elektro.info

Nowoczesne oświetlenie Neonica

Nowoczesne oświetlenie Neonica

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą...

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą zarówno układu mebli, wykorzystanych materiałów czy koloru ścian. Jednak przede wszystkim warto dokładnie i z uwagą podjąć decyzje związane z wyborem odpowiedniego oświetlenia.

news Skuter elektryczny od Seata

Skuter elektryczny od Seata

Seat przedstawił nowy, całkowicie elektryczny skuter, który pojawi się na drogach w przyszłym roku. Model e-Scooter został zaprojektowany w taki sposób, aby jak najlepiej wpisać się w rosnący trend współdzielonej...

Seat przedstawił nowy, całkowicie elektryczny skuter, który pojawi się na drogach w przyszłym roku. Model e-Scooter został zaprojektowany w taki sposób, aby jak najlepiej wpisać się w rosnący trend współdzielonej mobilności.

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

Stacje transformatorowe z SF6 jako innowacyjny element Smart Grids

Rys. 1. Wpływ gazów na efekt cieplarniany [3]

Zadania związane z rozwojem elektroenergetyki w Europie i Polsce wymagają innowacyjnego spojrzenia na pracę <a href="../wyszukiwarka?q=sieci+elektroenergetyczne&amp;module=&amp;author=&amp;date_start=&amp;date_stop=&amp;submit=">sieci elektroenergetycznych</a>. Od kilku lat w literaturze pojawia się pojęcie smart grid, które można zdefiniować następująco: „<a href="../wyszukiwarka?q=Smart+grid&amp;module=&amp;author=&amp;date_start=&amp;date_stop=&amp;submit=">Smart grid</a> – inteligentne systemy elektroenergetyczne, gdzie istnieje komunikacja między wszystkimi uczestnikami rynku energii, mająca na celu dostarczanie usług energetycznych, zapewniając obniżenie kosztów i zwiększenie efektywności oraz zintegrowanie rozproszonych źródeł energii, w tym także <a href="../wyszukiwarka?q=energia+odnawialna&amp;module=&amp;author=&amp;date_start=&amp;date_stop=&amp;submit=">energii odnawialnej</a>”. „Istnieje konieczność wprowadzenia nowej jakości do elektroenergetycznych struktur sieciowych w skali całego kontynentu, m.in. ze względu na wzrastające <a href="../wyszukiwarka?q=zapotrzebowanie+na+energi%C4%99+elektryczn%C4%85&amp;module=&amp;author=&amp;date_start=&amp;date_stop=&amp;submit=">zapotrzebowanie na energię elektryczną</a> oraz coraz większą penetrację technologii proekologicznych i źródeł rozproszonych” [18].

Przeczytaj także: Systemy pomiarowe w inteligentnych sieciach Smart Grids

Smart grids jest próbą stworzenia uniwersalnych ram dla technologii służących sprostaniu istniejącym i przyszłym wyzwaniom technicznym i rynkowym. Sieć inteligentna dostarcza klientom nowe usługi z wykorzystaniem techniki cyfrowej, zapewniając poprawę świadomości użytkowania energii, obniżenie jej kosztów, zwiększenie efektywności przepływów energii w sieci oraz zintegrowanie w systemie licznych źródeł rozproszonych.

Wymaga to jednak zwiększania zaangażowania odbiorców, którzy obecnie są zainteresowani przede wszystkim najniższą ceną kupowanej energii i usług oraz jej maksymalną dostępnością w ciągu roku. Z punktu widzenia użytkownika, w momencie upowszechniania sieci inteligentnych pojawi się możliwość bardziej precyzyjnego monitorowania pobierania mocy i energii, a nawet zawierania kontraktów lepiej dopasowanych do wymagań i potrzeb wszystkich stron” [14].

Przeczytaj także: Zastosowanie źródeł energii odnawialnej do wspomagania zasilania budynków w energię elektryczną

Zagadnieniem inteligentnych sieci od lat zajmują się zespoły badawcze, należy także stwierdzić, że zarówno w wymiarze europejskim, jak i krajowym zostały zainicjowane formalne organy zajmujące się tymi zagadnieniami. Trzeba tu wspomnieć o European Smart Grids Technology Platform – Directorate-General for Research Sustainable Energy System [7], gdzie zawarto wizję nowoczesnego rozwiązania sieci w przyszłości.

streszczenie

W artykule przedstawiono uwarunkowania rozwoju przyszłościowych rozwiązań sieci przesyłowych i dystrybucyjnych. Smart Grid powinien być postrzegany nie tylko jako nowa koncepcja organizacyjna pracy nowych komponentów, które pojawią się w niej, lecz także, a może przede wszystkim, jako innowacyjne rozwiązania infrastruktury sieciowej, takie jak przewody niskozwisowe, szersze wykorzystanie tzw. linii tymczasowych oraz nowoczesna i innowacyjna aparatura rozdzielcza – do takiej należą stacje transformatorowe z SF6. Artykuł skupia się na zaprezentowaniu wieloaspektowego uzasadnienia celowości stosowania tego typu rozwiązań w przyszłościowej infrastrukturze sieciowej.



abstract

Transformer substation with SF6 as the innovative  element Smart Grid in the  transmission and distributive network of the electrical energy
The report  introduced conditionings of the development of future solutions of transmission and distributive networks. Smart Grid should be noticed not only as the new organizational idea of the work of new components which will appear in it, but also, and perhaps first of all as  innovative solutions of the network infrastructure, such as: lines of high temperature low sag conductor, the wider utilization – so called temporary lines and the modern and innovative distributive equipment – to this such belong the  distribution substation with SF6.The article focuses on introducing of the multifarious reasons of the advisability of the usage of this type of solutions in the future network infrastructure.

Przeczytaj także: Systemy pomiarowe w inteligentnych sieciach Smart Grids

Smart grids jest próbą stworzenia uniwersalnych ram dla technologii służących sprostaniu istniejącym i przyszłym wyzwaniom technicznym i rynkowym. Sieć inteligentna dostarcza klientom nowe usługi z wykorzystaniem techniki cyfrowej, zapewniając poprawę świadomości użytkowania energii, obniżenie jej kosztów, zwiększenie efektywności przepływów energii w sieci oraz zintegrowanie w systemie licznych źródeł rozproszonych.

Wymaga to jednak zwiększania zaangażowania odbiorców, którzy obecnie są zainteresowani przede wszystkim najniższą ceną kupowanej energii i usług oraz jej maksymalną dostępnością w ciągu roku. Z punktu widzenia użytkownika, w momencie upowszechniania sieci inteligentnych pojawi się możliwość bardziej precyzyjnego monitorowania pobierania mocy i energii, a nawet zawierania kontraktów lepiej dopasowanych do wymagań i potrzeb wszystkich stron” [14].

