elektro.info

news System wypożyczania samochodów EV Vozilla kończy działalność

System wypożyczania samochodów EV Vozilla kończy działalność

Firma Enigma Systemy Ochrony Informacji Sp. z o.o podpisała z Miastem Wrocław aneks do umowy, który skraca okres działalności wypożyczalni do 30 kwietnia 2020 r. Firma podaje, że wypożyczalnia aut elektrycznych...

Firma Enigma Systemy Ochrony Informacji Sp. z o.o podpisała z Miastem Wrocław aneks do umowy, który skraca okres działalności wypożyczalni do 30 kwietnia 2020 r. Firma podaje, że wypożyczalnia aut elektrycznych Vozilla w obecnej formie straciła sens swojej kontynuacji.

news Produkcja energii elektrycznej w listopadzie 2019 r.

Produkcja energii elektrycznej w listopadzie 2019 r.

Agencja Rynku Energii podsumowała produkcję energii elektrycznej w listopadzie 2019 r. Wynika z niej, że produkcja w Polsce była niższa o 2 proc. niż w październiku i wyniosła 13,5 TWh. W porównaniu z...

Agencja Rynku Energii podsumowała produkcję energii elektrycznej w listopadzie 2019 r. Wynika z niej, że produkcja w Polsce była niższa o 2 proc. niż w październiku i wyniosła 13,5 TWh. W porównaniu z analogicznym miesiącem 2018 r., w listopadzie 2019 r. wyprodukowano w Polsce o 1 083,6 GWh mniej energii elektrycznej, a jej zużycie spadło o 374 GWh. Produkcja energii elektrycznej z OZE w listopadzie ub. roku wzrosła o 21 proc. w porównaniu z 2018 r. Saldo wymiany zagranicznej energią elektryczną...

UPS ze zintegrowanym zasilaczem i interfejsem USB

UPS ze zintegrowanym zasilaczem i interfejsem USB

Bezpieczne zasilanie krytycznych odbiorników prądu stałego, zwiększenie dostępności systemu, ograniczone miejsce w szafie i trudne warunki otoczenia stawiają projektantów systemów przed wieloma wyzwaniami.

Bezpieczne zasilanie krytycznych odbiorników prądu stałego, zwiększenie dostępności systemu, ograniczone miejsce w szafie i trudne warunki otoczenia stawiają projektantów systemów przed wieloma wyzwaniami.

Zasilacze UPS w układach zasilania urządzeń elektromedycznych (część 2.)

Akumulatory – magazyn energii zasilacza UPS

Układy współpracy akumulatorów z prostownikiem: a) praca buforowa,
b) praca w systemie UPS [14]

Akumulatory stosowane w zasilaczach UPS stanowią magazyn energii i w zależności od typu zasilacza przeznaczone są do pracy cyklicznej (zasilacze typu VFD) lub do pracy buforowej (zasilacze typu VFI). W przypadku pracy cyklicznej akumulator najpierw jest ładowany, a następnie odłączany od prostownika i przyłączany do zasilanych odbiorników.

W przypadku pracy buforowej zasilanie odbiornika realizowane jest z przekształtnika, który jednocześnie ładuje baterie akumulatorów. W tych warunkach akumulator pozostaje w gotowości do przejęcia obciążenia na wypadek zaniku napięcia w obwodzie zasilającym prostownik, pozostając w stanie pełnego naładowania. Uproszczone układy współpracy baterii akumulatorów z prostownikiem przedstawia rysunek 1.

zasilacze ups zasilanie urzadzen elektromedycznych rys1
Rys. 1. Układy współpracy akumulatorów z prostownikiem: a) praca buforowa, b) praca w systemie UPS [14]

Czytaj też: Zasilacze UPS w układach zasilania urządzeń elektromedycznych >>

W zasilaczach UPS stosowane są akumulatory klasyczne o gęstości elektrolitu 1,24 kg/l lub akumulatory wykonane w technologii VRLA (Valve Regulated Lead Acid), czyli akumulatory regulowane z zaworem jednokierunkowym umożliwiającym usuwanie nadmiaru wodoru, o gęstości elektrolitu (1,25–1,3) kg/l. Akumulatory VRLA produkowane są w dwóch technologiach:

  • AGM, w której elektrolit jest umieszczony w separatorze międzypłytowym wykonanym z włókna szklanego o dużej porowatości, które eliminuje niebezpieczeństwo wycieku elektrolitu oraz zabezpiecza przez możliwością powstania zwarcia pomiędzy płytami dodatnią i ujemną,
  • SLA, w której elektrolit jest zestalony w postaci żelu, stanowiącego tiksotropową odmianę dwutlenku krzemu (SiO2).

 

Porównanie wybranych cech akumulatorów VRLA odmiany AGM oraz żelowej (SLA) przedstawia tabela 1. W akumulatorach klasycznych wodór oraz tlen stanowiące produkt elektrochemicznego rozkładu wody są usuwane na zewnątrz przez otwory technologiczne wykonane w korkach.

zasilacze ups zasilanie urzadzen elektromedycznych tab1
Tab. 1. Zestawienie porównawcze wybranych cech akumulatorów VRLA odmiany AGM oraz SLA [10]

Natomiast w akumulatorach VRLA, które często błędnie nazywane są „szczelnymi” lub „hermetycznymi”, skutki reakcji elektrolitycznego rozkładu wody występują znacznie mniej intensywnie ze względu na wtórne reakcje powstających gazów prowadzące do znacznej ich redukcji przez ponowne powstanie wody i powrót do elektrolitu. Zagospodarowywanie powstających gazów jest jednak niecałkowite i ich nadmiar jest usuwany na zewnątrz akumulatorów przez jednokierunkowe zawory.

