elektro.info

Nowoczesne oświetlenie Neonica

Nowoczesne oświetlenie Neonica

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą...

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą zarówno układu mebli, wykorzystanych materiałów czy koloru ścian. Jednak przede wszystkim warto dokładnie i z uwagą podjąć decyzje związane z wyborem odpowiedniego oświetlenia.

news Skuter elektryczny od Seata

Skuter elektryczny od Seata

Seat przedstawił nowy, całkowicie elektryczny skuter, który pojawi się na drogach w przyszłym roku. Model e-Scooter został zaprojektowany w taki sposób, aby jak najlepiej wpisać się w rosnący trend współdzielonej...

Seat przedstawił nowy, całkowicie elektryczny skuter, który pojawi się na drogach w przyszłym roku. Model e-Scooter został zaprojektowany w taki sposób, aby jak najlepiej wpisać się w rosnący trend współdzielonej mobilności.

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

Baterie akumulatorów stosowanych w zasilaczach UPS oraz warunki ich bezpiecznej eksploatacji

mgr inż. Julian Wiatr | 2015-11-20

Wysokie wymagania dotyczące pewności dostaw energii elektrycznej do odbiorników o znaczeniu krytycznym zmuszają projektantów do projektowania układów zasilania wyposażonych w zasilacze UPS. W zasilaczach tych ważnym elementem są baterie akumulatorów, które eksploatowane w niewłaściwy sposób stwarzają zagrożenie wybuchowe. Od poprawności ich doboru zależy czas eksploatacji oraz poprawne funkcjonowanie systemu zasilania gwarantowanego.

Akumulatory stosowane w zasilaczach UPS stanowią magazyn energii i w zależności od typu zasilacza przeznaczone są do pracy cyklicznej (zasilacze typu VFD) lub do pracy buforowej (zasilacze typu VFI):

  • w przypadku pracy cyklicznej akumulator najpierw jest ładowany, a następnie odłączany od prostownika i przyłączany do zasilanych odbiorników.
  • w przypadku pracy buforowej zasilanie odbiornika realizowane jest z przekształtnika, który jednocześnie ładuje baterie akumulatorów. W tych warunkach akumulator pozostaje w gotowości do przejęcia obciążenia na wypadek zaniku napięcia w obwodzie zasilającym prostownik, pozostając w stanie pełnego naładowania.

 

Uproszczone układy współpracy baterii akumulatorów z prostownikiem przedstawia rys. 1.

b baterie akumulatorow rys01
Rys. 1. Układy współpracy akumulatorów z prostownikiem: a) praca cykliczna, b) praca buforowa [1]

W zasilaczach UPS stosowane są akumulatory klasyczne o gęstości elektrolitu 1,24 kg/l lub akumulatory wykonane w technologii VRLA (Valve Regulated Lead Acid), czyli akumulatory regulowane z zaworem jednokierunkowym umożliwiającym usuwanie nadmiaru wodoru, o gęstości elektrolitu (1,25–1,3) kg/l. Akumulatory VRLA produkowane są w dwóch technologiach:

  • AGM, w której elektrolit jest umieszczony w separatorze międzypłytowym wykonanym z włókna szklanego o dużej porowatości, które eliminuje niebezpieczeństwo wycieku elektrolitu oraz zabezpiecza przed możliwością powstania zwarcia pomiędzy płytami dodatnią i ujemną,
  • SLA, w której elektrolit jest zestalony w postaci żelu, stanowiącego tiksotropową odmianę dwutlenku krzemu (SiO2).

 

Porównanie wybranych cech akumulatorów VRLA odmiany AGM oraz żelowej (SLA) przedstawia tab. 1.

b baterie akumulatorow tab01
Tab. 1. Zestawienie porównawcze wybranych cech akumulatorów VRLA odmiany AGM oraz SLA [5]

W akumulatorach klasycznych wodór oraz tlen stanowiące produkt elektrochemicznego rozkładu wody są usuwane na zewnątrz przez otwory technologiczne wykonane w korkach. Natomiast w akumulatorach VRLA, które często błędnie nazywane są „szczelnymi” lub „hermetycznymi”, skutki reakcji elektrolitycznego rozkładu wody występują znacznie mniej intensywnie ze względu na wtórne reakcje powstających gazów prowadzące do znacznej ich redukcji przez ponowne powstanie wody i powrót do elektrolitu. Zagospodarowywanie powstających gazów jest jednak niecałkowite i ich nadmiar jest usuwany na zewnątrz akumulatorów przez jednokierunkowe zawory.

