elektro.info

news Schematy w chmurze obliczeniowej EPLAN eBuild

Schematy w chmurze obliczeniowej EPLAN eBuild

Na targach SPS 2019 zostanie zaprezentowane nowe oprogramowanie EPLAN eBuild do generowania schematów elektrycznych i hydraulicznych działające w chmurze obliczeniowej. Jest to oprogramowanie przeznaczone...

Na targach SPS 2019 zostanie zaprezentowane nowe oprogramowanie EPLAN eBuild do generowania schematów elektrycznych i hydraulicznych działające w chmurze obliczeniowej. Jest to oprogramowanie przeznaczone dla tych użytkowników Platformy EPLAN 2.8, którzy dopiero rozpoczynają swoje doświadczenia w środowisku rozwiązań chmurowych. Do korzystania z tego nowego oprogramowania freemium wymagana jest rejestracja w systemie EPLAN ePulse lub za pomocą Platformy EPLAN w wersji 2.8.

news SPIN Extra 2020 już w marcu! Nowości w programie spotkania

SPIN Extra 2020 już w marcu! Nowości w programie spotkania

W dniach 25-26 marca 2020 w Hotelu Marina koło Olsztyna, odbędzie się SPIN Extra 2020. Tradycyjnie podczas spotkania partnerzy zaprezentują swoje rozwiązania podczas prelekcji. Do dyspozycji uczestników...

W dniach 25-26 marca 2020 w Hotelu Marina koło Olsztyna, odbędzie się SPIN Extra 2020. Tradycyjnie podczas spotkania partnerzy zaprezentują swoje rozwiązania podczas prelekcji. Do dyspozycji uczestników będzie część ekspozycyjna, w ramach której prowadzone będą prezentacje sprzętu i indywidualne doradztwo. Nie zabraknie konsultacji z ekspertami oraz czasu na rozmowy kuluarowe i integrację.

news Jak wygląda elektromobilność w przypadku samochodów ciężarowych?

Jak wygląda elektromobilność w przypadku samochodów ciężarowych?

Elektromobilność w segmencie samochodów użytkowych nabiera rozpędu. Coraz więcej koncernów prezentuje nowe, zeroemisyjne modele służące do transportu towarów. W Polsce kluczowe jest uruchomienie dopłat...

Elektromobilność w segmencie samochodów użytkowych nabiera rozpędu. Coraz więcej koncernów prezentuje nowe, zeroemisyjne modele służące do transportu towarów. W Polsce kluczowe jest uruchomienie dopłat z Funduszu Niskoemisyjnego Transportu. Odpowiednie przepisy wykonawcze określające wysokość wsparcia z FNT dla pojazdów ciężarowych zostały niedawno opublikowane w Dzienniku Ustaw.

Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji

mgr inż. Julian Wiatr | 2015-11-20

Wysokie wymagania dotyczące pewności dostaw energii elektrycznej do odbiorników o znaczeniu krytycznym zmuszają projektantów do projektowania układów zasilania wyposażonych w zasilacze UPS. W zasilaczach tych ważnym elementem są baterie akumulatorów, które eksploatowane w niewłaściwy sposób stwarzają zagrożenie wybuchowe. Od poprawności ich doboru zależy czas eksploatacji oraz poprawne funkcjonowanie systemu zasilania gwarantowanego.

Akumulatory stosowane w zasilaczach UPS stanowią magazyn energii i w zależności od typu zasilacza przeznaczone są do pracy cyklicznej (zasilacze typu VFD) lub do pracy buforowej (zasilacze typu VFI):

  • w przypadku pracy cyklicznej akumulator najpierw jest ładowany, a następnie odłączany od prostownika i przyłączany do zasilanych odbiorników.
  • w przypadku pracy buforowej zasilanie odbiornika realizowane jest z przekształtnika, który jednocześnie ładuje baterie akumulatorów. W tych warunkach akumulator pozostaje w gotowości do przejęcia obciążenia na wypadek zaniku napięcia w obwodzie zasilającym prostownik, pozostając w stanie pełnego naładowania.

 

Uproszczone układy współpracy baterii akumulatorów z prostownikiem przedstawia rys. 1.

b baterie akumulatorow rys01
Rys. 1. Układy współpracy akumulatorów z prostownikiem: a) praca cykliczna, b) praca buforowa [1]

W zasilaczach UPS stosowane są akumulatory klasyczne o gęstości elektrolitu 1,24 kg/l lub akumulatory wykonane w technologii VRLA (Valve Regulated Lead Acid), czyli akumulatory regulowane z zaworem jednokierunkowym umożliwiającym usuwanie nadmiaru wodoru, o gęstości elektrolitu (1,25–1,3) kg/l. Akumulatory VRLA produkowane są w dwóch technologiach:

  • AGM, w której elektrolit jest umieszczony w separatorze międzypłytowym wykonanym z włókna szklanego o dużej porowatości, które eliminuje niebezpieczeństwo wycieku elektrolitu oraz zabezpiecza przed możliwością powstania zwarcia pomiędzy płytami dodatnią i ujemną,
  • SLA, w której elektrolit jest zestalony w postaci żelu, stanowiącego tiksotropową odmianę dwutlenku krzemu (SiO2).