Wraz z upływem czasu eksploatacji wskutek zjawiska starzenia lub błędnego jej prowadzenia mogą pojawić się ilości gazów znacznie przekraczające ilości powstające w normalnych warunkach. Świadczy to o tym, że akumulatory te podobnie jak akumulatory klasyczne, stwarzają zagrożenie wskutek wprowadzania wodoru (H2) do pomieszczenia bateryjnego, który w mieszaninie z powietrzem przy stężeniu w zakresie (4–75)% staje się wybuchowy. Zakres wybuchowości wodoru został przedstawiony na rysunku 2.

zasilacze ups zasilanie urzadzen elektromedycznych rys2
Rys. 2. Zależność energii zapłonowej od składu mieszanin wodoru z powietrzem, gdzie: Z1 – minimalna energia zapłonu Emin = 0,019 mJ, Vd – dolna granica wybuchowości (DGW), Vg – górna granica wybuchowości (GGW) [13]

Przy stężeniu stechiometrycznym, wynoszącym około 29 % wodoru (H2) w powietrzu, do wybuchu wystarczy energia o wartości 0,019 mJ. W praktyce stosuje się wentylację mechaniczną, choć po spełnieniu określonych warunków dopuszcza się wentylację grawitacyjną. Sterowanie wentylacją mechaniczną przedziału bateryjnego należy realizować z wykorzystaniem układów detekcji stężenia wodoru. Układy automatyki powinny mieć ustawione dwa progi wykrywania stężenia wodoru:

  • 10% DGW, przekroczenie którego zostanie zasygnalizowane oraz zostanie uruchomiona wentylacja powodująca zwiększenie szybkości wymian powietrza o 100% w stosunku do warunków normalnych,
  • 30% DGW, przekroczenie którego spowoduje oprócz dalszego działania sygnalizacji akustyczno-dźwiękowej oraz wentylacji, wyłączenie ładowania baterii akumulatorów do chwili ustania zagrożenia.

 

Podstawowe wymagania w zakresie wentylacji przedziału bateryjnego wynikają bezpośrednio z normy PN‑EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1: Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych [10]. Przybliżoną wartość przepływu zapotrzebowanego powietrza w ciągu godziny w [m3/h] można obliczyć ze wzoru (8) [10]:

zasilacze ups zasilanie urzadzen elektromedycznych wzor1
(8)

gdzie:

v – wymagane rozcieńczenie wodoru (100 – 4)/4 = 24,

q – wytworzony wodór: 0,45·10–3, w [m3/Ah],

s – współczynnik bezpieczeństwa,

Ig – prąd gazowania o wartości:

– 1 mA – dla baterii „zamkniętych” (z zaworem VRLA) przy zmiennym napięciu,

– 5 mA – dla baterii otwartych przy zmiennym napięciu,– 8 mA – dla baterii” zamkniętych” (z zaworem VRLA) przy stałym napięciu ładowania,

– 20 mA – dla baterii otwartych przy stałym napięciu ładowania,

n – liczba ogniw baterii, w [-],

CB – pojemność baterii, w [Ah].

Qp – ilość wymaganego powietrza, w [m3/h].

Czytaj też: Dobór baterii akumulatorów oraz ich eksploatacji (część 2.) >>

Przyjmując współczynnik bezpieczeństwa s = 5, wzór na obliczenie Qp może być uproszczony:

  • dla akumulatorów klasycznych:
zasilacze ups zasilanie urzadzen elektromedycznych wzor2
(9)
  • dla akumulatorów VRLA:
zasilacze ups zasilanie urzadzen elektromedycznych wzor3
(10)
zasilacze ups zasilanie urzadzen elektromedycznych wzor4
(11)

gdzie:

Vp – objętość pomieszczenia z akumulatorami, w [m3],

Vu – objętość, jaką zajmują akumulatory ze stojakami oraz inne wyposażenie pomieszczenia, w [m3],to wystarczające jest zastosowanie wentylacji grawitacyjnej, z umieszczonymi po przeciwnych stronach pomieszczenia otworami: dolotowym i wylotowym.

Każdy z tych otworów musi mieć powierzchnię nie mniejszą od określonej wzorem (12) [6]:

zasilacze ups zasilanie urzadzen elektromedycznych wzor5
(12)

gdzie:

Ap – suma przekrojów otworów zewnętrznych i wewnętrznych, w [cm2].

W takim przypadku otwory wentylacyjne należy umieścić na przeciwległych ścianach. Jeżeli jest to niemożliwe i otwory wentylacyjne muszą zostać wykonane na tych samych ścianach, to odległość pomiędzy nimi nie może być mniejsza niż 2 m. Ten sam wymóg dotyczy instalowania wentylatorów wyciągowych, których odległość nie może być mniejsza niż 2 m. Podane wymagania mają charakter orientacyjny. Opracowanie projektu wentylacji pomieszczenia bateryjnego jest zagadnieniem wymagającym specjalistycznej wiedzy i powinno być opracowane przez uprawnionego projektanta branży sanitarnej. Rola projektanta elektryka ogranicza się do zaprojektowania układu sterowania i zasilania wentylatorów. Wentylacja pomieszczenia bateryjnego, spełniająca przedstawione wymagania, zgodnie z wymaganiami Rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (DzU nr 109/2010, poz. 719) (zgodnie z rozporządzeniem [5] za pomieszczenie zagrożone wybuchem przyjmuje się pomieszczenie, w którym spodziewany przyrost ciśnienia uzyskuje wartość &DeltaP ≥ 5 kPa) [5].