b baterie akumulatorow rys02
Rys. 2. Zależność energii zapłonowej od składu mieszanin wodoru z powietrzem, gdzie: Z1 – minimalna energia zapłonu Emin = 0,019 mJ, Vd – dolna granica wybuchowości (DGW), Vg – górna granica wybuchowości (GGW) [4]

Wraz z upływem czasu eksploatacji wskutek zjawiska starzenia lub błędnego jej prowadzenia mogą pojawić się ilości gazów znacznie przekraczające te powstające w normalnych warunkach. Świadczy to o tym, że akumulatory te, podobnie jak akumulatory klasyczne, stwarzają zagrożenie wskutek wprowadzania wodoru (H2) do pomieszczenia bateryjnego, który w mieszaninie z powietrzem przy stężeniu w zakresie (4–75)% staje się wybuchowy. Zakres wybuchowości wodoru został przedstawiony na rys. 2.

Czytaj też: Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Przy stężeniu stechiometrycznym, wynoszącym około 29% wodoru (H2) w powietrzu, do wybuchu wystarczy energia o wartości 0,019 mJ. W praktyce stosuje się wentylację mechaniczną, choć po spełnieniu określonych warunków dopuszcza się wentylację grawitacyjną.

Sterowanie wentylacją mechaniczną przedziału bateryjnego należy realizować z wykorzystaniem układów detekcji stężenia wodoru. Układy automatyki powinny mieć ustawione dwa progi wykrywania stężenia wodoru:

  • 10% DGW, którego przekroczenie zostanie zasygnalizowane oraz zostanie uruchomiona wentylacja powodująca zwiększenie szybkości wymian powietrza o 100% w stosunku do warunków normalnych,
  • 30% DGW, którego przekroczenie spowoduje oprócz dalszego działania sygnalizacji akustyczno-dźwiękowej oraz wentylacji, wyłączenie ładowania baterii akumulatorów do chwili ustania zagrożenia.

Podstawowe wymagania w zakresie wentylacji przedziału bateryjnego wynikają bezpośrednio z normy PN‑EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1. Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych [6]. Przybliżoną wartość przepływu zapotrzebowanego powietrza w ciągu godziny, w [m3/h], można obliczyć ze wzoru [6]:

b baterie akumulatorow wz01
(1)

gdzie:

v – wymagane rozcieńczenie wodoru (100 – 4)/4 = 24,

q – wytworzony wodór: 0,45·10–3, w [m3/Ah],

s – współczynnik bezpieczeństwa,

Ig – prąd gazowania o wartości:

1 mA – dla baterii „zamkniętych” (z zaworem VRLA) przy zmiennym napięciu,

5 mA – dla baterii otwartych przy zmiennym napięciu,

8 mA – dla baterii” zamkniętych” (z zaworem VRLA) przy stałym napięciu ładowania,

20 mA – dla baterii otwartych przy stałym napięciu ładowania,

n – liczba ogniw baterii, w [-],

CB – pojemność baterii, w [Ah],

Qp – ilość wymaganego powietrza, w [m3/h].

Przyjmując współczynnik bezpieczeństwa s = 5, wzór na obliczenie Qp może być uproszczony:

Przyjmując współczynnik bezpieczeństwa s = 5, wzór na obliczenie Qp może być uproszczony:

  •   dla baterii akumulatorów klasycznych:
b baterie akumulatorow wz02
(2)
  • dla baterii akumulatorów VRLA:
b baterie akumulatorow wz03
(3)

Jeżeli w pomieszczeniu z akumulatorami wolna przestrzeń V spełnia następujący warunek:

b baterie akumulatorow wz04
(4)

gdzie:

Vp – objętość pomieszczenia z akumulatorami, w [m3],

Vu – objętość, jaką zajmują akumulatory ze stojakami oraz inne wyposażenie pomieszczenia, w [m3],

to wystarczające jest zastosowanie wentylacji grawitacyjnej, z umieszczonymi po przeciwnych stronach pomieszczenia otworami: dolotowym i wylotowym.

Każdy z tych otworów musi mieć powierzchnię nie mniejszą od określonej wzorem [6]:

b baterie akumulatorow wz05
(5)

gdzie:

Ap – powierzchnia przekrojów otworów zewnętrznych i wewnętrznych, w [cm2].

