wysokiej temperaturze, natomiast kolorami ciemniejszymi – powierzchnie o temperaturze niższej. Ponadto do analizy zarejestrowanych obrazów termalnych wykorzystuje się specjalistyczne programy komputerowe, które umożliwiają precyzyjne określenie temperatury w wyznaczonym miejscu.

Porównując termogramy wykonane w różnym czasie lub na różnych obiektach łatwo wyłowić tendencje i różnice, dzięki określeniu pola temperatury na powierzchni urządzenia [1, 2].

Emisyjność

Rzeczywiste obiekty nie tylko emitują promieniowanie, ale również je częściowo pochłaniają, odbijają i przepuszczają.

Emitowany strumień promieniowania cieplnego jest zazwyczaj różny dla poszczególnych obiektów i zależny od ich własności fizykochemicznych. Nawet gdy temperatura tych ciał jest taka sama, każdy z obiektów ma określoną, własną zdolność do emitowania promieniowania, którą to zdolność opisuje się współczynnikiem zwanym emisyjnością.

Emisyjność zależy od temperatury, składu chemicznego, stanu fizycznego powierzchni (chropowatości, warstwy tlenków, zanieczyszczeń) i wielu innych czynników, a także od kierunku obserwacji [2, 3].

Wynika z tego, że każdy obiekt mierzony ma niepowtarzalną i charakterystyczną tylko dla tego przedmiotu emisyjność. Można stąd wyciągnąć wniosek, że dla pomiaru technikami wykorzystującymi moc promieniowania emitowanymi przez obiekt (na przykład wyznaczanie temperatury obiektu w pomiarach termowizyjnych) niepewność określenia emisyjności decyduje o niepewności całego pomiaru.

Najdokładniejsze wyznaczanie emisyjności kierunkowej materiałów uzyskuje się poprzez pomiar współczynnika odbicia za pomocą spektrometrów podczerwieni, ale prostsze, uśrednione emisyjności materiałów można wykonać również kamerami termowizyjnymi lub poprzez porównanie ze stykowymi metodami pomiaru temperatury, gdzie należy tak dobrać emisyjność w kamerze, aby wskazywała tę samą temperaturę, jaką uzyskano inną metodą pomiarową [3].

Czynniki wpływające na pomiar

Kolejnym czynnikiem utrudniającym pomiary mocy promieniowania emitowanego przez obiekt jest tłumienie propagacji promieniowania podczerwonego przez atmosferę spowodowane jej rozpraszaniem i pochłanianiem.

W zakresie podczerwieni promieniowanie pochłanianie jest głównie poprzez molekuły pary wodnej, dwutlenku węgla, tlenków azotu, ozonu oraz cząsteczek z dymów przemysłowych.

Wiadomo też, że zawartość składników atmosfery ulega zmianom wraz z pogodą czy bliskością obiektów przemysłowych. Warstwę powietrza można traktować jako filtr o bardzo złożonym widmowym współczynniku przepuszczalności i do tego niekoniecznie jednakowych właściwościach przy kolejnych pomiarach.

Dla niektórych zakresów długości fal, nazwanych „oknami atmosferycznymi” przepuszczalność promieniowania jest względnie wysoka. Stąd też powstał podział kamer termowizyjnych na pracujące w zakresach 3–5 μm oraz 8–15 μm [3].

 

Również promieniowanie słoneczne odbite bądź bezpośrednio oświetlające mierzone obiekty zakłóca pomiary, szczególnie dla obiektów o małej emisyjności i dla kamer pracujących w bliższym zakresie podczerwieni.

Zobacz także: Możliwości diagnozowania urządzeń i instalacji elektrycznych przy zastosowaniu kamer termowizyjnych

 

W praktyce pomiarowej niektóre zakłócenia są na tyle małe, że można je pominąć, a odpowiednio przeszkolony operator uwzględni te czynniki, których pominąć się nie powinno. Operator zmieniając kierunek obserwacji, dobierając odpowiedni czas na wykonanie pomiarów bądź ekranując od kamery silne źródła promieniowania może uniknąć wielu zakłóceń, które są szkodliwe dla pomiarów [2, 3].

Zazwyczaj stosowane termowizyjne metody pomiarów są metodami pasywnymi, gdyż rejestrowane obrazy powstają poprzez analizę promieniowania odbitego.

Najczęściej w praktyce warsztatowej obraz termiczny wykorzystywany jest do obserwacji odstępstw od prawidłowego stanu obiektu lub porównywania kilku obrazów termicznych. Często w takich pomiarach stosowane są stosunkowo proste kamery obserwacyjne, ze specjalnie dostosowanym do potrzeb oprogramowaniem.

Większość obecnie stosowanych kamer to kamery wyposażone w matryce detektorów od 60x60 do 800x600 pikseli, które przetwarzają energię promieniowania na inną wielkość fizyczną. Wyświetlany obraz termiczny może znacznie różnić się od obserwowanego w świetle widzialnym, często więc kamerę termowizyjną wyposaża się również w prostą kamerę światła widzialnego i zapisuje rejestrowane obrazy jednocześnie. Obrazy termiczne wyświetla się najczęściej w postaci barwnej, aby łatwiej zauważyć niewielkie zmiany termiczne poszczególnych fragmentów obiektu [3]. Przeczytaj drugą stronę tego artykułu: Zastosowanie w diagnostyce. Termowizja stosowana jest przede wszystkim w diagnostyce podczas inspekcji urządzeń...