Przeczytaj także: Zastosowanie źródeł energii odnawialnej do wspomagania zasilania budynków w energię elektryczną

Zagadnieniem inteligentnych sieci od lat zajmują się zespoły badawcze, należy także stwierdzić, że zarówno w wymiarze europejskim, jak i krajowym zostały zainicjowane formalne organy zajmujące się tymi zagadnieniami. Trzeba tu wspomnieć o European Smart Grids Technology Platform – Directorate-General for Research Sustainable Energy System [7], gdzie zawarto wizję nowoczesnego rozwiązania sieci w przyszłości.

streszczenie

W artykule przedstawiono uwarunkowania rozwoju przyszłościowych rozwiązań sieci przesyłowych i dystrybucyjnych. Smart Grid powinien być postrzegany nie tylko jako nowa koncepcja organizacyjna pracy nowych komponentów, które pojawią się w niej, lecz także, a może przede wszystkim, jako innowacyjne rozwiązania infrastruktury sieciowej, takie jak przewody niskozwisowe, szersze wykorzystanie tzw. linii tymczasowych oraz nowoczesna i innowacyjna aparatura rozdzielcza – do takiej należą stacje transformatorowe z SF6. Artykuł skupia się na zaprezentowaniu wieloaspektowego uzasadnienia celowości stosowania tego typu rozwiązań w przyszłościowej infrastrukturze sieciowej.



abstract

Transformer substation with SF6 as the innovative  element Smart Grid in the  transmission and distributive network of the electrical energy
The report  introduced conditionings of the development of future solutions of transmission and distributive networks. Smart Grid should be noticed not only as the new organizational idea of the work of new components which will appear in it, but also, and perhaps first of all as  innovative solutions of the network infrastructure, such as: lines of high temperature low sag conductor, the wider utilization – so called temporary lines and the modern and innovative distributive equipment – to this such belong the  distribution substation with SF6.The article focuses on introducing of the multifarious reasons of the advisability of the usage of this type of solutions in the future network infrastructure.

Przeczytaj także: Architektura i zastosowania technologii inteligentnego domu

Podobne inicjatywy powstały w Polsce, należy tu wymienić Platformę AGH oraz liczne konferencje poświęcone tym zagadnieniom organizowane przez URE. Bardzo konkretną formą działania w tym zakresie jest powołanie 3 listopada 2010 roku na Politechnice Wrocławskiej Konsorcjum Smart Power Grids Polska. Przedmiotem działania oraz celem tego konsorcjum jest [14]:

    • opracowanie koncepcji rozwoju inteligentnych sieci elektroenergetycznych przesyłowych i dystrybucyjnych oraz narzędzi wykorzystywanych dla jej optymalizacji, zabezpieczania i sterowania oraz opracowanie podstawowych kierunków rozwoju sieci i jej parametrów technicznych,
    • prowadzenie prac badawczych i rozwojowych dla praktycznej realizacji idei inteligentnych sieci elektroenergetycznych oraz opracowanie ogólnych zasad eksploatacji tych sieci,
    • szeroko rozumiana działalność edukacyjna, standaryzacja i konferencyjna,
    • dokonywanie wspólnych zamówień narzędzi i materiałów niezbędnych do prowadzenia prac badawczych i wdrożeniowych w zakresie rozwoju sieci oraz usług w tym zakresie,komercjalizacja wypracowanych na skutek działań konsorcjum wyników badań i rozwiązań technologicznych, występowanie o pozyskanie środków z instytucji finansujących prace badawczo-rozwojowe, zarówno krajowych, jak i europejskich.

Główne zadania, które powinny zrealizować sieci w inteligentnym wydaniu, to [9, 10, 16, 17]:

1) zapewnienie bezpieczeństwa energetycznego poprzez eliminację przerw w dostarczaniu odbiorcom usług energetycznych oraz maksymalizację efektywności przepływu energii od źródła jej wytwarzania do odbiorcy końcowego. Temu celowi służą miedzy innymi lepsze, mądrzejsze i szybsze układy diagnostyki i sterowania, pozwalające na bardziej zaawansowane zarządzanie przepływami energii, układami zabezpieczeń, procesami restytucyjnymi sieci itp. Istotne jest także zapewnienie bezpiecznej i niezawodnej transmisji danych warunkującej wprowadzenie zautomatyzowanych, szybkich i samonaprawiajacych procedur oraz koordynację sterowania na różnych poziomach systemu od lokalnego do globalnego z odpowiednią szybkością oraz odpowiednim poziomem redundancji,

2) minimalizację kosztów usług elektroenergetycznych przez optymalną i ciągłą integrację przyjaznych środowisku lokalnych zasobów energii,

3) zapewnienie zróżnicowania i zindywidualizowania poziomów jakości dostarczanej energii, zgodnie z potrzebami klienta, między innymi poprzez zastosowanie zaawansowanych układów energoelektronicznych, np. układów FACTS lub CUSTOM POWER,

4) rozszerzenie funkcjonalności usług świadczonych przez dostawcę na rzecz odbiorcy, tj. inteligentne opomiarowanie i fakturowanie (np. liczniki dwukierunkowe, zmienność ceny konsumowanej energii w czasie), zarządzanie energią oraz monitorowanie warunków jej dostawy itp. Takie „inteligentne” wyposażenie daje odbiorcom możliwość uczestnictwa w grze rynkowej oraz możliwość kontrolowanej indywidualnej generacji i magazynowania energii. Zdolność interakcji z siecią zasilającą umożliwia bardziej precyzyjne zawieranie kontraktów na dostawę energii lepiej dostosowanych do wymagań i potrzeb wszystkich stron. Jednym z etapów w tym procesie jest budowa, na bazie zainstalowanych mierników, rozproszonych systemów monitorowania stanu sieci elektroenergetyki zawodowej i/lub sieci przemysłowych. Nie jest to tożsame z „informatyzacją” w potocznym znaczeniu tego pojęcia. Wykorzystanie najnowszych zdobyczy nauki, w tym informatyki, to zaledwie jeden z elementów tych działań,

5) integrację rozproszonych źródeł odnawialnych o ograniczonej dyspozycyjności mocy i energii. Generacja małej i średniej skali (panele fotowoltaiczne, małe turbiny wiatrowe, małe elektrownie wodne, łączone niekiedy z siecią na zasadzie plug and play), wykorzystująca zasoby lokalne i zintegrowana często z budynkiem/mieszkaniem oraz zdolna do współpracy z siecią kreuje nowe pojęcie tzw. „inteligentnego domu”, autonomicznego energetycznie, zdolnego do przekazywania nadmiaru wytwarzanej energii i traktującego sieć jako źródło rezerwowe. Dzięki inteligentnemu opomiarowaniu możliwe staje się samoczynne ograniczanie poboru mocy (i energii) w okresach szczytowego obciążenia bez naruszenia jakości życia mieszkańców. Dotychczasowy tradycyjny, bierny konsument energii elektrycznej zaczyna pełnić funkcję aktywnego „prosumenta” zdolnego nie tylko do konsumowania, ale także do wytwarzania energii elektrycznej. W przypadku generacji rozproszonej dużej skali (np. farmy wiatrowej) upowszechnia się proces wykorzystania w ich sterowaniu modeli prognostycznych czynników meteorologicznych, co pozwala na zwiększony udział źródeł odnawialnych i redukcję niezbędnej systemowej rezerwy mocy.

Przeczytaj także: Systemy pomiarowe w inteligentnych sieciach Smart Grids

Smart grids jest próbą stworzenia uniwersalnych ram dla technologii służących sprostaniu istniejącym i przyszłym wyzwaniom technicznym i rynkowym. Sieć inteligentna dostarcza klientom nowe usługi z wykorzystaniem techniki cyfrowej, zapewniając poprawę świadomości użytkowania energii, obniżenie jej kosztów, zwiększenie efektywności przepływów energii w sieci oraz zintegrowanie w systemie licznych źródeł rozproszonych.

Wymaga to jednak zwiększania zaangażowania odbiorców, którzy obecnie są zainteresowani przede wszystkim najniższą ceną kupowanej energii i usług oraz jej maksymalną dostępnością w ciągu roku. Z punktu widzenia użytkownika, w momencie upowszechniania sieci inteligentnych pojawi się możliwość bardziej precyzyjnego monitorowania pobierania mocy i energii, a nawet zawierania kontraktów lepiej dopasowanych do wymagań i potrzeb wszystkich stron” [14].