W takim przypadku otwory wentylacyjne należy umieścić na przeciwległych ścianach. Jeżeli jest to niemożliwe i otwory wentylacyjne muszą zostać wykonane na tych samych ścianach, to odległość pomiędzy nimi nie może być mniejsza niż 2 m. Ten sam wymóg dotyczy instalowania wentylatorów wyciągowych, których odległość nie może być mniejsza niż 2 m.

Podane wymagania mają charakter orientacyjny. Opracowanie projektu wentylacji pomieszczenia bateryjnego jest zagadnieniem wymagającym specjalistycznej wiedzy i powinno być opracowane przez uprawnionego projektanta branży sanitarnej. Rola projektanta elektryka ogranicza się do zaprojektowania układu sterowania i zasilania wentylatorów.

Wentylacja pomieszczenia bateryjnego powinna spełniać wymagania według Rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (DzU nr 109/2010, poz. 719) (pomieszczenie zagrożone wybuchem to pomieszczenie, w którym spodziewany przyrost ciśnienia przekracza wartość 5 kPa) [8].

W pomieszczeniach bateryjnych ważna jest również klimatyzacja z uwagi na znaczne ilości ciepła wydzielanego przez ładowane lub rozładowywane akumulatory. Wzrost lub zmniejszenie temperatury pomieszczenia od wartości 20°C skutkuje odpowiednio zwiększeniem lub zmniejszeniem pojemności baterii. Dla celów praktycznych ilość ciepła wydzielanego podczas rozładowywania akumulatorów można oszacować ze wzoru [6]:

b baterie akumulatorow wz06
(6)

gdzie:

I – przewidywany maksymalny prąd rozładowania, w [A],

n – liczba gałęzi równoległych pracujących w czasie rozładowania, w [-],

Q – ilość ciepła wydzielanego w czasie t, w [J],

R – rezystancja jednej gałęzi szeregowej akumulatorów (rezystancję dla pojedynczego ogniwa podają producenci baterii w swoich katalogach), w [Ω],

t – przewidywany czas rozładowania, w [s].

Czytaj też: Eksploatacja baterii kwasowo-ołowiowych w skrajnych warunkach termicznych >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Akumulatory stosowane w zasilaczach UPS mają napięcie znamionowe 12 V (rzadziej stosuje się akumulatory o napięciu 6 V). Są one zbudowane z pojedynczych cel o napięciu znamionowym 2 V. W razie potrzeby akumulatory te łączy się równolegle, w celu zwiększenia ich pojemności lub szeregowo – w celu zwiększenia napięcia. Przykładowe warianty układu baterii akumulatorów przedstawia rys. 3.

Baterie akumulatorów powinny być budowane z ogniw tego samego typu, pochodzących z tej samej serii produkcyjnej ze względu na rezystancję wewnętrzną, która decyduje o równomierności rozpływu prądów w poszczególnych gałęziach. Zaleca się instalowanie zabezpieczenia zwarciowego w każdym biegunie każdej gałęzi, możliwie blisko akumulatorów. Ponadto należy instalować zabezpieczenia centralne w każdym biegunie, zgodnie z zasadami przedstawionymi na rys. 3.

b baterie akumulatorow rys03
Rys. 3. Przykładowe warianty łączenia baterii akumulatorów oraz ich zabezpieczeń: a) jedna gałąź szeregowa, b) jedna gałąź dwuczęściowa z punktem środkowym, c) trzy gałęzie równoległe; d) trzy gałęzie równoległe 2-częściowe z punktem środkowym [1]

Dobór zabezpieczeń należy wykonać na podstawie spodziewanego prądu obciążenia znamionowego oraz spodziewanych prądów zwarciowych. Ponieważ rezystancja wewnętrzna akumulatorów stosowanych w zasilaczach UPS jest uzależniona od typu akumulatora i wynosi (0,5–3) mΩ/100 Ah, zwarcie będzie skutkowało przepływem prądów o dużej wartości, co należy uwzględnić przy doborze zabezpieczeń oraz doborze oprzewodowania.

Szczegółowe wymagania w zakresie metodyki pomiarów oraz obliczania rezystancji wewnętrznej akumulatorów można znaleźć w normie PN-EN 60896-21 2007 Akumulatory ołowiowe. Część 21: Typy z zaworami. Metody badań [7].

Zgodnie z zaleceniami EUROBAT (zrzeszenie europejskich producentów akumulatorów) dotyczącymi akumulatorów VRLA, liczba równolegle połączonych gałęzi akumulatorów, ze względu na prądy gałęziowe, nie może przekraczać czterech gałęzi.