W pomieszczeniach bateryjnych ważna jest również klimatyzacja z uwagi na znaczne ilości ciepła wydzielanego przez ładowane lub rozładowywane akumulatory. Wzrost lub zmniejszenie temperatury pomieszczenia od wartości 20°C skutkuje odpowiednio zwiększeniem lub zmniejszeniem pojemności baterii. Dla celów praktycznych ilość ciepła wydzielanego podczas rozładowywania akumulatorów można oszacować ze wzoru (13) [10]:

zasilacze ups zasilanie urzadzen elektromedycznych wzor6
(13)

gdzie:

I – przewidywany maksymalny prąd rozładowania, w [A],

n – liczba gałęzi równoległych pracujących w czasie rozładowania, w [-],

Q – ilość ciepła wydzielanego w czasie t, w [J],

R – rezystancja jednej gałęzi szeregowej akumulatorów (rezystancję dla pojedynczego ogniwa podają producenci baterii w swoich katalogach), w [W],

t – przewidywany czas rozładowania, w [s].

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Akumulatory stosowane w zasilaczach UPS mają napięcie znamionowe 12 V (rzadziej stosuje się akumulatory o napięciu 6 V). Są one zbudowane z pojedynczych cel o napięciu znamionowym 2 V. W razie potrzeby akumulatory te łączy się równolegle w celu zwiększenia ich pojemności lub szeregowo w celu zwiększenia napięcia. Przykładowe warianty układu baterii akumulatorów przedstawia rysunek 3.

zasilacze ups zasilanie urzadzen elektromedycznych rys3
Rys. 3. Przykładowe warianty łączenia baterii akumulatorów oraz ich zabezpieczeń: a) jedna gałąź szeregowa; b) jedna gałąź dwuczęściowa z punktem środkowym, c) trzy gałęzie równoległe, d) trzy gałęzie równoległe 2-częściowe z punktem środkowym [15]

Baterie akumulatorów powinny być budowane z ogniw tego samego typu, pochodzących z tej samej serii produkcyjnej ze względu na rezystancję wewnętrzną, która decyduje o równomierności rozpływu prądów w poszczególnych gałęziach. Zaleca się instalowanie zabezpieczenia zwarciowego w każdym biegunie każdej gałęzi, możliwie blisko akumulatorów. Ponadto należy instalować zabezpieczenia centralne w każdym biegunie, zgodnie z zasadami przedstawionymi na rysunku 3. Dobór zabezpieczeń należy wykonać na podstawie spodziewanego prądu obciążenia znamionowego oraz spodziewanych prądów zwarciowych. Ponieważ rezystancja wewnętrzna akumulatorów stosowanych w zasilaczach UPS jest uzależniona od typu akumulatora i wynosi (0,5–3) mW/100 Ah, zwarcie skutkowało będzie przepływem prądów o dużej wartości, co należy uwzględnić przy doborze zabezpieczeń oraz doborze oprzewodowania. Szczegółowe wymagania w zakresie metodyki pomiarów oraz obliczania rezystancji wewnętrznej akumulatorów można znaleźć w normie PN-EN 60896-21:2007 Akumulatory ołowiowe. Część 21: Typy z zaworami. Metody badań [16].

Czytaj też: ABB zasili najbardziej zielone w Europie centrum przetwarzania danych >>

Dla ułatwienia posługiwania się tymi wartościami wprowadzono jednostkę krotności pojemności znamionowej C, która wyraża prąd jednogodzinnego rozładowania określony jako 1C. Oznacza to, że akumulator o pojemności np. Q = 100 Ah rozładowywany będzie przez jedną godzinę prądem o wartości 100 A (jest to wartość teoretyczna; zgodnie z charakterystyką rozładowania przedstawioną na rysunku 5., w temperaturze 20°C do osiągniecia napięcia odcięcia czas ten wynosi 30 minut. Wynika to bezpośrednio z rysunku 4, gdzie w temperaturze 20°C przy prądzie rozładowania 1C, sprawny akumulator dysponuje około 60% pojemności znamionowej), ale prąd rozładowania oznaczony jako 0,1C oznacza wartość prądu 10 A i czas rozładowania akumulatora wynoszący 10 godzin.