Przeczytaj także: Zastosowanie źródeł energii odnawialnej do wspomagania zasilania budynków w energię elektryczną

Zagadnieniem inteligentnych sieci od lat zajmują się zespoły badawcze, należy także stwierdzić, że zarówno w wymiarze europejskim, jak i krajowym zostały zainicjowane formalne organy zajmujące się tymi zagadnieniami. Trzeba tu wspomnieć o European Smart Grids Technology Platform – Directorate-General for Research Sustainable Energy System [7], gdzie zawarto wizję nowoczesnego rozwiązania sieci w przyszłości.

streszczenie

W artykule przedstawiono uwarunkowania rozwoju przyszłościowych rozwiązań sieci przesyłowych i dystrybucyjnych. Smart Grid powinien być postrzegany nie tylko jako nowa koncepcja organizacyjna pracy nowych komponentów, które pojawią się w niej, lecz także, a może przede wszystkim, jako innowacyjne rozwiązania infrastruktury sieciowej, takie jak przewody niskozwisowe, szersze wykorzystanie tzw. linii tymczasowych oraz nowoczesna i innowacyjna aparatura rozdzielcza – do takiej należą stacje transformatorowe z SF6. Artykuł skupia się na zaprezentowaniu wieloaspektowego uzasadnienia celowości stosowania tego typu rozwiązań w przyszłościowej infrastrukturze sieciowej.



abstract

Transformer substation with SF6 as the innovative  element Smart Grid in the  transmission and distributive network of the electrical energy
The report  introduced conditionings of the development of future solutions of transmission and distributive networks. Smart Grid should be noticed not only as the new organizational idea of the work of new components which will appear in it, but also, and perhaps first of all as  innovative solutions of the network infrastructure, such as: lines of high temperature low sag conductor, the wider utilization – so called temporary lines and the modern and innovative distributive equipment – to this such belong the  distribution substation with SF6.The article focuses on introducing of the multifarious reasons of the advisability of the usage of this type of solutions in the future network infrastructure.

Przeczytaj także: Architektura i zastosowania technologii inteligentnego domu

Podobne inicjatywy powstały w Polsce, należy tu wymienić Platformę AGH oraz liczne konferencje poświęcone tym zagadnieniom organizowane przez URE. Bardzo konkretną formą działania w tym zakresie jest powołanie 3 listopada 2010 roku na Politechnice Wrocławskiej Konsorcjum Smart Power Grids Polska. Przedmiotem działania oraz celem tego konsorcjum jest [14]:

    • opracowanie koncepcji rozwoju inteligentnych sieci elektroenergetycznych przesyłowych i dystrybucyjnych oraz narzędzi wykorzystywanych dla jej optymalizacji, zabezpieczania i sterowania oraz opracowanie podstawowych kierunków rozwoju sieci i jej parametrów technicznych,
    • prowadzenie prac badawczych i rozwojowych dla praktycznej realizacji idei inteligentnych sieci elektroenergetycznych oraz opracowanie ogólnych zasad eksploatacji tych sieci,
    • szeroko rozumiana działalność edukacyjna, standaryzacja i konferencyjna,
    • dokonywanie wspólnych zamówień narzędzi i materiałów niezbędnych do prowadzenia prac badawczych i wdrożeniowych w zakresie rozwoju sieci oraz usług w tym zakresie,komercjalizacja wypracowanych na skutek działań konsorcjum wyników badań i rozwiązań technologicznych, występowanie o pozyskanie środków z instytucji finansujących prace badawczo-rozwojowe, zarówno krajowych, jak i europejskich.

Główne zadania, które powinny zrealizować sieci w inteligentnym wydaniu, to [9, 10, 16, 17]:

1) zapewnienie bezpieczeństwa energetycznego poprzez eliminację przerw w dostarczaniu odbiorcom usług energetycznych oraz maksymalizację efektywności przepływu energii od źródła jej wytwarzania do odbiorcy końcowego. Temu celowi służą miedzy innymi lepsze, mądrzejsze i szybsze układy diagnostyki i sterowania, pozwalające na bardziej zaawansowane zarządzanie przepływami energii, układami zabezpieczeń, procesami restytucyjnymi sieci itp. Istotne jest także zapewnienie bezpiecznej i niezawodnej transmisji danych warunkującej wprowadzenie zautomatyzowanych, szybkich i samonaprawiajacych procedur oraz koordynację sterowania na różnych poziomach systemu od lokalnego do globalnego z odpowiednią szybkością oraz odpowiednim poziomem redundancji,

2) minimalizację kosztów usług elektroenergetycznych przez optymalną i ciągłą integrację przyjaznych środowisku lokalnych zasobów energii,

3) zapewnienie zróżnicowania i zindywidualizowania poziomów jakości dostarczanej energii, zgodnie z potrzebami klienta, między innymi poprzez zastosowanie zaawansowanych układów energoelektronicznych, np. układów FACTS lub CUSTOM POWER,

4) rozszerzenie funkcjonalności usług świadczonych przez dostawcę na rzecz odbiorcy, tj. inteligentne opomiarowanie i fakturowanie (np. liczniki dwukierunkowe, zmienność ceny konsumowanej energii w czasie), zarządzanie energią oraz monitorowanie warunków jej dostawy itp. Takie „inteligentne” wyposażenie daje odbiorcom możliwość uczestnictwa w grze rynkowej oraz możliwość kontrolowanej indywidualnej generacji i magazynowania energii. Zdolność interakcji z siecią zasilającą umożliwia bardziej precyzyjne zawieranie kontraktów na dostawę energii lepiej dostosowanych do wymagań i potrzeb wszystkich stron. Jednym z etapów w tym procesie jest budowa, na bazie zainstalowanych mierników, rozproszonych systemów monitorowania stanu sieci elektroenergetyki zawodowej i/lub sieci przemysłowych. Nie jest to tożsame z „informatyzacją” w potocznym znaczeniu tego pojęcia. Wykorzystanie najnowszych zdobyczy nauki, w tym informatyki, to zaledwie jeden z elementów tych działań,

5) integrację rozproszonych źródeł odnawialnych o ograniczonej dyspozycyjności mocy i energii. Generacja małej i średniej skali (panele fotowoltaiczne, małe turbiny wiatrowe, małe elektrownie wodne, łączone niekiedy z siecią na zasadzie plug and play), wykorzystująca zasoby lokalne i zintegrowana często z budynkiem/mieszkaniem oraz zdolna do współpracy z siecią kreuje nowe pojęcie tzw. „inteligentnego domu”, autonomicznego energetycznie, zdolnego do przekazywania nadmiaru wytwarzanej energii i traktującego sieć jako źródło rezerwowe. Dzięki inteligentnemu opomiarowaniu możliwe staje się samoczynne ograniczanie poboru mocy (i energii) w okresach szczytowego obciążenia bez naruszenia jakości życia mieszkańców. Dotychczasowy tradycyjny, bierny konsument energii elektrycznej zaczyna pełnić funkcję aktywnego „prosumenta” zdolnego nie tylko do konsumowania, ale także do wytwarzania energii elektrycznej. W przypadku generacji rozproszonej dużej skali (np. farmy wiatrowej) upowszechnia się proces wykorzystania w ich sterowaniu modeli prognostycznych czynników meteorologicznych, co pozwala na zwiększony udział źródeł odnawialnych i redukcję niezbędnej systemowej rezerwy mocy.

konieczność restrukturyzacji istniejących sieci zasilających

Europejskie cele ochrony środowiska nie mogą być osiągnięte bez zmian sieci elektroenergetycznych. Pilność inwestowania w zasoby odnawialne, generację rozproszoną i pojazdy elektryczne wymaga infrastruktury, która zdolna jest aktywnie zintegrować działania wytwórców, konsumentów i podmiotów realizujących obydwie te funkcje oraz zaspokoić ciągle rosnące zapotrzebowanie na energię elektryczną. Tradycyjne struktury sieci konstruowane dla jednokierunkowego przepływu energii, mają trudności z integracją źródeł rozproszonych.