Pojemność akumulatora podawana jest w Ah lub przez prąd rozładowania w czasie 20 godzin w temperaturze 20°C, do osiągnięcia napięcia końcowego pojedynczej celi Uk = 1,7 V (oznaczenie C20). Oznacza to, że akumulator o pojemności np. Q = 100 Ah będzie rozładowywany przez 20 godzin prądem o wartości:

Dla ułatwienia posługiwania się tymi wartościami wprowadzono jednostkę krotności pojemności znamionowej C, która wyraża prąd jednogodzinnego rozładowania określony jako 1C. Oznacza to, że akumulator o pojemności np. Q = 100 Ah będzie rozładowywany przez jedną godzinę prądem o wartości 100 A, ale prąd rozładowania oznaczony jako 0,1C oznacza wartość prądu 10 A i czas rozładowania akumulatora wynoszący 10 godzin.

Cechą charakterystyczną akumulatorów jest to, że im prąd rozładowania większy, tym mniejsza pojemność dysponowana, podobnie, im temperatura niższa, tym pojemność dysponowana mniejsza. Wpływ temperatury i prądu rozładowania na pojemność akumulatora przedstawia rys. 4.

Analizując rys. 4 należy zauważyć, że dla prądu rozładowania wynoszącego 0,1C czas rozładowania 10-godzinnego w temperaturze –10°C zostanie skrócony do około 80%, czyli dysponowana pojemność akumulatora wyniesie 80% jego znamionowej pojemności. Natomiast przy prądzie rozładowania wynoszącym 1C w temperaturze 200C pojemność akumulatora wyniesie około 60% jego pojemności znamionowej, przez co czas rozładowania do uzyskania napięcia odcięcia Uk, wyniesie około 30 minut (rys. 5.).

Przy doborze akumulatora należy pamiętać, że przy pracy w temperaturze niższej od określonej przez producenta pojemność akumulatora będzie niższa od pojemności znamionowej, co spowoduje skrócenie czasu pracy przy zasilaniu urządzeń. Jeżeli wymagana jest praca akumulatora w niskich temperaturach, należy dobrać akumulator o większej pojemności znamionowej.

Podczas eksploatacji akumulatorów bardzo istotne znaczenie ma niedopuszczenie do rozładowania poniżej napięcia końcowego Uk zwanego powszechnie „napięciem odcięcia”, tj. wartości, przy której po rozładowaniu akumulator zachowuje znamionową pojemność oraz znamionową żywotność. Napięcie to zależy od wartości prądu rozładowania i nie jest wartością stałą w odniesieniu do pojedynczego akumulatora. Przykładowe krzywe rozładowania akumulatora o pojemności 210 Ah w temperaturze 25°C przy różnych wartościach prądu rozładowania przedstawia rys. 5.

b baterie akumulatorow rys04
Rys. 4. Wpływ temperatury i prądu rozładowania na pojemność akumulatora [1]
b baterie akumulatorow rys05
Rys. 5. Przykładowe krzywe rozładowania akumulatora w temperaturze 25°C przy
różnych wartościach prądów rozładowania [9]

Jeżeli akumulator zostanie rozładowany do napięcia o wartości poniżej krzywej odcięcia, to jego pojemność zmniejszy się oraz zmniejszy się jego żywotność.

Napięcie odcięcia dla określonych prądów rozładowania podają producenci akumulatorów. Rozładowanie akumulatora poniżej wartości napięcia odcięcia grozi jego trwałym uszkodzeniem.

Każdy akumulator, którego pojemność spadła do wartości 80% jego pojemności znamionowej, należy wycofać z eksploatacji. Akumulatory SLA naładowane do pojemności znamionowej, przechowywane w temperaturze 20°C, tracą średnio 3% pojemności w ciągu miesiąca [3].

Przechowywanie akumulatorów SLA w stanie nienaładowanym może prowadzić do zmiany polaryzacji, co będzie skutkowało tym, że staną się one izolatorami. Czas przechowywania naładowanych akumulatorów SLA jest uzależniony od temperatury i wynosi:

  • 12 miesięcy w temperaturze (0–20)°C,
  • 9 miesięcy w temperaturze (21–30)°C,
  • 5 miesięcy w temperaturze (31–40)°C,
  • 2,5 miesiąca w temperaturze (41–50)°C.
b baterie akumulatorow rys06
Rys. 6. Przykładowe charakterystyki samorozładowania akumulatorów SLA
w funkcji czasu, dla różnych temperatur składowania [9]

Graniczną temperaturą pracy lub przechowywania akumulatorów SLA jest temperatura +55°C. Należy jednak pamiętać, że w warunkach eksploatacji temperatura +55°C jest dopuszczona przejściowo. Ciągłe jej utrzymywanie powoduje skrócenie projektowanego okresu żywotności baterii do około 15% okresu projektowanego czasu eksploatacji.