 

Porównanie wybranych cech akumulatorów VRLA odmiany AGM oraz żelowej (SLA) przedstawia tab. 1.

b baterie akumulatorow tab01
Tab. 1. Zestawienie porównawcze wybranych cech akumulatorów VRLA odmiany AGM oraz SLA [5]

W akumulatorach klasycznych wodór oraz tlen stanowiące produkt elektrochemicznego rozkładu wody są usuwane na zewnątrz przez otwory technologiczne wykonane w korkach. Natomiast w akumulatorach VRLA, które często błędnie nazywane są „szczelnymi” lub „hermetycznymi”, skutki reakcji elektrolitycznego rozkładu wody występują znacznie mniej intensywnie ze względu na wtórne reakcje powstających gazów prowadzące do znacznej ich redukcji przez ponowne powstanie wody i powrót do elektrolitu. Zagospodarowywanie powstających gazów jest jednak niecałkowite i ich nadmiar jest usuwany na zewnątrz akumulatorów przez jednokierunkowe zawory.

b baterie akumulatorow rys02
Rys. 2. Zależność energii zapłonowej od składu mieszanin wodoru z powietrzem, gdzie: Z1 – minimalna energia zapłonu Emin = 0,019 mJ, Vd – dolna granica wybuchowości (DGW), Vg – górna granica wybuchowości (GGW) [4]

Wraz z upływem czasu eksploatacji wskutek zjawiska starzenia lub błędnego jej prowadzenia mogą pojawić się ilości gazów znacznie przekraczające te powstające w normalnych warunkach. Świadczy to o tym, że akumulatory te, podobnie jak akumulatory klasyczne, stwarzają zagrożenie wskutek wprowadzania wodoru (H2) do pomieszczenia bateryjnego, który w mieszaninie z powietrzem przy stężeniu w zakresie (4–75)% staje się wybuchowy. Zakres wybuchowości wodoru został przedstawiony na rys. 2.

Czytaj też: Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Przy stężeniu stechiometrycznym, wynoszącym około 29% wodoru (H2) w powietrzu, do wybuchu wystarczy energia o wartości 0,019 mJ. W praktyce stosuje się wentylację mechaniczną, choć po spełnieniu określonych warunków dopuszcza się wentylację grawitacyjną.

Sterowanie wentylacją mechaniczną przedziału bateryjnego należy realizować z wykorzystaniem układów detekcji stężenia wodoru. Układy automatyki powinny mieć ustawione dwa progi wykrywania stężenia wodoru:

  • 10% DGW, którego przekroczenie zostanie zasygnalizowane oraz zostanie uruchomiona wentylacja powodująca zwiększenie szybkości wymian powietrza o 100% w stosunku do warunków normalnych,
  • 30% DGW, którego przekroczenie spowoduje oprócz dalszego działania sygnalizacji akustyczno-dźwiękowej oraz wentylacji, wyłączenie ładowania baterii akumulatorów do chwili ustania zagrożenia.

Podstawowe wymagania w zakresie wentylacji przedziału bateryjnego wynikają bezpośrednio z normy PN‑EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1. Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych [6]. Przybliżoną wartość przepływu zapotrzebowanego powietrza w ciągu godziny, w [m3/h], można obliczyć ze wzoru [6]:

b baterie akumulatorow wz01
(1)

gdzie:

v – wymagane rozcieńczenie wodoru (100 – 4)/4 = 24,

q – wytworzony wodór: 0,45·10–3, w [m3/Ah],

s – współczynnik bezpieczeństwa,

Ig – prąd gazowania o wartości:

1 mA – dla baterii „zamkniętych” (z zaworem VRLA) przy zmiennym napięciu,

5 mA – dla baterii otwartych przy zmiennym napięciu,

8 mA – dla baterii” zamkniętych” (z zaworem VRLA) przy stałym napięciu ładowania,

20 mA – dla baterii otwartych przy stałym napięciu ładowania,

n – liczba ogniw baterii, w [-],

CB – pojemność baterii, w [Ah],

Qp – ilość wymaganego powietrza, w [m3/h].

Przyjmując współczynnik bezpieczeństwa s = 5, wzór na obliczenie Qp może być uproszczony:

Przyjmując współczynnik bezpieczeństwa s = 5, wzór na obliczenie Qp może być uproszczony:

  •   dla baterii akumulatorów klasycznych:
b baterie akumulatorow wz02
(2)
  • dla baterii akumulatorów VRLA:
b baterie akumulatorow wz03
(3)

Jeżeli w pomieszczeniu z akumulatorami wolna przestrzeń V spełnia następujący warunek:

b baterie akumulatorow wz04
(4)

gdzie:

Vp – objętość pomieszczenia z akumulatorami, w [m3],

Vu – objętość, jaką zajmują akumulatory ze stojakami oraz inne wyposażenie pomieszczenia, w [m3],

to wystarczające jest zastosowanie wentylacji grawitacyjnej, z umieszczonymi po przeciwnych stronach pomieszczenia otworami: dolotowym i wylotowym.

Każdy z tych otworów musi mieć powierzchnię nie mniejszą od określonej wzorem [6]:

b baterie akumulatorow wz05
(5)

gdzie:

Ap – powierzchnia przekrojów otworów zewnętrznych i wewnętrznych, w [cm2].