Spowodowane ich obecnością odwrócenie kierunków rozpływów energii prowadzi niekiedy do poważnych problemów technicznych w zakresie bezpieczeństwa i niezawodności pracy systemu (blackout). Sieci inteligentne są szansą opanowania kaskadowego rozwoju zdarzeń awaryjnych. Do tej kategorii działań można także zaliczyć zyskującą na popularności koncepcję mikrosieci o zdefiniowanym poziomie autonomiczności. Może nią być pojedyncze gospodarstwo domowe, wydzielony obszar lub grupa odbiorców o zbilansowanej konsumpcji i lokalnej generacji energii. Bliskość odbiorcy względem źródła wytwarzania redukuje straty sieciowe i stwarza warunki lepszej integracji źródeł rozproszonych [3, 5, 6, 13, 15].

Nowoczesne i innowacyjne rozwiązania w sferze infrastruktury sieciowej to przede wszystkim coraz szersze zastosowanie przewodów wysokotemperaturowych [3, 16] oraz coraz powszechniejsze wprowadzanie stacji rozdzielczych w izolacji gazu SF6.

sześciofluorek gazu SF6 – element Smart Grids nowoczesnych stacji i rozdzielnic

Sześciofluorek siarki (SF6) jako czynnik gaszący łuk elektryczny oraz ośrodek izolacyjny w urządzeniach elektrycznych wysokich i średnich napięć zaczęto stosować począwszy od roku 1960. Czołowe firmy aparatowe na świecie rozwinęły produkcję wysokonapięciowych rozdzielnic osłoniętych z izolacją SF6 oraz wysokonapięciowych wyłączników, w których ten gaz stanowił medium gaszące łuk elektryczny. Prefabrykowane elementy rozdzielnic z izolacją stałą o wymaganej wytrzymałości dielektrycznej były ciężkie i zawodne, na skutek pęknięć odlewów żywicznych o dużej objętości.

Rozdzielnice z izolacją olejową były niebezpieczne pod względem wybuchowym i pożarowym, jak również ciężkie. Wobec tego SF6 szybko stał się alternatywą, przyczyniając się do zwiększenia efektywności systemów przesyłu i rozdziału energii elektrycznej z punktu widzenia bezpieczeństwa, ekonomii i racjonalizacji technicznej. Uogólniona ocena, która obejmuje aspekty: ekologiczne, ekonomiczne, techniczne i bezpieczeństwa wykazała, że SF6 został doskonale wybrany jako ośrodek izolacyjny i gasiwo. Przez lata technika SF6 była stale doskonalona w dziedzinie przesyłu i rozdziału energii elektrycznej. Dziś uczestniczy ona w dalszym rozwoju technicznym i ekonomicznym [1, 2, 8, 11].

Badania wykazały, że w gazie SF6 jest intensywne odprowadzanie ciepła z łuku, co prowadzi do zmniejszenia jego średnicy i wzrostu rezystancji łuku [2]. Te wyjątkowo dobre właściwości gazu jako medium gaszące łuk elektryczny pozwoliły na zastosowanie SF6 w komorach gaszeniowych wyłączników. Już pierwsze próby (1954 r., USA) wykazały, że przy swobodnym wyłączaniu prądu, zdolność gaszenia w SF6 przekracza około 100-krotnie zdolność gaszenia w powietrzu.

Przeczytaj także: Systemy pomiarowe w inteligentnych sieciach Smart Grids

Smart grids jest próbą stworzenia uniwersalnych ram dla technologii służących sprostaniu istniejącym i przyszłym wyzwaniom technicznym i rynkowym. Sieć inteligentna dostarcza klientom nowe usługi z wykorzystaniem techniki cyfrowej, zapewniając poprawę świadomości użytkowania energii, obniżenie jej kosztów, zwiększenie efektywności przepływów energii w sieci oraz zintegrowanie w systemie licznych źródeł rozproszonych.

Wymaga to jednak zwiększania zaangażowania odbiorców, którzy obecnie są zainteresowani przede wszystkim najniższą ceną kupowanej energii i usług oraz jej maksymalną dostępnością w ciągu roku. Z punktu widzenia użytkownika, w momencie upowszechniania sieci inteligentnych pojawi się możliwość bardziej precyzyjnego monitorowania pobierania mocy i energii, a nawet zawierania kontraktów lepiej dopasowanych do wymagań i potrzeb wszystkich stron” [14].

Przeczytaj także: Zastosowanie źródeł energii odnawialnej do wspomagania zasilania budynków w energię elektryczną

Zagadnieniem inteligentnych sieci od lat zajmują się zespoły badawcze, należy także stwierdzić, że zarówno w wymiarze europejskim, jak i krajowym zostały zainicjowane formalne organy zajmujące się tymi zagadnieniami. Trzeba tu wspomnieć o European Smart Grids Technology Platform – Directorate-General for Research Sustainable Energy System [7], gdzie zawarto wizję nowoczesnego rozwiązania sieci w przyszłości.

streszczenie

W artykule przedstawiono uwarunkowania rozwoju przyszłościowych rozwiązań sieci przesyłowych i dystrybucyjnych. Smart Grid powinien być postrzegany nie tylko jako nowa koncepcja organizacyjna pracy nowych komponentów, które pojawią się w niej, lecz także, a może przede wszystkim, jako innowacyjne rozwiązania infrastruktury sieciowej, takie jak przewody niskozwisowe, szersze wykorzystanie tzw. linii tymczasowych oraz nowoczesna i innowacyjna aparatura rozdzielcza – do takiej należą stacje transformatorowe z SF6. Artykuł skupia się na zaprezentowaniu wieloaspektowego uzasadnienia celowości stosowania tego typu rozwiązań w przyszłościowej infrastrukturze sieciowej.



abstract

Transformer substation with SF6 as the innovative  element Smart Grid in the  transmission and distributive network of the electrical energy
The report  introduced conditionings of the development of future solutions of transmission and distributive networks. Smart Grid should be noticed not only as the new organizational idea of the work of new components which will appear in it, but also, and perhaps first of all as  innovative solutions of the network infrastructure, such as: lines of high temperature low sag conductor, the wider utilization – so called temporary lines and the modern and innovative distributive equipment – to this such belong the  distribution substation with SF6.The article focuses on introducing of the multifarious reasons of the advisability of the usage of this type of solutions in the future network infrastructure.

Przeczytaj także: Architektura i zastosowania technologii inteligentnego domu

Podobne inicjatywy powstały w Polsce, należy tu wymienić Platformę AGH oraz liczne konferencje poświęcone tym zagadnieniom organizowane przez URE. Bardzo konkretną formą działania w tym zakresie jest powołanie 3 listopada 2010 roku na Politechnice Wrocławskiej Konsorcjum Smart Power Grids Polska. Przedmiotem działania oraz celem tego konsorcjum jest [14]:

    • opracowanie koncepcji rozwoju inteligentnych sieci elektroenergetycznych przesyłowych i dystrybucyjnych oraz narzędzi wykorzystywanych dla jej optymalizacji, zabezpieczania i sterowania oraz opracowanie podstawowych kierunków rozwoju sieci i jej parametrów technicznych,
    • prowadzenie prac badawczych i rozwojowych dla praktycznej realizacji idei inteligentnych sieci elektroenergetycznych oraz opracowanie ogólnych zasad eksploatacji tych sieci,
    • szeroko rozumiana działalność edukacyjna, standaryzacja i konferencyjna,
    • dokonywanie wspólnych zamówień narzędzi i materiałów niezbędnych do prowadzenia prac badawczych i wdrożeniowych w zakresie rozwoju sieci oraz usług w tym zakresie,komercjalizacja wypracowanych na skutek działań konsorcjum wyników badań i rozwiązań technologicznych, występowanie o pozyskanie środków z instytucji finansujących prace badawczo-rozwojowe, zarówno krajowych, jak i europejskich.