Charakterystyki samorozładowania akumulatorów SLA w funkcji czasu dla różnych temperatur składowania przedstawia rys. 6.

Każde podwyższenie temperatury pracy akumulatora o (8–10)°C ponad temperaturę optymalną powoduje skrócenie czasu eksploatacji o połowę. Podobnie na długość eksploatacji akumulatorów ma wpływ głębokość rozładowania lub liczba cykli ładowania i rozładowania.

Przykładowe charakterystyki żywotności akumulatorów przy pracy buforowej lub pracy cyklicznej przedstawia rys. 7a i rys. 7b.

b baterie akumulatorow rys07a
Rys. 7a. Przykładowe charakterystyki żywotności akumulatora przy pracy buforowej [9]
b baterie akumulatorow rys07b
Rys. 7b. Przykładowe charakterystyki żywotności akumulatora przy pracy cyklicznej [9]

Producenci akumulatorów w kartach katalogowych podają charakterystyki stałoprądowego oraz stałomocowego rozładowania. Charakterystyki te są analogiczne i podawane w postaci tabel. W tab. 2 i tab. 3 zamieszczono ich przykłady dla akumulatora o pojemności 210 Ah.

b baterie akumulatorow tab02
Tab. 2. Przykład stałoprądowej charakterystyki rozładowania akumulatora o pojemności 210 Ah w temperaturze 250C, prąd w [A] [9]
b baterie akumulatorow tab03
Tab. 3. Przykładowa charakterystyka stałomocowego rozładowania akumulatora o pojemności 210 Ah, w temperaturze 250C, moc w [W/ogniwo] [9]

Baterie akumulatorów stosowanych w zasilaczach UPS powinny być dobierane do mocy znamionowej odbiorników zasilanych przez UPS. Za podstawę doboru należy przyjąć wymaganą moc czynną/ogniwo, którą należy wyznaczyć ze wzoru:

gdzie:

  • Pogn – wymaga moc czynna pojedynczego ogniwa przy stałomocowym rozładowaniu akumulatora do określonego napięcia odcięcia Uk, w [W/ogniwo],
  • S – znamionowa moc pozorna odbiorników, w [VA],
  • cosφz – współczynnik mocy, przy którym pracuje zasilacz UPS (współczynnik mocy zasilanych odbiorników, w [-],
  • η – sprawność zasilacza UPS dla zasilanych odbiorników, w [-],
  • n – liczba ogniw w akumulatorze (przy napięciu akumulatora 12 V – 6 ogniw; przy napięciu akumulatora 6 V – 3 ogniwa),
  • Un UPS – napięcie znamionowe w torze DC zasilacza UPS, w [V],
  • Un akum. – napięcie znamionowe bloku akumulatora, w [V]
b baterie akumulatorow wz09
– wymagana liczba akumulatorów w pojedynczej gałęzi szeregowej, w [-].

Przykład

Należy dobrać akumulatory oraz ich zabezpieczenia do zasilacza UPS o mocy 400 kVA, zasilającego odbiorniki przy współczynniku mocy cosφz= 0,8 oraz sprawności zasilacza η=0,9. Napięcie odcięcia Uk = 1,7 V/ogniwo. Wymagany czas pracy zasilanych odbiorników wynosi 30 minut. Rezystancja wewnętrzna akumulatora Rw = 2,5 mW.

Wymagana liczba gałęzi równoległych „x” oraz moc czynna w pojedynczej gałęzi P1g: na podstawie tab. 3., Pogn dysp = 471,5 W/ogniwo/Uk = 1,7 V/t = 30 minut:

Spodziewany prąd obciążenia pojedynczej gałęzi:

Spodziewany prąd obciążenia całej baterii akumulatorów:

Spodziewane prądy zwarciowe:

  • zwarcie w pojedynczej gałęzi:
  • zwarcie obejmujące całą baterię akumulatorów:

Do zabezpieczenia poszczególnych gałęzi należy przyjąć bezpieczniki topikowe WT1gG250, natomiast do zabezpieczenia głównego bezpieczniki topikowe WTN3gG1000. W obydwu przypadkach odporność zwarciowa dobieranych bezpieczników jest wystarczająca.