W takim przypadku otwory wentylacyjne należy umieścić na przeciwległych ścianach. Jeżeli jest to niemożliwe i otwory wentylacyjne muszą zostać wykonane na tych samych ścianach, to odległość pomiędzy nimi nie może być mniejsza niż 2 m. Ten sam wymóg dotyczy instalowania wentylatorów wyciągowych, których odległość nie może być mniejsza niż 2 m.

Podane wymagania mają charakter orientacyjny. Opracowanie projektu wentylacji pomieszczenia bateryjnego jest zagadnieniem wymagającym specjalistycznej wiedzy i powinno być opracowane przez uprawnionego projektanta branży sanitarnej. Rola projektanta elektryka ogranicza się do zaprojektowania układu sterowania i zasilania wentylatorów.

Wentylacja pomieszczenia bateryjnego powinna spełniać wymagania według Rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (DzU nr 109/2010, poz. 719) (pomieszczenie zagrożone wybuchem to pomieszczenie, w którym spodziewany przyrost ciśnienia przekracza wartość 5 kPa) [8].

W pomieszczeniach bateryjnych ważna jest również klimatyzacja z uwagi na znaczne ilości ciepła wydzielanego przez ładowane lub rozładowywane akumulatory. Wzrost lub zmniejszenie temperatury pomieszczenia od wartości 20°C skutkuje odpowiednio zwiększeniem lub zmniejszeniem pojemności baterii. Dla celów praktycznych ilość ciepła wydzielanego podczas rozładowywania akumulatorów można oszacować ze wzoru [6]:

b baterie akumulatorow wz06
(6)

gdzie:

I – przewidywany maksymalny prąd rozładowania, w [A],

n – liczba gałęzi równoległych pracujących w czasie rozładowania, w [-],

Q – ilość ciepła wydzielanego w czasie t, w [J],

R – rezystancja jednej gałęzi szeregowej akumulatorów (rezystancję dla pojedynczego ogniwa podają producenci baterii w swoich katalogach), w [Ω],

t – przewidywany czas rozładowania, w [s].

Czytaj też: Eksploatacja baterii kwasowo-ołowiowych w skrajnych warunkach termicznych >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Akumulatory stosowane w zasilaczach UPS mają napięcie znamionowe 12 V (rzadziej stosuje się akumulatory o napięciu 6 V). Są one zbudowane z pojedynczych cel o napięciu znamionowym 2 V. W razie potrzeby akumulatory te łączy się równolegle, w celu zwiększenia ich pojemności lub szeregowo – w celu zwiększenia napięcia. Przykładowe warianty układu baterii akumulatorów przedstawia rys. 3.

Baterie akumulatorów powinny być budowane z ogniw tego samego typu, pochodzących z tej samej serii produkcyjnej ze względu na rezystancję wewnętrzną, która decyduje o równomierności rozpływu prądów w poszczególnych gałęziach. Zaleca się instalowanie zabezpieczenia zwarciowego w każdym biegunie każdej gałęzi, możliwie blisko akumulatorów. Ponadto należy instalować zabezpieczenia centralne w każdym biegunie, zgodnie z zasadami przedstawionymi na rys. 3.

b baterie akumulatorow rys03
Rys. 3. Przykładowe warianty łączenia baterii akumulatorów oraz ich zabezpieczeń: a) jedna gałąź szeregowa, b) jedna gałąź dwuczęściowa z punktem środkowym, c) trzy gałęzie równoległe; d) trzy gałęzie równoległe 2-częściowe z punktem środkowym [1]

Dobór zabezpieczeń należy wykonać na podstawie spodziewanego prądu obciążenia znamionowego oraz spodziewanych prądów zwarciowych. Ponieważ rezystancja wewnętrzna akumulatorów stosowanych w zasilaczach UPS jest uzależniona od typu akumulatora i wynosi (0,5–3) mΩ/100 Ah, zwarcie będzie skutkowało przepływem prądów o dużej wartości, co należy uwzględnić przy doborze zabezpieczeń oraz doborze oprzewodowania.

Szczegółowe wymagania w zakresie metodyki pomiarów oraz obliczania rezystancji wewnętrznej akumulatorów można znaleźć w normie PN-EN 60896-21 2007 Akumulatory ołowiowe. Część 21: Typy z zaworami. Metody badań [7].

Zgodnie z zaleceniami EUROBAT (zrzeszenie europejskich producentów akumulatorów) dotyczącymi akumulatorów VRLA, liczba równolegle połączonych gałęzi akumulatorów, ze względu na prądy gałęziowe, nie może przekraczać czterech gałęzi.

Pojemność akumulatora podawana jest w Ah lub przez prąd rozładowania w czasie 20 godzin w temperaturze 20°C, do osiągnięcia napięcia końcowego pojedynczej celi Uk = 1,7 V (oznaczenie C20). Oznacza to, że akumulator o pojemności np. Q = 100 Ah będzie rozładowywany przez 20 godzin prądem o wartości:

Dla ułatwienia posługiwania się tymi wartościami wprowadzono jednostkę krotności pojemności znamionowej C, która wyraża prąd jednogodzinnego rozładowania określony jako 1C. Oznacza to, że akumulator o pojemności np. Q = 100 Ah będzie rozładowywany przez jedną godzinę prądem o wartości 100 A, ale prąd rozładowania oznaczony jako 0,1C oznacza wartość prądu 10 A i czas rozładowania akumulatora wynoszący 10 godzin.