Cechą charakterystyczną akumulatorów jest to, że im prąd rozładowania większy, to pojemość dysponowana mniejsza, podobnie im temperatura niższa, tym pojemność dysponowana mniejsza. Wpływ temperatury i prądu rozładowania na pojemność akumulatora przedstawia rysunek 4.

zasilacze ups zasilanie urzadzen elektromedycznych rys4
Rys. 4. Wpływ temperatury i prądu rozładowania na pojemność akumulatora [15]

Analizując rysunek 4. (część 1. artykułu w „elektro.info” 6/2018) należy zauważyć, że dla prądu rozładowania wynoszącego 0,1C czas rozładowania 10-godzinnego w temperaturze –10°C zostanie skrócony do około 80%. Czyli dysponowana pojemność akumulatora wyniesie 80% jego znamionowej pojemności. Natomiast przy prądzie rozładowania wynoszącym 1C w temperaturze 20°C pojemność akumulatora wyniesie około 60% jego pojemności znamionowej, przez co czas rozładowania do uzyskania napięcia odcięcia Uk, wyniesie około 36 minut (rysunek 5., część 1. artykułu w „elektro.info” 6/2018). Przy doborze akumulatora należy pamiętać, że przy pracy w temperaturze niższej od określonej przez producenta pojemność akumulatora będzie niższa od pojemności znamionowej, co spowoduje skrócenie czasu pracy przy zasilaniu urządzeń.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Jeżeli wymagana jest praca akumulatora w niskich temperaturach, należy dobrać akumulator o większej pojemności znamionowej. Podczas eksploatacji akumulatorów bardzo istotne znaczenie ma niedopuszczenie do rozładowania poniżej napięcia końcowego Uk, zwanego powszechnie „napięciem odcięcia”, tj. wartości, przy której po rozładowaniu akumulator zachowuje znamionową pojemność oraz znamionową żywotność.

Napięcie to zależy od wartości prądu rozładowania i nie jest wartością stałą w odniesieniu do pojedynczego akumulatora. Przykładowe krzywe rozładowania akumulatora o pojemności 210 Ah w temperaturze 25°C przy różnych wartościach pądu rozładowania przedstawia rysunek 5. (część 1. artykułu w „elektro.info” 6/2018).

Jeżeli akumulator zostanie rozładowany do napięcia o wartości poniżej krzywej odcięcia, to jego pojemność zmniejszy się oraz zmniejszy się jego żywotność. Napięcie odcięcia dla określonych prądów rozładowania podają producenci akumulatorów. Rozładowanie akumulatora poniżej wartości napięcia odcięcia grozi jego trwałym uszkodzeniem. Każdy akumulator, którego pojemność spadła do wartości 80% jego pojemności znamionowej, należy wycofać z eksploatacji. Akumulatory SLA naładowane do pojemności znamionowej, przechowywane w temperaturze 20°C tracą średnio 3% pojemności w ciągu miesiąca [3]. Przechowywanie akumulatorów w stanie nienaładowanym może prowadzić do zmiany polaryzacji, co skutkowało będzie tym, że staną się one izolatorami. Czas przechowywania naładowanych akumulatorów jest uzależniony od temperatury i wynosi:

  • 12 miesięcy w temperaturze (0–20)°C,
  • 9 miesięcy w temperaturze (21–30)°C,
  • 5 miesięcy w temperaturze (31–40)°C,
  • 2,5 miesiąca w temperaturze (41–50)°C.

 

Czytaj też: Wybrane aspekty techniczne i ekonomiczne zasilania odbiorców energii elektrycznej

Graniczną temperaturą pracy lub przechowywania akumulatorów jest temperatura +55°C. Należy jednak pamiętać, że w warunkach eksploatacji temperatura +55°C jest dopuszczona przejściowo. Ciągłe jej utrzymywanie powoduje skrócenie projektowanego okresu żywotności baterii do około 15% okresu projektowanego czasu eksploatacji. Charakterystyki samorozładowania akumulatorów w funkcji czasu dla różnych temperatur składowania przedstawia rysunek 6.

zasilacze ups zasilanie urzadzen elektromedycznych rys5
Rys. 5. Przykładowe charakterystyki samorozładowania akumulatorów SLA w funkcji czasu, dla różnych temperatur składowania [18]
zasilacze ups zasilanie urzadzen elektromedycznych rys6
Rys. 6. Przykładowe charakterystyki samorozładowania akumulatorów SLA w funkcji czasu, dla różnych temperatur składowania [18]

Każde podwyższenie temperatury pracy akumulatora o (8–10)°C ponad temperaturę optymalną powoduje skrócenie czasu eksploatacji o połowę. Podobnie na długość eksploatacji akumulatorów ma wpływ głębokość rozładowania lub liczba cykli ładowania i rozładowania. Przykładowe charakterystyki żywotności akumulatorów przy pracy buforowej lub pracy cyklicznej przedstawia rysunek 7.

zasilacze ups zasilanie urzadzen elektromedycznych rys7
Rys. 7. Przykładowe charakterystyki żywotności akumulatora: a) przy pracy buforowej, b) przy pracy cyklicznej [18]

Producenci akumulatorów w kartach katalogowych podają charakterystyki stałoprądowego oraz stałomocowego rozładowania. Charakterystyki te są podobne i podawane w postaci tabel, których przykłady dla akumulatora o pojemności 210 Ah przedstawiają tabele 2. i 3.

zasilacze ups zasilanie urzadzen elektromedycznych tab2
Tab. 2. Przykład stałoprądowej charakterystyki rozładowania akumulatora o pojemności 210 Ah w temperaturze 25°C, prąd w [A] [18]

Czytaj też: Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji >>

Baterie akumulatorów stosowanych w zasilaczach UPS powinny być dobierane do mocy znamionowej zasilacza. Za podstawę doboru należy przyjąć wymaganą moc czynną/ogniwo, którą należy wyznaczyć ze wzoru:

zasilacze ups zasilanie urzadzen elektromedycznych wzor4 1
(14)

gdzie:

Pogn – wymaga moc czynna pojedynczego ogniwa przy stałomocowym rozładowaniu akumulatora do określonego napięcia odcięcia Uk, w [W/ogniwo],

S – znamionowa moc pozorna zasilacza UPS, w [VA],

cosφz – współczynnik mocy, przy którym pracuje zasilacz UPS (współczynnik mocy zasilanych odbiorników, w [-],

η – sprawność zasilacza UPS, w[-],

n – liczba ogniw w akumulatorze (przy napięciu akumulatora 12 V – 6 ogniw; przy napięciu akumulatora 6 V – 3 ogniwa),

Un UPS – napięcie znamionowe zasilacza UPS, w [V],

Un akum. – napięcie znamionowe akumulatora, w [V],

- wymagana liczba akumulatorów w pojedynczej gałęzi szeregowej [-].