Czytaj też: Diagnostyka termowizyjna instalacji elektroenergetycznych przy zastosowaniu kamer termowizyjnych >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

zastosowanie kamery termowizyjnej w diagnostyce
U góry: obraz termowizyjny. Poniżej: obraz w świetle widzialnym stycznika umieszczonego w rozdzielnicy z lat 70. ubiegłego wieku; fot. G. Dymny, K. Kuczyński

Zastosowanie w diagnostyce

Termowizja stosowana jest przede wszystkim w diagnostyce podczas inspekcji urządzeń elektrycznych służących do wytwarzania, przesyłu i rozdziału energii elektrycznej. Prawidłowo pracujące złącze elektryczne nie powinno wykazywać wyższych temperatur od temperatury łączonych elementów.

Przyczyną nadmiernego wzrostu temperatur może być np. niewłaściwie zaprasowany przewód w zacisku lub wadliwe połączenie zacisku z urządzeniem. W tym kontekście kontrola linii elektroenergetycznych, transformatorów i rozdzielni daje ogromne możliwości wykrywania takich elementów, które na skutek długotrwałego przepływu prądu o dużym natężeniu oraz innych czynników, takich jak korozja powierzchni styków, powodują stopniowe pogorszenie się stanu złączy.

Oczywiście zastosowanie techniki termowizyjnej wymaga obciążenia instalacji podczas badania termowizyjnego. Najlepsze efekty daje zapewnienie znanego i odpowiednio dużego obciążenia prądowego (minimum 40%). Powoduje to zwiększoną dokładność pomiarów i pozwala na lepszą ocenę wyników. Praktyka wskazuje jednak, że pomiary takie należy wykonywać nawet wtedy, gdy obciążenie jest niskie, gdyż po wykryciu jakichś wad przy małym obciążeniu pomiary takie wskazują na zwiększony poziom takiego zagrożenia [2, 3].

Podsumowanie

Technika pomiarów termowizyjnych poprzez dwuwymiarowe obrazowanie w postaci zdjęć lub filmów umożliwia szybkie wykrywanie i zapobieganie awariom. Pomiar trwa krótko. Pominięcie obszaru o znacznie podwyższonej temperaturze jest mało prawdopodobne. Obiekty nie wymagają specjalnego przygotowania, a diagnostyka może być również wykonywana zdalnie.

Czytaj też: Wykrywanie zagrożeń w sieciach elektroenergetycznych przy zastosowaniu kamer termowizyjnych >>>

Literatura

1. „Pomiary termowizyjne w praktyce”, pod red. H. Madury, Agenda Wydawnicza PAK, Warszawa 2004.

2. W. Oliferuk, Termografia podczerwieni w nieniszczących badaniach materiałów i urządzeń, Biuro Gamma, Warszawa 2008.

3. K. Kuczyński, G. Dymny, Zasady diagnostyki rozdzielnic nn przy zastosowaniu kamer termowizyjnych, „elektro.info” 6/2013.

Fot. 1.  Obraz termowizyjny oraz obraz w świetle widzialnym stycznika umieszczonego w rozdzielnicy z lat 70. ubiegłego wieku

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

[ termowizja, diagnostyka urządzeń elektrycznych, kamera termowizyjna, emisyjność, zastosowanie kamery termowizyjnej, pomiary termowizyjne ]

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Transformatory rozdzielcze a ekologia – zagadnienia wybrane

Transformatory rozdzielcze a ekologia – zagadnienia wybrane

Współczesna produkcja transformatorów stosowanych w elektroenergetycznych sieciach rozdzielczych realizowana jest z wykorzystaniem blach niskostratnych oraz taśm amorficznych. Transformatory o mocach od...

Współczesna produkcja transformatorów stosowanych w elektroenergetycznych sieciach rozdzielczych realizowana jest z wykorzystaniem blach niskostratnych oraz taśm amorficznych. Transformatory o mocach od 10 do 3500 kVA mogą być wykonane jako suche żywiczne (małej i średniej mocy) lub olejowe hermetyczne.

Prefabrykowane stacje transformatorowe SN/nn – zagadnienia wybrane

Prefabrykowane stacje transformatorowe SN/nn – zagadnienia wybrane

Funkcją stacji transformatorowej SN/nn jest transformacja energii elektrycznej ze średniego napięcia na niskie i rozdział tej energii w sposób determinowany konfiguracją sieci nn, z zachowaniem warunków...

Funkcją stacji transformatorowej SN/nn jest transformacja energii elektrycznej ze średniego napięcia na niskie i rozdział tej energii w sposób determinowany konfiguracją sieci nn, z zachowaniem warunków technicznych określonych w obowiązujących przepisach [1]. W procesie projektowania i produkcji stacji prefabrykowanych zapewnienie realizacji określonej uprzednio funkcji transformacji i rozdziału nie nastręcza większych problemów. Istotę zagadnienia stanowi natomiast problem spełnienia wymagań bezpieczeństwa...

Wynalazki trzeba komercjalizować

Wynalazki trzeba komercjalizować

Korzenie Instytutu Tele- i Radiotechnicznego sięgają 1929 roku, kiedy to został powołany Instytut Radiotechniczny, którego zadaniem było prowadzenie prac w zakresie radioelektroniki. Instytut Radiotechniczny...

Korzenie Instytutu Tele- i Radiotechnicznego sięgają 1929 roku, kiedy to został powołany Instytut Radiotechniczny, którego zadaniem było prowadzenie prac w zakresie radioelektroniki. Instytut Radiotechniczny w kwietniu 1934 roku połączono z Laboratorium Teletechnicznym Ministerstwa Poczt i Telegrafów, tworząc Państwowy Instytut Telekomunikacyjny, który dostał lokalizację w budynkach Państwowej Wytwórni Łączności (Wytwórnię przeniesiono w inne miejsce) przy ulicy Ratuszowej 11 w Warszawie.

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies.

Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.