Cechą charakterystyczną akumulatorów jest to, że im prąd rozładowania większy, tym mniejsza pojemność dysponowana, podobnie, im temperatura niższa, tym pojemność dysponowana mniejsza. Wpływ temperatury i prądu rozładowania na pojemność akumulatora przedstawia rys. 4.

Analizując rys. 4 należy zauważyć, że dla prądu rozładowania wynoszącego 0,1C czas rozładowania 10-godzinnego w temperaturze –10°C zostanie skrócony do około 80%, czyli dysponowana pojemność akumulatora wyniesie 80% jego znamionowej pojemności. Natomiast przy prądzie rozładowania wynoszącym 1C w temperaturze 200C pojemność akumulatora wyniesie około 60% jego pojemności znamionowej, przez co czas rozładowania do uzyskania napięcia odcięcia Uk, wyniesie około 30 minut (rys. 5.).

Przy doborze akumulatora należy pamiętać, że przy pracy w temperaturze niższej od określonej przez producenta pojemność akumulatora będzie niższa od pojemności znamionowej, co spowoduje skrócenie czasu pracy przy zasilaniu urządzeń. Jeżeli wymagana jest praca akumulatora w niskich temperaturach, należy dobrać akumulator o większej pojemności znamionowej.

Podczas eksploatacji akumulatorów bardzo istotne znaczenie ma niedopuszczenie do rozładowania poniżej napięcia końcowego Uk zwanego powszechnie „napięciem odcięcia”, tj. wartości, przy której po rozładowaniu akumulator zachowuje znamionową pojemność oraz znamionową żywotność. Napięcie to zależy od wartości prądu rozładowania i nie jest wartością stałą w odniesieniu do pojedynczego akumulatora. Przykładowe krzywe rozładowania akumulatora o pojemności 210 Ah w temperaturze 25°C przy różnych wartościach prądu rozładowania przedstawia rys. 5.

b baterie akumulatorow rys04
Rys. 4. Wpływ temperatury i prądu rozładowania na pojemność akumulatora [1]
b baterie akumulatorow rys05
Rys. 5. Przykładowe krzywe rozładowania akumulatora w temperaturze 25°C przy
różnych wartościach prądów rozładowania [9]

Jeżeli akumulator zostanie rozładowany do napięcia o wartości poniżej krzywej odcięcia, to jego pojemność zmniejszy się oraz zmniejszy się jego żywotność.

Napięcie odcięcia dla określonych prądów rozładowania podają producenci akumulatorów. Rozładowanie akumulatora poniżej wartości napięcia odcięcia grozi jego trwałym uszkodzeniem.

Każdy akumulator, którego pojemność spadła do wartości 80% jego pojemności znamionowej, należy wycofać z eksploatacji. Akumulatory SLA naładowane do pojemności znamionowej, przechowywane w temperaturze 20°C, tracą średnio 3% pojemności w ciągu miesiąca [3].

Przechowywanie akumulatorów SLA w stanie nienaładowanym może prowadzić do zmiany polaryzacji, co będzie skutkowało tym, że staną się one izolatorami. Czas przechowywania naładowanych akumulatorów SLA jest uzależniony od temperatury i wynosi:

  • 12 miesięcy w temperaturze (0–20)°C,
  • 9 miesięcy w temperaturze (21–30)°C,
  • 5 miesięcy w temperaturze (31–40)°C,
  • 2,5 miesiąca w temperaturze (41–50)°C.
b baterie akumulatorow rys06
Rys. 6. Przykładowe charakterystyki samorozładowania akumulatorów SLA
w funkcji czasu, dla różnych temperatur składowania [9]

Graniczną temperaturą pracy lub przechowywania akumulatorów SLA jest temperatura +55°C. Należy jednak pamiętać, że w warunkach eksploatacji temperatura +55°C jest dopuszczona przejściowo. Ciągłe jej utrzymywanie powoduje skrócenie projektowanego okresu żywotności baterii do około 15% okresu projektowanego czasu eksploatacji.

Charakterystyki samorozładowania akumulatorów SLA w funkcji czasu dla różnych temperatur składowania przedstawia rys. 6.

Każde podwyższenie temperatury pracy akumulatora o (8–10)°C ponad temperaturę optymalną powoduje skrócenie czasu eksploatacji o połowę. Podobnie na długość eksploatacji akumulatorów ma wpływ głębokość rozładowania lub liczba cykli ładowania i rozładowania.