Główne zadania, które powinny zrealizować sieci w inteligentnym wydaniu, to [9, 10, 16, 17]:

1) zapewnienie bezpieczeństwa energetycznego poprzez eliminację przerw w dostarczaniu odbiorcom usług energetycznych oraz maksymalizację efektywności przepływu energii od źródła jej wytwarzania do odbiorcy końcowego. Temu celowi służą miedzy innymi lepsze, mądrzejsze i szybsze układy diagnostyki i sterowania, pozwalające na bardziej zaawansowane zarządzanie przepływami energii, układami zabezpieczeń, procesami restytucyjnymi sieci itp. Istotne jest także zapewnienie bezpiecznej i niezawodnej transmisji danych warunkującej wprowadzenie zautomatyzowanych, szybkich i samonaprawiajacych procedur oraz koordynację sterowania na różnych poziomach systemu od lokalnego do globalnego z odpowiednią szybkością oraz odpowiednim poziomem redundancji,

2) minimalizację kosztów usług elektroenergetycznych przez optymalną i ciągłą integrację przyjaznych środowisku lokalnych zasobów energii,

3) zapewnienie zróżnicowania i zindywidualizowania poziomów jakości dostarczanej energii, zgodnie z potrzebami klienta, między innymi poprzez zastosowanie zaawansowanych układów energoelektronicznych, np. układów FACTS lub CUSTOM POWER,

4) rozszerzenie funkcjonalności usług świadczonych przez dostawcę na rzecz odbiorcy, tj. inteligentne opomiarowanie i fakturowanie (np. liczniki dwukierunkowe, zmienność ceny konsumowanej energii w czasie), zarządzanie energią oraz monitorowanie warunków jej dostawy itp. Takie „inteligentne” wyposażenie daje odbiorcom możliwość uczestnictwa w grze rynkowej oraz możliwość kontrolowanej indywidualnej generacji i magazynowania energii. Zdolność interakcji z siecią zasilającą umożliwia bardziej precyzyjne zawieranie kontraktów na dostawę energii lepiej dostosowanych do wymagań i potrzeb wszystkich stron. Jednym z etapów w tym procesie jest budowa, na bazie zainstalowanych mierników, rozproszonych systemów monitorowania stanu sieci elektroenergetyki zawodowej i/lub sieci przemysłowych. Nie jest to tożsame z „informatyzacją” w potocznym znaczeniu tego pojęcia. Wykorzystanie najnowszych zdobyczy nauki, w tym informatyki, to zaledwie jeden z elementów tych działań,

5) integrację rozproszonych źródeł odnawialnych o ograniczonej dyspozycyjności mocy i energii. Generacja małej i średniej skali (panele fotowoltaiczne, małe turbiny wiatrowe, małe elektrownie wodne, łączone niekiedy z siecią na zasadzie plug and play), wykorzystująca zasoby lokalne i zintegrowana często z budynkiem/mieszkaniem oraz zdolna do współpracy z siecią kreuje nowe pojęcie tzw. „inteligentnego domu”, autonomicznego energetycznie, zdolnego do przekazywania nadmiaru wytwarzanej energii i traktującego sieć jako źródło rezerwowe. Dzięki inteligentnemu opomiarowaniu możliwe staje się samoczynne ograniczanie poboru mocy (i energii) w okresach szczytowego obciążenia bez naruszenia jakości życia mieszkańców. Dotychczasowy tradycyjny, bierny konsument energii elektrycznej zaczyna pełnić funkcję aktywnego „prosumenta” zdolnego nie tylko do konsumowania, ale także do wytwarzania energii elektrycznej. W przypadku generacji rozproszonej dużej skali (np. farmy wiatrowej) upowszechnia się proces wykorzystania w ich sterowaniu modeli prognostycznych czynników meteorologicznych, co pozwala na zwiększony udział źródeł odnawialnych i redukcję niezbędnej systemowej rezerwy mocy.

konieczność restrukturyzacji istniejących sieci zasilających

Europejskie cele ochrony środowiska nie mogą być osiągnięte bez zmian sieci elektroenergetycznych. Pilność inwestowania w zasoby odnawialne, generację rozproszoną i pojazdy elektryczne wymaga infrastruktury, która zdolna jest aktywnie zintegrować działania wytwórców, konsumentów i podmiotów realizujących obydwie te funkcje oraz zaspokoić ciągle rosnące zapotrzebowanie na energię elektryczną. Tradycyjne struktury sieci konstruowane dla jednokierunkowego przepływu energii, mają trudności z integracją źródeł rozproszonych.

Spowodowane ich obecnością odwrócenie kierunków rozpływów energii prowadzi niekiedy do poważnych problemów technicznych w zakresie bezpieczeństwa i niezawodności pracy systemu (blackout). Sieci inteligentne są szansą opanowania kaskadowego rozwoju zdarzeń awaryjnych. Do tej kategorii działań można także zaliczyć zyskującą na popularności koncepcję mikrosieci o zdefiniowanym poziomie autonomiczności. Może nią być pojedyncze gospodarstwo domowe, wydzielony obszar lub grupa odbiorców o zbilansowanej konsumpcji i lokalnej generacji energii. Bliskość odbiorcy względem źródła wytwarzania redukuje straty sieciowe i stwarza warunki lepszej integracji źródeł rozproszonych [3, 5, 6, 13, 15].

Nowoczesne i innowacyjne rozwiązania w sferze infrastruktury sieciowej to przede wszystkim coraz szersze zastosowanie przewodów wysokotemperaturowych [3, 16] oraz coraz powszechniejsze wprowadzanie stacji rozdzielczych w izolacji gazu SF6.

sześciofluorek gazu SF6 – element Smart Grids nowoczesnych stacji i rozdzielnic

Sześciofluorek siarki (SF6) jako czynnik gaszący łuk elektryczny oraz ośrodek izolacyjny w urządzeniach elektrycznych wysokich i średnich napięć zaczęto stosować począwszy od roku 1960. Czołowe firmy aparatowe na świecie rozwinęły produkcję wysokonapięciowych rozdzielnic osłoniętych z izolacją SF6 oraz wysokonapięciowych wyłączników, w których ten gaz stanowił medium gaszące łuk elektryczny. Prefabrykowane elementy rozdzielnic z izolacją stałą o wymaganej wytrzymałości dielektrycznej były ciężkie i zawodne, na skutek pęknięć odlewów żywicznych o dużej objętości.

Rozdzielnice z izolacją olejową były niebezpieczne pod względem wybuchowym i pożarowym, jak również ciężkie. Wobec tego SF6 szybko stał się alternatywą, przyczyniając się do zwiększenia efektywności systemów przesyłu i rozdziału energii elektrycznej z punktu widzenia bezpieczeństwa, ekonomii i racjonalizacji technicznej. Uogólniona ocena, która obejmuje aspekty: ekologiczne, ekonomiczne, techniczne i bezpieczeństwa wykazała, że SF6 został doskonale wybrany jako ośrodek izolacyjny i gasiwo. Przez lata technika SF6 była stale doskonalona w dziedzinie przesyłu i rozdziału energii elektrycznej. Dziś uczestniczy ona w dalszym rozwoju technicznym i ekonomicznym [1, 2, 8, 11].