Na rys. 8 a i rys. 8b przedstawiono przykładowe charakterystyki ładowania akumulatorów pracujących w układzie buforowym oraz cyklicznym. Z rysunku wynika, że całkowicie rozładowany akumulator do napięcia odcięcia Uk zostanie naładowany po 24 godzinach.

b baterie akumulatorow rys08a
Rys. 8a. Przykładowe charakterystyki ładowania akumulatora przy pracy buforowej [9]
b baterie akumulatorow rys08b
Rys. 8b. Przykładowe charakterystyki ładowania akumulatora przy pracy cyklicznej [9]

Przedstawione charakterystyki dotyczą temperatury 20°C. W przypadku innej temperatury, należy wprowadzić poprawkę wynoszącą przeciętnie ±3 mV/°C/ogniwo. Znak ujemny dotyczy temperatur wyższych od optymalnych, a znak plus – temperatur niższych od optymalnych.

b baterie akumulatorow rys09
Rys. 9. Przykładowa zależność napięcia ładowania od temperatury [1]

Przykładową zależność napięcia ładowania od temperatury przedstawia rys. 9.

Literatura

1. T. Sutkowski, Rezerwowe i bezprzerwowe zasilanie w energię elektryczną. Urządzenia i układy, COSiW SEP, Warszawa 2007.

2. A. Czerwiński, Akumulatory, baterie, ogniwa, WKŁ, Warszawa 2013.

3. Podręcznik projektanta systemów sygnalizacji pożarowej, SITP, ITB, Warszawa, marzec 2009

4. J. Wiatr, M. Orzechowski, M. Miegoń, A. Przasnyski, Poradnik projektanta systemów zasilania awaryjnego i gwarantowanego, wyd. 2, EATON, Warszawa 2008.

5. Z. Łęgosz, Stacjonarne baterie kwasowo-ołowiowe w systemach zasilania potrzeb własnych, „Wiadomości energetyczne” nr 7-8/2004.

6. PN-EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1: Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych.

7. PN-EN 60896-21:2007 Akumulatory ołowiowe. Część 21: Typy z zaworami. Metody badań.

8. Rozporządzenie Ministra Sprawa Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (DzU nr 109/2010, poz. 719).

9. Karta katalogowa akumulatora EPL 210-12 – www.aval.com.pl.

Czytaj też: Jak wyeliminować problemy z mocą dzięki zasilaczowi UPS? >>>

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Dobór mocy źródeł zasilania awaryjnego i gwarantowanego

Dobór mocy źródeł zasilania awaryjnego i gwarantowanego

W artykule zostały przedstawione podstawowe zasady doboru mocy zespołu prądotwórczego oraz zasilacza UPS, pracujących w układach zasilania budynków. Opisana została metodyka projektowania ochrony przeciwporażeniowej...

W artykule zostały przedstawione podstawowe zasady doboru mocy zespołu prądotwórczego oraz zasilacza UPS, pracujących w układach zasilania budynków. Opisana została metodyka projektowania ochrony przeciwporażeniowej przez samoczynne wyłączenie oraz sterowanie napięciem dotykowym do wartości dopuszczalnej długotrwale w instalacjach zasilanych z zespołu prądotwórczego oraz zasilacza UPS. Przedstawiona metodyka jest zgodna z wymaganiami normy PN-HD 60364-4-41:2009 Instalacje eklektyczne niskiego napięcia....

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Możliwości zwiększenia niezawodności przy zastosowaniu zasilacza UPS

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania...

Autor pisze o powszechnym znaczeniu niezawodności zasilania w energię elektryczną, realnych skutkach awarii w zasilaniu, o przebiegu współpracy zespołu prądotwórczego z UPS-em oraz o sposobach magazynowania energii

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

Magazyny energii z akumulatorami chemicznymi, ich funkcje w systemie elektroenergetycznym

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

W artykule omówiono, jakie funkcje może spełniać magazyn energii oraz przedstawiono jego elementy składowe, czyli przetwornicę dwukierunkową, sterownik, zasobnik energii (w tym przypadku baterię chemiczną).

Komentarze

  • Igor Igor, 04.04.2016r., 08:56:41 W kwestii UPS ciekawe rozwiązanie znalazłem też tu :) zainteresowanym tematem polecam: http://www.elektro.info.pl/artykul/id6309,w-polowie-2015-roku-eaton-wprowadzil-ups-ktory-zapewnia-niezrownana-elastycznosc-systemu-oraz-oszczedna-ciaglosc-biznesowa

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies.

Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.