Przykładowe charakterystyki żywotności akumulatorów przy pracy buforowej lub pracy cyklicznej przedstawia rys. 7a i rys. 7b.

b baterie akumulatorow rys07a
Rys. 7a. Przykładowe charakterystyki żywotności akumulatora przy pracy buforowej [9]
b baterie akumulatorow rys07b
Rys. 7b. Przykładowe charakterystyki żywotności akumulatora przy pracy cyklicznej [9]

Producenci akumulatorów w kartach katalogowych podają charakterystyki stałoprądowego oraz stałomocowego rozładowania. Charakterystyki te są analogiczne i podawane w postaci tabel. W tab. 2 i tab. 3 zamieszczono ich przykłady dla akumulatora o pojemności 210 Ah.

b baterie akumulatorow tab02
Tab. 2. Przykład stałoprądowej charakterystyki rozładowania akumulatora o pojemności 210 Ah w temperaturze 250C, prąd w [A] [9]
b baterie akumulatorow tab03
Tab. 3. Przykładowa charakterystyka stałomocowego rozładowania akumulatora o pojemności 210 Ah, w temperaturze 250C, moc w [W/ogniwo] [9]

Baterie akumulatorów stosowanych w zasilaczach UPS powinny być dobierane do mocy znamionowej odbiorników zasilanych przez UPS. Za podstawę doboru należy przyjąć wymaganą moc czynną/ogniwo, którą należy wyznaczyć ze wzoru:

gdzie:

  • Pogn – wymaga moc czynna pojedynczego ogniwa przy stałomocowym rozładowaniu akumulatora do określonego napięcia odcięcia Uk, w [W/ogniwo],
  • S – znamionowa moc pozorna odbiorników, w [VA],
  • cosφz – współczynnik mocy, przy którym pracuje zasilacz UPS (współczynnik mocy zasilanych odbiorników, w [-],
  • η – sprawność zasilacza UPS dla zasilanych odbiorników, w [-],
  • n – liczba ogniw w akumulatorze (przy napięciu akumulatora 12 V – 6 ogniw; przy napięciu akumulatora 6 V – 3 ogniwa),
  • Un UPS – napięcie znamionowe w torze DC zasilacza UPS, w [V],
  • Un akum. – napięcie znamionowe bloku akumulatora, w [V]
b baterie akumulatorow wz09
– wymagana liczba akumulatorów w pojedynczej gałęzi szeregowej, w [-].

Przykład

Należy dobrać akumulatory oraz ich zabezpieczenia do zasilacza UPS o mocy 400 kVA, zasilającego odbiorniki przy współczynniku mocy cosφz= 0,8 oraz sprawności zasilacza η=0,9. Napięcie odcięcia Uk = 1,7 V/ogniwo. Wymagany czas pracy zasilanych odbiorników wynosi 30 minut. Rezystancja wewnętrzna akumulatora Rw = 2,5 mW.

Wymagana liczba gałęzi równoległych „x” oraz moc czynna w pojedynczej gałęzi P1g: na podstawie tab. 3., Pogn dysp = 471,5 W/ogniwo/Uk = 1,7 V/t = 30 minut:

Spodziewany prąd obciążenia pojedynczej gałęzi:

Spodziewany prąd obciążenia całej baterii akumulatorów:

Spodziewane prądy zwarciowe:

  • zwarcie w pojedynczej gałęzi:
  • zwarcie obejmujące całą baterię akumulatorów:

Do zabezpieczenia poszczególnych gałęzi należy przyjąć bezpieczniki topikowe WT1gG250, natomiast do zabezpieczenia głównego bezpieczniki topikowe WTN3gG1000. W obydwu przypadkach odporność zwarciowa dobieranych bezpieczników jest wystarczająca.

Na rys. 8 a i rys. 8b przedstawiono przykładowe charakterystyki ładowania akumulatorów pracujących w układzie buforowym oraz cyklicznym. Z rysunku wynika, że całkowicie rozładowany akumulator do napięcia odcięcia Uk zostanie naładowany po 24 godzinach.

b baterie akumulatorow rys08a
Rys. 8a. Przykładowe charakterystyki ładowania akumulatora przy pracy buforowej [9]
b baterie akumulatorow rys08b
Rys. 8b. Przykładowe charakterystyki ładowania akumulatora przy pracy cyklicznej [9]

Przedstawione charakterystyki dotyczą temperatury 20°C. W przypadku innej temperatury, należy wprowadzić poprawkę wynoszącą przeciętnie ±3 mV/°C/ogniwo. Znak ujemny dotyczy temperatur wyższych od optymalnych, a znak plus – temperatur niższych od optymalnych.

b baterie akumulatorow rys09
Rys. 9. Przykładowa zależność napięcia ładowania od temperatury [1]

Przykładową zależność napięcia ładowania od temperatury przedstawia rys. 9.

Literatura

1. T. Sutkowski, Rezerwowe i bezprzerwowe zasilanie w energię elektryczną. Urządzenia i układy, COSiW SEP, Warszawa 2007.

2. A. Czerwiński, Akumulatory, baterie, ogniwa, WKŁ, Warszawa 2013.

3. Podręcznik projektanta systemów sygnalizacji pożarowej, SITP, ITB, Warszawa, marzec 2009

4. J. Wiatr, M. Orzechowski, M. Miegoń, A. Przasnyski, Poradnik projektanta systemów zasilania awaryjnego i gwarantowanego, wyd. 2, EATON, Warszawa 2008.

5. Z. Łęgosz, Stacjonarne baterie kwasowo-ołowiowe w systemach zasilania potrzeb własnych, „Wiadomości energetyczne” nr 7-8/2004.