Badania wykazały, że w gazie SF6 jest intensywne odprowadzanie ciepła z łuku, co prowadzi do zmniejszenia jego średnicy i wzrostu rezystancji łuku [2]. Te wyjątkowo dobre właściwości gazu jako medium gaszące łuk elektryczny pozwoliły na zastosowanie SF6 w komorach gaszeniowych wyłączników. Już pierwsze próby (1954 r., USA) wykazały, że przy swobodnym wyłączaniu prądu, zdolność gaszenia w SF6 przekracza około 100-krotnie zdolność gaszenia w powietrzu.

Najważniejsze w produkcji urządzeń w izolacji SF6 jest oddziaływanie na środowisko. Wieloletnie badania wykazały, że ilość i skład produktów rozpadu SF6 zależy w decydującym stopniu od czystości montażu, suszenia, uzyskania wysokiej próżni i zachowania reżimu napełnienia gazem. W procesie produkcji kluczowymi czynnościami kontrolnymi są badania spadków napięć, badanie nieszczelności zbiorników, wytrzymałości dielektrycznej i wyładowań niezupełnych. Producent gazu firma Solvay oraz badania przeprowadzone przez naukowców dowodzą, że wpływ gazu SF6 na środowisko jest niewielki i dotyczy urządzeń z wyłącznikami zwłaszcza wysokich napięć. SF6 nie szkodzi ekosystemom, gdyż jest to gaz obojętny o bardzo niskiej rozpuszczalności w wodzie, nie jest więc niebezpieczny dla wód i gleby.

Mimo że współczynnik globalnego ocieplenia dla SF6 (WOG) jest 22 500–22 200 razy większy od CO2 i jest to gaz trwały w atmosferze (Atmospheric Life Time – ALT=650–3200 rok), stwierdza się, że wpływ gazu SF6 dostającego się do atmosfery na efekt cieplarniany jest pomijalny. Gaz ten nie uczestniczy w efekcie stratosferycznego rozkładu ozonu – ponieważ nie ma w swym składzie atomów chloru, nie ulega aktywności fotolitycznej. Jednak SF6, podobnie jak wiele innych gazów, np. CO2, absorbuje promieniowanie podczerwone. Jego obecność w atmosferze może przyczynić się do tak zwanego wtórnego sztucznego napromieniowania podczerwonego, powracającego w dolne partie atmosfery, powodującego efekt cieplarniany.

Należy jednak podkreślić, iż omawiany wyżej efekt cieplarniany jest wywoływany sztucznie, powiększany przez działalność człowieka, w odróżnieniu od naturalnego ocieplania powodowanego przez wydzielającą się parę wodną, CO2 itp. Roczny wskaźnik emisji SF6 z urządzeń elektroenergetycznych stanowi 0,1% rocznego wskaźnika emisji globalnie wytwarzanych przez człowieka gazów cieplarnianych (tzw. szklarniowych). Na międzynarodowej konferencji CIGRE przyjęto dopuszczalny poziom emisji 1% rocznie. Tu przykład: emisja europejskich producentów i użytkowników stanowi tylko 0,008% globalnej emisji. Na rysunku 1. pokazano wpływ gazów na efekt cieplarniany.

Szacując przyszły wpływ SF6 na omawiane zjawisko, przyjęto, że w roku 2100 ilość uwolnionego do atmosfery gazu wyniesie 1/3 globalnej produkcji, to jednak wpływ SF6 będzie rzędu 0,2% całego wpływu wszystkich wytwarzanych w wyniku działalności człowieka gazów. Zatem wykazano, iż mimo dużego relatywnego i potencjalnego wpływu na globalne ocieplenie, jednak przyczynienie się SF6 zarówno obecnie, jak i w przyszłości do zwiększenia efektu cieplarnianego będzie nieistotne. Wynika to głównie z ograniczenia ubytków gazu z urządzeń i emisji gazu wskutek błędów obsługi.

Sześciofluorek siarki ma tak długo właściwości gazu obojętnego, dokąd nie zostanie poddany działaniu termicznemu. Praktyka wykazuje, że podczas normalnej eksploatacji wyłącznika, tzn. w okresie wykonania przypisanych trwałością łączeniową wyłączeń prądu roboczego i zwarciowego, niewielka ilość gazu ulega zużyciu. W przedziałach rozdzielnicy osłoniętej, w których nie zachodzą procesy łączeniowe, nie powinna następować degradacja gazu. Jedyną przyczyną pojawienia się tu rozpadu SF6 mogą być wyładowania koronowe niezupełne – spowodowane przez defekty, wady izolacji. Mogą one występować lokalnie w wielu częściach rozdzielnicy na bardzo niskim poziomie energetycznym, lecz długotrwale.

Przeczytaj także: Systemy pomiarowe w inteligentnych sieciach Smart Grids

Smart grids jest próbą stworzenia uniwersalnych ram dla technologii służących sprostaniu istniejącym i przyszłym wyzwaniom technicznym i rynkowym. Sieć inteligentna dostarcza klientom nowe usługi z wykorzystaniem techniki cyfrowej, zapewniając poprawę świadomości użytkowania energii, obniżenie jej kosztów, zwiększenie efektywności przepływów energii w sieci oraz zintegrowanie w systemie licznych źródeł rozproszonych.

Wymaga to jednak zwiększania zaangażowania odbiorców, którzy obecnie są zainteresowani przede wszystkim najniższą ceną kupowanej energii i usług oraz jej maksymalną dostępnością w ciągu roku. Z punktu widzenia użytkownika, w momencie upowszechniania sieci inteligentnych pojawi się możliwość bardziej precyzyjnego monitorowania pobierania mocy i energii, a nawet zawierania kontraktów lepiej dopasowanych do wymagań i potrzeb wszystkich stron” [14].

Przeczytaj także: Zastosowanie źródeł energii odnawialnej do wspomagania zasilania budynków w energię elektryczną

Zagadnieniem inteligentnych sieci od lat zajmują się zespoły badawcze, należy także stwierdzić, że zarówno w wymiarze europejskim, jak i krajowym zostały zainicjowane formalne organy zajmujące się tymi zagadnieniami. Trzeba tu wspomnieć o European Smart Grids Technology Platform – Directorate-General for Research Sustainable Energy System [7], gdzie zawarto wizję nowoczesnego rozwiązania sieci w przyszłości.

streszczenie

W artykule przedstawiono uwarunkowania rozwoju przyszłościowych rozwiązań sieci przesyłowych i dystrybucyjnych. Smart Grid powinien być postrzegany nie tylko jako nowa koncepcja organizacyjna pracy nowych komponentów, które pojawią się w niej, lecz także, a może przede wszystkim, jako innowacyjne rozwiązania infrastruktury sieciowej, takie jak przewody niskozwisowe, szersze wykorzystanie tzw. linii tymczasowych oraz nowoczesna i innowacyjna aparatura rozdzielcza – do takiej należą stacje transformatorowe z SF6. Artykuł skupia się na zaprezentowaniu wieloaspektowego uzasadnienia celowości stosowania tego typu rozwiązań w przyszłościowej infrastrukturze sieciowej.



abstract

Transformer substation with SF6 as the innovative  element Smart Grid in the  transmission and distributive network of the electrical energy
The report  introduced conditionings of the development of future solutions of transmission and distributive networks. Smart Grid should be noticed not only as the new organizational idea of the work of new components which will appear in it, but also, and perhaps first of all as  innovative solutions of the network infrastructure, such as: lines of high temperature low sag conductor, the wider utilization – so called temporary lines and the modern and innovative distributive equipment – to this such belong the  distribution substation with SF6.The article focuses on introducing of the multifarious reasons of the advisability of the usage of this type of solutions in the future network infrastructure.