Kolejnym ważnym parametrem akumulatora jest rezystancja, która ma wpływ na wydatki prądowe. Natomiast one narzucają wymagania w zakresie odporności zwarciowej dobieranych aparatów elektrycznych. Ma ona szczególne znaczenie dla krótkich czasów rozładowań. Dla czasów rozładowań wynoszących co najmniej 3 godziny rezystancja wewnętrzna akumulatora nie ma istotnego wpływu na wydatki prądowe akumulatora.

Wartość rezystancji wewnętrznej akumulatora jest bardzo mała i wynosi:

  • (1–3) mΩW/100 Ah dla akumulatorów klasycznych,
  • (0,5–3) mΩ/100 Ah dla akumulatorów VRLA.

 

Wpływ rezystancji wewnętrznej akumulatorów różnych typów na wydatek prądowy funkcji czasu rozładowania I = f(t), przedstawia rysunek 8.

zasilacze ups zasilanie urzadzen elektromedycznych rys8
Rys. 8. Wpływ rezystancji wewnętrznej akumulatorów różnych typów na wydatek prądowy funkcji czasu rozładowania – I = f(t) [11]

Producenci podają rezystancję wewnętrzną dla akumulatorów nowych. Jest ona obliczana na podstawie pomiarów w dwóch punktach zgodnie z rysunkiem 4. Pierwszy pomiar prądu i napięcia wykonuje się po czasie (20–25) [s] od momentu załączenia akumulatora na rozładowanie prądem o wartości (4–6)×0,1C. Drugi pomiar prądu i napięcia wykonuje się przy rozładowaniu akumulatora wykonywanym po pierwszej próbie z opóźnieniem trwającej (2–5) minut, prądem o wartości (20–40)×0,1C (gdzie 1C – prąd rozładowania jednogodzinnego:

0,1C – prąd rozładowania 10-godzinnego:

Rezystancję akumulatora zgodnie z wymaganiami normy [17] wyznacza się ze wzoru (17) [11], do którego ilustrację graficzną przedstawia rysunek 9.

zasilacze ups zasilanie urzadzen elektromedycznych rys9
Rys. 9. Algorytm obliczania rezystancji wewnętrznej akumulatora [11]

Przykład

Dobrać akumulatory oraz ich zabezpieczenia do zasilacza UPS zasilanego trójfazowo i o wyjściu trójfazowym (3/3), Masterys GP 4.0 60 kVA/kW, zasilającego odbiorniki przy współczynniku mocy cos φz = 0,8 oraz sprawności zasilacza η = 0,96. Napięcie odcięcia Uk = 1,7 V/ogniwo. Wymagany czas pracy zasilanych odbiorników wynosi 30 minut. Temperatura pomieszczenia 25°C.

Założono dobór baterii 12 V w oparciu o serię Sprinter P/XP firmy Exide, których charakterystykę rozładowania stałomocowego do napięcia 1,7 V na pojedynczą cele przy temperaturze 25°C przedstawia tabela 4. Baterie są instalowane jako jedna gałąź dwuczęściowa z wyprowadzonym środkiem (rys. 3b).

Czytaj też: Dobór mocy źródeł zasilania awaryjnego i gwarantowanego - metodyka projektowania ochrony przeciwporażeniowej w instalacjach elektrycznych zasilanych z tych źródeł (cz. 1) >>

zasilacze ups zasilanie urzadzen elektromedycznych tab3 1
Tab. 4. Tabela rozładowań stałomocowych akumulatorów serii Sprinter P/XP firmy Exide oraz ich rezystancji wewnętrznych stosowanych przez firmę Socomec, w [W/baterie]

Rozwiązanie:

Wymagana moc na wyjściu zasilacza UPS:

Obliczenia dla XP12V1800

Liczba wymaganych baterii:

Obliczenia dla XP12V3000

Liczba wymaganych baterii:

Obliczenia dla XP12V3400

Liczba wymaganych baterii:

Ze względu na konstrukcję zasilacza UPS Masterys GP 4.0, muszą być stosowane gałęzie akumulatorów dwuczęściowe (rys. 3b), a wymagana liczba baterii w każdej części gałęzi powinna wynosić n = (18–20), co daje napięcie wyjściowe równe U = (216–240) Vdc. Ze względów eksploatacyjnych należy przyjąć następującą liczbę akumulatorów w każdej części gałęzi:

Zatem napięcie części łańcucha baterii przy n = 18 baterii wyniesie:

Spodziewany prąd obciążenia gałęzi:

Rezystancja wewnętrzna akumulatora XP12V3000 wynosi: Rw = 5,2 mW.