6. PN-EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1: Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych.

7. PN-EN 60896-21:2007 Akumulatory ołowiowe. Część 21: Typy z zaworami. Metody badań.

8. Rozporządzenie Ministra Sprawa Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (DzU nr 109/2010, poz. 719).

9. Karta katalogowa akumulatora EPL 210-12 – www.aval.com.pl.

Czytaj też: Jak wyeliminować problemy z mocą dzięki zasilaczowi UPS? >>>

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Dobór mocy źródeł zasilania awaryjnego i gwarantowanego

Dobór mocy źródeł zasilania awaryjnego i gwarantowanego

W artykule zostały przedstawione podstawowe zasady doboru mocy zespołu prądotwórczego oraz zasilacza UPS, pracujących w układach zasilania budynków. Opisana została metodyka projektowania ochrony przeciwporażeniowej...

W artykule zostały przedstawione podstawowe zasady doboru mocy zespołu prądotwórczego oraz zasilacza UPS, pracujących w układach zasilania budynków. Opisana została metodyka projektowania ochrony przeciwporażeniowej przez samoczynne wyłączenie oraz sterowanie napięciem dotykowym do wartości dopuszczalnej długotrwale w instalacjach zasilanych z zespołu prądotwórczego oraz zasilacza UPS. Przedstawiona metodyka jest zgodna z wymaganiami normy PN-HD 60364-4-41:2009 Instalacje eklektyczne niskiego napięcia....

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania...

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania energii

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności (część 2)

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

W artykule scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

W artykule przedstawiono porównanie akumulatorów litowo-jonowych z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej.

W artykule przedstawiono porównanie akumulatorów litowo-jonowych z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej.

Przewody szynowe w układach zasilania gwarantowanego

Przewody szynowe w układach zasilania gwarantowanego

W artykule piszemy m.in. o specyfice instalacji układów gwarantowanego zasilania, prądach znamionowych przewodów szynowych, spadkach napięcia, sprawdzeniu parametrów zwarciowych, nadto zestawienie najważniejszych...

W artykule piszemy m.in. o specyfice instalacji układów gwarantowanego zasilania, prądach znamionowych przewodów szynowych, spadkach napięcia, sprawdzeniu parametrów zwarciowych, nadto zestawienie najważniejszych cech instalacji przewodów szynowych w układach zasilania gwarantowanego.

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

Analiza układów zasilania obiektów użyteczności publicznej o różnym stopniu niezawodności

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności...

W dwuczęściowym artykule przedstawiono różne układy zasilania obiektów użyteczności publicznej. Scharakteryzowano różne standardy ciągłości zasilania. Przedstawiono klasyfikację odbiorców w zależności od wymagań niezawodnościowych. Sformułowano ponadto uwagi i wnioski końcowe.

Wymagania stawiane pomieszczeniom przeznaczonym do instalacji zespołów prądotwórczych i zasilaczy UPS

Wymagania stawiane pomieszczeniom przeznaczonym do instalacji zespołów prądotwórczych i zasilaczy UPS

Autor przedstawia niezbędne informacje związane z projektem budowlanym w zakresie instalacji zespołu prądotwórczego, jego warunkach, kwestii związanych z tłumieniem drgań, układu chłodzenia i wentylacji...

Autor przedstawia niezbędne informacje związane z projektem budowlanym w zakresie instalacji zespołu prądotwórczego, jego warunkach, kwestii związanych z tłumieniem drgań, układu chłodzenia i wentylacji oraz dodatkowych wymagać, w tym wymagań dla pomieszczeń z akumulatorami oraz odnoszących się do w zakresie wentylacji.

Źródła rozproszone jako element zapewnienia niezawodności zasilania w obiektach użyteczności publicznej

Źródła rozproszone jako element zapewnienia niezawodności zasilania w obiektach użyteczności publicznej

Autor publikacji przedstawił wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej oraz omówił możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność...

Autor publikacji przedstawił wymagania dotyczące pewności zasilania wybranych budynków użyteczności publicznej oraz omówił możliwości wykorzystania źródeł generacji rozproszonej, które mogą zwiększyć niezawodność zasilania w energię elektryczną.

Wykorzystanie zespołów prądotwórczych do tymczasowego zasilania elektroenergetycznych sieci nn

Wykorzystanie zespołów prądotwórczych do tymczasowego zasilania elektroenergetycznych sieci nn

Autor omawia m. in. zasady obliczania mocy zapotrzebowanej w budynkach mieszkalnych i projektowania ochrony przeciwporażeniowej, układy sieci elektroenergetycznych nn, zasilające odbiory komunalne, dobór...

Autor omawia m. in. zasady obliczania mocy zapotrzebowanej w budynkach mieszkalnych i projektowania ochrony przeciwporażeniowej, układy sieci elektroenergetycznych nn, zasilające odbiory komunalne, dobór mocy zespołu prądotwórczego, ochronę przeciwporażeniową w warunkach zasilania z generatora zespołu prądotwórczego oraz odmienność warunków zasilania z zespołu prądotwórczego w odniesieniu do Systemu Elektroenergetycznego, a ponadto formułuje wnioski.