Przeczytaj także: Architektura i zastosowania technologii inteligentnego domu

Podobne inicjatywy powstały w Polsce, należy tu wymienić Platformę AGH oraz liczne konferencje poświęcone tym zagadnieniom organizowane przez URE. Bardzo konkretną formą działania w tym zakresie jest powołanie 3 listopada 2010 roku na Politechnice Wrocławskiej Konsorcjum Smart Power Grids Polska. Przedmiotem działania oraz celem tego konsorcjum jest [14]:

    • opracowanie koncepcji rozwoju inteligentnych sieci elektroenergetycznych przesyłowych i dystrybucyjnych oraz narzędzi wykorzystywanych dla jej optymalizacji, zabezpieczania i sterowania oraz opracowanie podstawowych kierunków rozwoju sieci i jej parametrów technicznych,
    • prowadzenie prac badawczych i rozwojowych dla praktycznej realizacji idei inteligentnych sieci elektroenergetycznych oraz opracowanie ogólnych zasad eksploatacji tych sieci,
    • szeroko rozumiana działalność edukacyjna, standaryzacja i konferencyjna,
    • dokonywanie wspólnych zamówień narzędzi i materiałów niezbędnych do prowadzenia prac badawczych i wdrożeniowych w zakresie rozwoju sieci oraz usług w tym zakresie,komercjalizacja wypracowanych na skutek działań konsorcjum wyników badań i rozwiązań technologicznych, występowanie o pozyskanie środków z instytucji finansujących prace badawczo-rozwojowe, zarówno krajowych, jak i europejskich.

Główne zadania, które powinny zrealizować sieci w inteligentnym wydaniu, to [9, 10, 16, 17]:

1) zapewnienie bezpieczeństwa energetycznego poprzez eliminację przerw w dostarczaniu odbiorcom usług energetycznych oraz maksymalizację efektywności przepływu energii od źródła jej wytwarzania do odbiorcy końcowego. Temu celowi służą miedzy innymi lepsze, mądrzejsze i szybsze układy diagnostyki i sterowania, pozwalające na bardziej zaawansowane zarządzanie przepływami energii, układami zabezpieczeń, procesami restytucyjnymi sieci itp. Istotne jest także zapewnienie bezpiecznej i niezawodnej transmisji danych warunkującej wprowadzenie zautomatyzowanych, szybkich i samonaprawiajacych procedur oraz koordynację sterowania na różnych poziomach systemu od lokalnego do globalnego z odpowiednią szybkością oraz odpowiednim poziomem redundancji,

2) minimalizację kosztów usług elektroenergetycznych przez optymalną i ciągłą integrację przyjaznych środowisku lokalnych zasobów energii,

3) zapewnienie zróżnicowania i zindywidualizowania poziomów jakości dostarczanej energii, zgodnie z potrzebami klienta, między innymi poprzez zastosowanie zaawansowanych układów energoelektronicznych, np. układów FACTS lub CUSTOM POWER,

4) rozszerzenie funkcjonalności usług świadczonych przez dostawcę na rzecz odbiorcy, tj. inteligentne opomiarowanie i fakturowanie (np. liczniki dwukierunkowe, zmienność ceny konsumowanej energii w czasie), zarządzanie energią oraz monitorowanie warunków jej dostawy itp. Takie „inteligentne” wyposażenie daje odbiorcom możliwość uczestnictwa w grze rynkowej oraz możliwość kontrolowanej indywidualnej generacji i magazynowania energii. Zdolność interakcji z siecią zasilającą umożliwia bardziej precyzyjne zawieranie kontraktów na dostawę energii lepiej dostosowanych do wymagań i potrzeb wszystkich stron. Jednym z etapów w tym procesie jest budowa, na bazie zainstalowanych mierników, rozproszonych systemów monitorowania stanu sieci elektroenergetyki zawodowej i/lub sieci przemysłowych. Nie jest to tożsame z „informatyzacją” w potocznym znaczeniu tego pojęcia. Wykorzystanie najnowszych zdobyczy nauki, w tym informatyki, to zaledwie jeden z elementów tych działań,

5) integrację rozproszonych źródeł odnawialnych o ograniczonej dyspozycyjności mocy i energii. Generacja małej i średniej skali (panele fotowoltaiczne, małe turbiny wiatrowe, małe elektrownie wodne, łączone niekiedy z siecią na zasadzie plug and play), wykorzystująca zasoby lokalne i zintegrowana często z budynkiem/mieszkaniem oraz zdolna do współpracy z siecią kreuje nowe pojęcie tzw. „inteligentnego domu”, autonomicznego energetycznie, zdolnego do przekazywania nadmiaru wytwarzanej energii i traktującego sieć jako źródło rezerwowe. Dzięki inteligentnemu opomiarowaniu możliwe staje się samoczynne ograniczanie poboru mocy (i energii) w okresach szczytowego obciążenia bez naruszenia jakości życia mieszkańców. Dotychczasowy tradycyjny, bierny konsument energii elektrycznej zaczyna pełnić funkcję aktywnego „prosumenta” zdolnego nie tylko do konsumowania, ale także do wytwarzania energii elektrycznej. W przypadku generacji rozproszonej dużej skali (np. farmy wiatrowej) upowszechnia się proces wykorzystania w ich sterowaniu modeli prognostycznych czynników meteorologicznych, co pozwala na zwiększony udział źródeł odnawialnych i redukcję niezbędnej systemowej rezerwy mocy.

konieczność restrukturyzacji istniejących sieci zasilających

Europejskie cele ochrony środowiska nie mogą być osiągnięte bez zmian sieci elektroenergetycznych. Pilność inwestowania w zasoby odnawialne, generację rozproszoną i pojazdy elektryczne wymaga infrastruktury, która zdolna jest aktywnie zintegrować działania wytwórców, konsumentów i podmiotów realizujących obydwie te funkcje oraz zaspokoić ciągle rosnące zapotrzebowanie na energię elektryczną. Tradycyjne struktury sieci konstruowane dla jednokierunkowego przepływu energii, mają trudności z integracją źródeł rozproszonych.

Spowodowane ich obecnością odwrócenie kierunków rozpływów energii prowadzi niekiedy do poważnych problemów technicznych w zakresie bezpieczeństwa i niezawodności pracy systemu (blackout). Sieci inteligentne są szansą opanowania kaskadowego rozwoju zdarzeń awaryjnych. Do tej kategorii działań można także zaliczyć zyskującą na popularności koncepcję mikrosieci o zdefiniowanym poziomie autonomiczności. Może nią być pojedyncze gospodarstwo domowe, wydzielony obszar lub grupa odbiorców o zbilansowanej konsumpcji i lokalnej generacji energii. Bliskość odbiorcy względem źródła wytwarzania redukuje straty sieciowe i stwarza warunki lepszej integracji źródeł rozproszonych [3, 5, 6, 13, 15].