Spodziewane prądy zwarciowe:

Do zabezpieczenia poszczególnych gałęzi należy przyjąć bezpieczniki topikowe 2xaR250 o odporności zwarciowej Ics = 50 kA (wkładki typu aR są zalecane przez producenta ze względu na ochronę elementów półprzewodnikowych zasilacza UPS od strony napięcia DC).Uwaga! W analogiczny sposób dobiera się zasilacz UPS 3x230/400V//3x230x400 V.

Literatura: 

1. Ustawa o ochronie przeciwpożarowej [tekst jednolity: Dz. U. z 2017 roku poz. 736]

2. Rozporządzeniu Ministra Infrastruktury z 12  kwietnia 2002 roku w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie [Dz. U. z 2015 roku poz.1422].

3. Rozporządzenie Ministra  Łączności z 21 kwietnia 1995 roku w sprawie zasilania energią elektryczną obiektów budowlanych łączności [Dz. U. Nr 50/1995 poz. 271].

4. Rozporządzeniu Ministra Spraw Wewnętrznych i Administracji z dnia 20 czerwca 2007 r. w sprawie wykazu wyrobów służących zapewnieniu bezpieczeństwa publicznego lub ochronie zdrowia i życia oraz mienia, a także zasad wydawania dopuszczenia tych wyrobów do użytkowania [Dz. U. 2007 nr 143 poz. 1002 z późniejszymi zmianami].

5. Rozporządzenie Ministra Spraw Wewnętrznych  i Administracji z dnia 7 czerwca 2010, w sprawie ochrony przeciwpożarowej budynków innych obiektów i terenów [Dz. U. Nr 109/2010 poz. 719].

6. Rozporządzenie  Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 roku, w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym Dz. U. z 2016 roku poz. 1966].

7. PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41. Instalacje dla zapewnia bezpieczeństwa Ochrona przed porażeniem elektrycznym.

8. PN-EN 50160:2010 Parametry jakościowe napięcia w publicznych sieciach rozdzielczych.

9. ISO8528-5 Zespoły prądotwórcze prądu przemiennego napędzane silnikiem spalinowym tłokowym. Zespoły prądotwórcze.

10. PN-EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1. Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych.

11. Z. Łęgosz – Potrzeby własne w elektroenergetyce - OPBEE – materiał konferencyjne, Szklarska Poręba 11-13 grudnia 2011 

12. Poradnik projektanta Systemów Sygnalizacji Pożaru – cz. II – SITP Warszawa 2009

13. J. Wiatr, M. Orzechowski – Poradnik Projektanta Elektryka – Grupa Medium Warszawa 2012, wydanie V

14. J. Wiatr, A. Boczkowski, M. Orzechowski – Ochrona przeciwporażeniowa oraz dobór przewodów i ich zabezpieczeń w instalacjach elektrycznych niskiego napięcia – DW MEDIUM Warszawa 2010 - wydanie I

15. T. Sutkowski – Rezerwowe i bezprzerwowe zasilanie w energię elektryczną. Urządzenia i układy. – COSiW SEP 2007 

16. K. Sałasiński – Bezpieczeństwo elektryczne w zakładach opieki zdrowotnej – COSiW SEP 2007

17. PN-HD 60364-7-710:2012 Instalacje elektryczne niskiego napięcia. Część 7-710: Wymagania dotyczące specjalnych instalacji lub lokalizacji. Pomieszczenia medyczne. – wersja angielska

18. PN-EN 60896-11:2007 Baterie ołowiowe stacjonarne. Część 11. Ogólne wymagania i metody badań.

19. www.aval.com.pl -19.07.2017 - karta katalogowa akumulatora EPL 201-12  

20. PN-HD 60364-7-710:2012 Instalacje elektryczne niskiego napięcia. Część 7-710. Wymagania dotyczące specjalnych instalacji lub lokalizacji. Pomieszczenia medyczne.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Powiązane

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania...

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania energii

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

W artykule przedstawiono porównanie akumulatorów litowo-jonowych z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej.

W artykule przedstawiono porównanie akumulatorów litowo-jonowych z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej.

Przewody szynowe w układach zasilania gwarantowanego

Przewody szynowe w układach zasilania gwarantowanego

W artykule piszemy m.in. o specyfice instalacji układów gwarantowanego zasilania, prądach znamionowych przewodów szynowych, spadkach napięcia, sprawdzeniu parametrów zwarciowych, nadto zestawienie najważniejszych...

W artykule piszemy m.in. o specyfice instalacji układów gwarantowanego zasilania, prądach znamionowych przewodów szynowych, spadkach napięcia, sprawdzeniu parametrów zwarciowych, nadto zestawienie najważniejszych cech instalacji przewodów szynowych w układach zasilania gwarantowanego.

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności...

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe.

Wymagania stawiane pomieszczeniom przeznaczonym do instalacji zespołów prądotwórczych i zasilaczy UPS

Wymagania stawiane pomieszczeniom przeznaczonym do instalacji zespołów prądotwórczych i zasilaczy UPS

Autor przedstawia niezbędne informacje związane z projektem budowlanym w zakresie instalacji zespołu prądotwórczego, jego warunkach, kwestii związanych z tłumieniem drgań, układu chłodzenia i wentylacji...

Autor przedstawia niezbędne informacje związane z projektem budowlanym w zakresie instalacji zespołu prądotwórczego, jego warunkach, kwestii związanych z tłumieniem drgań, układu chłodzenia i wentylacji oraz dodatkowych wymagać, w tym wymagań dla pomieszczeń z akumulatorami oraz odnoszących się do w zakresie wentylacji.