Definicje mocy elektrycznych a nowoczesne odbiorniki energii

Definicje mocy elektrycznych a nowoczesne odbiorniki energii

Autor artykułu zajął się problematyką precyzyjnego zdefiniowania mierzonych wielkości mocy pod kątem rozliczeń finansowych z tytułu jej poboru. Kolejno przedstawia zagadnienia definicji mocy, jej fizycznych...

Autor artykułu zajął się problematyką precyzyjnego zdefiniowania mierzonych wielkości mocy pod kątem rozliczeń finansowych z tytułu jej poboru. Kolejno przedstawia zagadnienia definicji mocy, jej fizycznych wielkości i bilansu, a także nowoczesnych odbiorników energii elektrycznej oraz nowoczesnych układów przetwarzania energii elektrycznej.

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Analiza techniczno-ekonomiczna metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia...

Artykuł przedstawia analizę techniczno-ekonomiczną metod redukcji zapotrzebowania na energię elektryczną w obiektach typu data center. Wykonano ją metodą całkowitego kosztu posiadania TCO. Wykonano obliczenia dla 2 obiektów data center (duży oraz średni), każdy w trzech wariantach. Sformułowano wnioski końcowe.

Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej

Generacja rozproszona jako element zwiększenia niezawodności zasilania w budynkach użyteczności publicznej

W artykule przedstawiono wymagania dotyczące pewności zasilania obiektów szpitalnych. Omówiono uwarunkowania prawne ich zasilania, gwarancje spełnienia takich warunków, opisano źródła zasilania rezerwowego,...

W artykule przedstawiono wymagania dotyczące pewności zasilania obiektów szpitalnych. Omówiono uwarunkowania prawne ich zasilania, gwarancje spełnienia takich warunków, opisano źródła zasilania rezerwowego, w tym nowoczesne i niekonwencjonalne, podano też przykłady nowoczesnych rozwiązań.

Pomieszczenia z zespołami prądotwórczymi - podstawowe wymagania

Pomieszczenia z zespołami prądotwórczymi - podstawowe wymagania

W artykule autor przestawił uwagi odnoszące się do kwestii dotyczących sporządzenia projektu instalacji zespołu prądotwórczego, warunków jego instalowania, spraw związanych z tłumieniem drgań, układu chłodzenia...

W artykule autor przestawił uwagi odnoszące się do kwestii dotyczących sporządzenia projektu instalacji zespołu prądotwórczego, warunków jego instalowania, spraw związanych z tłumieniem drgań, układu chłodzenia oraz dodatkowych wymagań.

Układy samoczynnego załączania rezerwy, czyli „SZybki Ratunek” na czarną godzinę

Układy samoczynnego załączania rezerwy, czyli „SZybki Ratunek” na czarną godzinę

Układy samoczynnego załączania rezerwy, zwane w skrócie SZR, pozwalają na automatyczne załączanie odbiorników do toru rezerwowego w przypadku, gdy w torze zasilania podstawowego nastąpi zanik zasilania....

Układy samoczynnego załączania rezerwy, zwane w skrócie SZR, pozwalają na automatyczne załączanie odbiorników do toru rezerwowego w przypadku, gdy w torze zasilania podstawowego nastąpi zanik zasilania. Bez układów samoczynnego załączania rezerwy nie mogłyby funkcjonować szpitale, ale i pracownicy rozmaitych urzędów czy centrów przetwarzania danych tzw. data center, nie mogliby spokojnie pracować.

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Baterie litowo-jonowe - zastosowanie produktu w energetyce zawodowej i przemysłowej, w górnictwie miedzi i węgla kamiennego, w motoryzacji

Autorzy porównali akumulatory litowo-jonowe z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej oraz omówili wymagania dla akumulatorów wykorzystywanych w zasobnikach. Opisali też zasadę...

Autorzy porównali akumulatory litowo-jonowe z kwasowo-ołowiowymi w kontekście zastosowań w energetyce rozproszonej oraz omówili wymagania dla akumulatorów wykorzystywanych w zasobnikach. Opisali też zasadę działania ogniw litowo-jonowych i najważniejsze rodzaje ogniw oraz porównali ich parametry i skonfrontowali z parametrami ogniw ołowiowych. Szczególną uwagę zwrócili na żywotność cykliczną, odporność na temperaturę i małe wymagania eksploatacyjne, w tym możliwość stosowania w pomieszczeniach ogólnego...

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Problematyka niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center (część 1.)

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności,...

Artykuł zawiera wybrane zagadnienia dotyczące niezawodności zasilania gwarantowanego oraz systemu informatycznego w obiektach data center. Autor przedstawia stosowane miary niezawodności i dostępności, omawia aspekty techniczne i ekonomiczne związane z niezawodnością oraz formułuje wnioski końcowe.

Zasady doboru klimatyzacji dla pomieszczeń biurowych i małych serwerowni

Zasady doboru klimatyzacji dla pomieszczeń biurowych i małych serwerowni

Zastosowanie klimatyzacji umożliwia utrzymanie właściwych warunków środowiskowych w pomieszczeniach, które zapewniają komfort pracy ludzi oraz odbierają zyski ciepła od urządzeń elektronicznych. Urządzenia...

Zastosowanie klimatyzacji umożliwia utrzymanie właściwych warunków środowiskowych w pomieszczeniach, które zapewniają komfort pracy ludzi oraz odbierają zyski ciepła od urządzeń elektronicznych. Urządzenia klimatyzacyjne mają znaczący wpływ na składniki klimatu pomieszczenia: temperaturę, wilgotność powietrza, jego czystość oraz ruch (cyrkulację powietrza).

Zasilacze bezprzerwowe (UPS)

Zasilacze bezprzerwowe (UPS)

Zasilacz UPS to urządzenie przeznaczone do zapewnienia bezprzerwowej pracy urządzeń komputerowych, łączności oraz innych urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia i inne zakłócenia występujące...

Zasilacz UPS to urządzenie przeznaczone do zapewnienia bezprzerwowej pracy urządzeń komputerowych, łączności oraz innych urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia i inne zakłócenia występujące w sieci zasilającej. Jest on urządzeniem energoelektronicznym, umożliwiającym zasilanie odbiorników z baterii lub innego magazynu energii elektrycznej, w przypadku zaniku napięcia w sieci zasilającej.

Niezawodność zasilania gwarantowanego dla obiektów typu data center

Niezawodność zasilania gwarantowanego dla obiektów typu data center

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek...

Obiekty typu data center powinny charakteryzować się szeregiem istotnych dla tego typu obiektów cech [9]. Należą do nich m.in.[10]: 1. Bezpieczeństwo fizyczne. Oznacza to chroniony i zabezpieczony budynek wyposażony w systemy kontroli dostępu, przeciwdziałania napadom i sabotażom, telewizję przemysłową, odporny na zalanie i usytuowany poza strefą zalewową, aktywną sejsmicznie.

Niezawodność zasilania w kontekście układów SZR

Niezawodność zasilania w kontekście układów SZR

Zaprojektowanie możliwie najbardziej niezawodnego systemu zasilania w konkretnym obiekcie wymaga wiedzy o wymaganiach i zainstalowanych odbiornikach. W zależności od rodzaju odbiorników i stopnia ich ważności...

Zaprojektowanie możliwie najbardziej niezawodnego systemu zasilania w konkretnym obiekcie wymaga wiedzy o wymaganiach i zainstalowanych odbiornikach. W zależności od rodzaju odbiorników i stopnia ich ważności dla użytkownika stosowane są różne rozwiązania układów sieci zasilającej oraz zasilania gwarantowanego. Podstawowym wyznacznikiem doboru odpowiedniego układu zasilania jest wymagana niezawodność systemu zasilania. Aby zmniejszyć możliwość awarii systemu zasilania, stosuje się zwielokrotnienie...

Zasilacz UPS – na co zwrócić uwagę dokonując wyboru (część 2.)

Zasilacz UPS – na co zwrócić uwagę dokonując wyboru (część 2.)

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu...

Zasilacze UPS to urządzenia energoelektroniczne zapewniające bezprzerwową pracę urządzeń wrażliwych na przerwy w zasilaniu, wahania napięcia oraz zakłócenia występujące w sieci zasilającej. Przy projektowaniu danego systemu należy uwzględnić typ zasilacza, biorąc pod uwagę jego niezawodność oraz sposób połączenia odbiorników i ich grup. W fazie przygotowania projektu należy wziąć pod uwagę znaczenie odbiorników i wymagany czas podtrzymania zasilania. Praca niektórych z nich może być zakończona bezpośrednio...

Dobór mocy zespołu prądotwórczego (część 2)

Dobór mocy zespołu prądotwórczego (część 2)

W drugiej części artykułu publikowanego w nr. 9/2013 skupimy się na zasadach projektowania ochrony przeciwporażeniowej oraz jej ocenie w istniejących układach zasilania awaryjnego.

W drugiej części artykułu publikowanego w nr. 9/2013 skupimy się na zasadach projektowania ochrony przeciwporażeniowej oraz jej ocenie w istniejących układach zasilania awaryjnego.

Dobór mocy zespołu prądotwórczego (część 1)

Dobór mocy zespołu prądotwórczego (część 1)

Wielokrotnie zachodzi konieczność projektowania układów zasilania o zwiększonej pewności dostaw energii elektrycznej. Nie zawsze druga linia elektroenergetyczna doprowadzona do obiektu budowlanego spełnia...

Wielokrotnie zachodzi konieczność projektowania układów zasilania o zwiększonej pewności dostaw energii elektrycznej. Nie zawsze druga linia elektroenergetyczna doprowadzona do obiektu budowlanego spełnia oczekiwania odbiorcy. Często zachodzi potrzeba instalowania źródła zasilania awaryjnego, którym jest zespół prądotwórczy oraz zasilacza UPS. Obydwa te źródła wymagają odmiennego podejścia przy doborze ich mocy oraz innego sposobu projektowania i oceny ochrony przeciwporażeniowej w stosunku do systemu...

Komentarze

  • Igor Igor, 04.04.2016r., 08:56:41 W kwestii UPS ciekawe rozwiązanie znalazłem też tu :) zainteresowanym tematem polecam: http://www.elektro.info.pl/artykul/id6309,w-polowie-2015-roku-eaton-wprowadzil-ups-ktory-zapewnia-niezrownana-elastycznosc-systemu-oraz-oszczedna-ciaglosc-biznesowa

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.