Źródła rozproszone jako element zapewnienia niezawodności zasilania w obiektach użyteczności publicznej

Źródła rozproszone jako element zapewnienia niezawodności zasilania w obiektach użyteczności publicznej

Autor publikacji przedstawił wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej oraz omówił możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność...

Autor publikacji przedstawił wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej oraz omówił możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność zasilania w energię elektryczną.

Wykorzystanie zespołów prądotwórczych do tymczasowego zasilania elektroenergetycznych sieci nn

Wykorzystanie zespołów prądotwórczych do tymczasowego zasilania elektroenergetycznych sieci nn

Autor omawia m. in. zasady obliczania mocy zapotrzebowanej w budynkach mieszkalnych i projektowania ochrony przeciwporażeniowej, układy sieci elektroenergetycznych nn, zasilające odbiory komunalne, dobór...

Autor omawia m. in. zasady obliczania mocy zapotrzebowanej w budynkach mieszkalnych i projektowania ochrony przeciwporażeniowej, układy sieci elektroenergetycznych nn, zasilające odbiory komunalne, dobór mocy zespołu prądotwórczego, ochronę przeciwporażeniową w warunkach zasilania z generatora zespołu prądotwórczego oraz odmienność warunków zasilania z zespołu prądotwórczego w odniesieniu do Systemu Elektroenergetycznego, a ponadto formułuje wnioski.

Definicje mocy elektrycznych a nowoczesne odbiorniki energii

Definicje mocy elektrycznych a nowoczesne odbiorniki energii

Autor artykułu zajął się problematyką precyzyjnego zdefiniowania mierzonych wielkości mocy pod kątem rozliczeń finansowych z tytułu jej poboru. Kolejno przedstawia zagadnienia definicji mocy, jej fizycznych...

Autor artykułu zajął się problematyką precyzyjnego zdefiniowania mierzonych wielkości mocy pod kątem rozliczeń finansowych z tytułu jej poboru. Kolejno przedstawia zagadnienia definicji mocy, jej fizycznych wielkości i bilansu, a także nowoczesnych odbiorników energii elektrycznej oraz nowoczesnych układów przetwarzania energii elektrycznej.

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia...

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia dla 2 obiektów data center (duży oraz średni), każdy w trzech wariantach. Sformułowano wnioski końcowe.

Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej

Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej

W artykule przedstawiono wymagania dotyczące pewności zasilania obiektów szpitalnych. Omówiono uwarunkowania prawne ich zasilania, gwarancje spełnienia takich warunków, opisano źródła zasilania rezerwowego,...

W artykule przedstawiono wymagania dotyczące pewności zasilania obiektów szpitalnych. Omówiono uwarunkowania prawne ich zasilania, gwarancje spełnienia takich warunków, opisano źródła zasilania rezerwowego, w tym nowoczesne i niekonwencjonalne, podano też przykłady nowoczesnych rozwiązań.

Pomieszczenia z zespołami prądotwórczymi - podstawowe wymagania

Pomieszczenia z zespołami prądotwórczymi - podstawowe wymagania

W artykule autor przestawił uwagi odnoszące się do kwestii dotyczących sporządzenia projektu instalacji zespołu prądotwórczego, warunków jego instalowania, spraw związanych z tłumieniem drgań, układu chłodzenia...

W artykule autor przestawił uwagi odnoszące się do kwestii dotyczących sporządzenia projektu instalacji zespołu prądotwórczego, warunków jego instalowania, spraw związanych z tłumieniem drgań, układu chłodzenia oraz dodatkowych wymagań.

Układy samoczynnego załączania rezerwy, czyli „SZybki Ratunek” na czarną godzinę

Układy samoczynnego załączania rezerwy, czyli „SZybki Ratunek” na czarną godzinę

Układy samoczynnego załączania rezerwy, zwane w skrócie SZR, pozwalają na automatyczne załączanie odbiorników do toru rezerwowego w przypadku, gdy w torze zasilania podstawowego nastąpi zanik zasilania....

Układy samoczynnego załączania rezerwy, zwane w skrócie SZR, pozwalają na automatyczne załączanie odbiorników do toru rezerwowego w przypadku, gdy w torze zasilania podstawowego nastąpi zanik zasilania. Bez układów samoczynnego załączania rezerwy nie mogłyby funkcjonować szpitale, ale i pracownicy rozmaitych urzędów czy centrów przetwarzania danych tzw. data center, nie mogliby spokojnie pracować.

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Autorzy porównali akumulatory litowo-jonowe z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej oraz omówili wymagania dla akumulatorów wykorzystywanych w zasobnikach. Opisali też zasadę...

Autorzy porównali akumulatory litowo-jonowe z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej oraz omówili wymagania dla akumulatorów wykorzystywanych w zasobnikach. Opisali też zasadę działania ogniw litowo-jonowych i najważniejsze rodzaje ogniw oraz porównali ich parametry i skonfrontowali z parametrami ogniw ołowiowych. Szczególną uwagę zwrócili na żywotność cykliczną, odporność na temperaturę i małe wymagania eksploatacyjne, w tym możliwość stosowania w pomieszczeniach ogólnego...

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności,...

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności, omawia aspekty techniczne i ekonomiczne związane z niezawodnością oraz formułuje wnioski końcowe.

Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji

Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji

W artykule zostały przedstawione podstawowe wymagania eksploatacyjne dla baterii akumulatorów stosowanych w zasilaczach UPS, jako magazyny energii, których spełnienie gwarantuje utrzymanie sprawności przez...

W artykule zostały przedstawione podstawowe wymagania eksploatacyjne dla baterii akumulatorów stosowanych w zasilaczach UPS, jako magazyny energii, których spełnienie gwarantuje utrzymanie sprawności przez zakładany okres eksploatacji.

Zasady doboru klimatyzacji dla pomieszczeń biurowych i małych serwerowni

Zasady doboru klimatyzacji dla pomieszczeń biurowych i małych serwerowni

Zastosowanie klimatyzacji umożliwia utrzymanie właściwych warunków środowiskowych w pomieszczeniach, które zapewniają komfort pracy ludzi oraz odbierają zyski ciepła od urządzeń elektronicznych. Urządzenia...

Zastosowanie klimatyzacji umożliwia utrzymanie właściwych warunków środowiskowych w pomieszczeniach, które zapewniają komfort pracy ludzi oraz odbierają zyski ciepła od urządzeń elektronicznych. Urządzenia klimatyzacyjne mają znaczący wpływ na składniki klimatu pomieszczenia: temperaturę, wilgotność powietrza, jego czystość oraz ruch (cyrkulację powietrza).

Zasilacze bezprzerwowe (UPS)

Zasilacze bezprzerwowe (UPS)

Zasilacz UPS to urządzenie przeznaczone do zapewnienia bezprzerwowej pracy urządzeń komputerowych, łączności oraz innych urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia i inne zakłócenia występujące...

Zasilacz UPS to urządzenie przeznaczone do zapewnienia bezprzerwowej pracy urządzeń komputerowych, łączności oraz innych urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia i inne zakłócenia występujące w sieci zasilającej. Jest on urządzeniem energoelektronicznym, umożliwiającym zasilanie odbiorników z baterii lub innego magazynu energii elektrycznej, w przypadku zaniku napięcia w sieci zasilającej.

Niezawodność zasilania gwarantowanego dla obiektów typu data center

Niezawodność zasilania gwarantowanego dla obiektów typu data center

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek...

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek wyposażony w systemy kontroli dostępu, przeciwdziałania napadom i sabotażom, telewizję przemysłową, odporny na zalanie i usytuowany poza strefą zalewową, aktywną sejsmicznie.

Niezawodność zasilania w kontekście układów SZR

Niezawodność zasilania w kontekście układów SZR

Zaprojektowanie możliwie najbardziej niezawodnego systemu zasilania w konkretnym obiekcie wymaga wiedzy o wymaganiach i zainstalowanych odbiornikach. W zależności od rodzaju odbiorników i stopnia ich ważności...

Zaprojektowanie możliwie najbardziej niezawodnego systemu zasilania w konkretnym obiekcie wymaga wiedzy o wymaganiach i zainstalowanych odbiornikach. W zależności od rodzaju odbiorników i stopnia ich ważności dla użytkownika stosowane są różne rozwiązania układów sieci zasilającej oraz zasilania gwarantowanego. Podstawowym wyznacznikiem doboru odpowiedniego układu zasilania jest wymagana niezawodność systemu zasilania. Aby zmniejszyć możliwość awarii systemu zasilania, stosuje się zwielokrotnienie...

Zasilacz UPS – na co zwrócić uwagę dokonując wyboru (część 2.)

Zasilacz UPS – na co zwrócić uwagę dokonując wyboru (część 2.)

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu...

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu danego systemu należy uwzględnić typ zasilacza, biorąc pod uwagę jego niezawodność oraz sposób połączenia odbiorników i ich grup. W fazie przygotowania projektu należy wziąć pod uwagę znaczenie odbiorników i wymagany czas podtrzymania zasilania. Praca niektórych z nich może być zakończona bezpośrednio...

Dobór mocy zespołu prądotwórczego (część 2)

Dobór mocy zespołu prądotwórczego (część 2)

W drugiej części artykułu publikowanego w nr. 9/2013 skupimy się na zasadach projektowania ochrony przeciwporażeniowej oraz jej ocenie w istniejących układach zasilania awaryjnego.

W drugiej części artykułu publikowanego w nr. 9/2013 skupimy się na zasadach projektowania ochrony przeciwporażeniowej oraz jej ocenie w istniejących układach zasilania awaryjnego.

Dobór mocy zespołu prądotwórczego (część 1)

Dobór mocy zespołu prądotwórczego (część 1)

Wielokrotnie zachodzi konieczność projektowania układów zasilania o zwiększonej pewności dostaw energii elektrycznej. Nie zawsze druga linia elektroenergetyczna doprowadzona do obiektu budowlanego spełnia...

Wielokrotnie zachodzi konieczność projektowania układów zasilania o zwiększonej pewności dostaw energii elektrycznej. Nie zawsze druga linia elektroenergetyczna doprowadzona do obiektu budowlanego spełnia oczekiwania odbiorcy. Często zachodzi potrzeba instalowania źródła zasilania awaryjnego, którym jest zespół prądotwórczy oraz zasilacza UPS. Obydwa te źródła wymagają odmiennego podejścia przy doborze ich mocy oraz innego sposobu projektowania i oceny ochrony przeciwporażeniowej w stosunku do systemu...

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.