Nowoczesne i innowacyjne rozwiązania w sferze infrastruktury sieciowej to przede wszystkim coraz szersze zastosowanie przewodów wysokotemperaturowych [3, 16] oraz coraz powszechniejsze wprowadzanie stacji rozdzielczych w izolacji gazu SF6.

sześciofluorek gazu SF6 – element Smart Grids nowoczesnych stacji i rozdzielnic

Sześciofluorek siarki (SF6) jako czynnik gaszący łuk elektryczny oraz ośrodek izolacyjny w urządzeniach elektrycznych wysokich i średnich napięć zaczęto stosować począwszy od roku 1960. Czołowe firmy aparatowe na świecie rozwinęły produkcję wysokonapięciowych rozdzielnic osłoniętych z izolacją SF6 oraz wysokonapięciowych wyłączników, w których ten gaz stanowił medium gaszące łuk elektryczny. Prefabrykowane elementy rozdzielnic z izolacją stałą o wymaganej wytrzymałości dielektrycznej były ciężkie i zawodne, na skutek pęknięć odlewów żywicznych o dużej objętości.

Rozdzielnice z izolacją olejową były niebezpieczne pod względem wybuchowym i pożarowym, jak również ciężkie. Wobec tego SF6 szybko stał się alternatywą, przyczyniając się do zwiększenia efektywności systemów przesyłu i rozdziału energii elektrycznej z punktu widzenia bezpieczeństwa, ekonomii i racjonalizacji technicznej. Uogólniona ocena, która obejmuje aspekty: ekologiczne, ekonomiczne, techniczne i bezpieczeństwa wykazała, że SF6 został doskonale wybrany jako ośrodek izolacyjny i gasiwo. Przez lata technika SF6 była stale doskonalona w dziedzinie przesyłu i rozdziału energii elektrycznej. Dziś uczestniczy ona w dalszym rozwoju technicznym i ekonomicznym [1, 2, 8, 11].

Badania wykazały, że w gazie SF6 jest intensywne odprowadzanie ciepła z łuku, co prowadzi do zmniejszenia jego średnicy i wzrostu rezystancji łuku [2]. Te wyjątkowo dobre właściwości gazu jako medium gaszące łuk elektryczny pozwoliły na zastosowanie SF6 w komorach gaszeniowych wyłączników. Już pierwsze próby (1954 r., USA) wykazały, że przy swobodnym wyłączaniu prądu, zdolność gaszenia w SF6 przekracza około 100-krotnie zdolność gaszenia w powietrzu.

Najważniejsze w produkcji urządzeń w izolacji SF6 jest oddziaływanie na środowisko. Wieloletnie badania wykazały, że ilość i skład produktów rozpadu SF6 zależy w decydującym stopniu od czystości montażu, suszenia, uzyskania wysokiej próżni i zachowania reżimu napełnienia gazem. W procesie produkcji kluczowymi czynnościami kontrolnymi są badania spadków napięć, badanie nieszczelności zbiorników, wytrzymałości dielektrycznej i wyładowań niezupełnych. Producent gazu firma Solvay oraz badania przeprowadzone przez naukowców dowodzą, że wpływ gazu SF6 na środowisko jest niewielki i dotyczy urządzeń z wyłącznikami zwłaszcza wysokich napięć. SF6 nie szkodzi ekosystemom, gdyż jest to gaz obojętny o bardzo niskiej rozpuszczalności w wodzie, nie jest więc niebezpieczny dla wód i gleby.

Mimo że współczynnik globalnego ocieplenia dla SF6 (WOG) jest 22 500–22 200 razy większy od CO2 i jest to gaz trwały w atmosferze (Atmospheric Life Time – ALT=650–3200 rok), stwierdza się, że wpływ gazu SF6 dostającego się do atmosfery na efekt cieplarniany jest pomijalny. Gaz ten nie uczestniczy w efekcie stratosferycznego rozkładu ozonu – ponieważ nie ma w swym składzie atomów chloru, nie ulega aktywności fotolitycznej. Jednak SF6, podobnie jak wiele innych gazów, np. CO2, absorbuje promieniowanie podczerwone. Jego obecność w atmosferze może przyczynić się do tak zwanego wtórnego sztucznego napromieniowania podczerwonego, powracającego w dolne partie atmosfery, powodującego efekt cieplarniany.

Należy jednak podkreślić, iż omawiany wyżej efekt cieplarniany jest wywoływany sztucznie, powiększany przez działalność człowieka, w odróżnieniu od naturalnego ocieplania powodowanego przez wydzielającą się parę wodną, CO2 itp. Roczny wskaźnik emisji SF6 z urządzeń elektroenergetycznych stanowi 0,1% rocznego wskaźnika emisji globalnie wytwarzanych przez człowieka gazów cieplarnianych (tzw. szklarniowych). Na międzynarodowej konferencji CIGRE przyjęto dopuszczalny poziom emisji 1% rocznie. Tu przykład: emisja europejskich producentów i użytkowników stanowi tylko 0,008% globalnej emisji. Na rysunku 1. pokazano wpływ gazów na efekt cieplarniany.

Szacując przyszły wpływ SF6 na omawiane zjawisko, przyjęto, że w roku 2100 ilość uwolnionego do atmosfery gazu wyniesie 1/3 globalnej produkcji, to jednak wpływ SF6 będzie rzędu 0,2% całego wpływu wszystkich wytwarzanych w wyniku działalności człowieka gazów. Zatem wykazano, iż mimo dużego relatywnego i potencjalnego wpływu na globalne ocieplenie, jednak przyczynienie się SF6 zarówno obecnie, jak i w przyszłości do zwiększenia efektu cieplarnianego będzie nieistotne. Wynika to głównie z ograniczenia ubytków gazu z urządzeń i emisji gazu wskutek błędów obsługi.

Sześciofluorek siarki ma tak długo właściwości gazu obojętnego, dokąd nie zostanie poddany działaniu termicznemu. Praktyka wykazuje, że podczas normalnej eksploatacji wyłącznika, tzn. w okresie wykonania przypisanych trwałością łączeniową wyłączeń prądu roboczego i zwarciowego, niewielka ilość gazu ulega zużyciu. W przedziałach rozdzielnicy osłoniętej, w których nie zachodzą procesy łączeniowe, nie powinna następować degradacja gazu. Jedyną przyczyną pojawienia się tu rozpadu SF6 mogą być wyładowania koronowe niezupełne – spowodowane przez defekty, wady izolacji. Mogą one występować lokalnie w wielu częściach rozdzielnicy na bardzo niskim poziomie energetycznym, lecz długotrwale.

W dyskusji nad wpływem SF6 na atmosferę ziemską jest często przyjmowane (oczywiście niesłusznie) założenie, że cała wyprodukowana ilość tego gazu zostanie ostatecznie uwolniona do atmosfery. Jednakże, w przeciwieństwie do innych wytworzonych przez człowieka gazów, SF6 zastosowany w urządzeniach energetycznych, nie musi tam trafić. Jedną z opcji jest recykling, mający na celu zapobieganie powstawaniu odpadów od produkcji do likwidacji urządzenia.

Szczegółowe wyjaśnienia dotyczące recyklingu znajdą się w Technicznej Broszurze CIGRE nr 117. Termin recykling należy rozumieć jako połączenie regeneracji i ponownego użycia na miejscu zainstalowania urządzenia energetycznego lub oczyszczenie gazu u producenta, gdy nie może być on łatwo zregenerowany na miejscu, aż po nieszkodliwe dla środowiska naturalnego ostateczne usunięcie SF6 z ekocyklu.

Obecnie, gdy już w Polsce coraz więcej przedsiębiorstw ubiega się o certyfikację zarządzania środowiskowego według norm międzynarodowych serii ISO 14001, trudno się godzić na ewentualne, niefrasobliwe emitowanie SF6 do atmosfery w przypadku likwidacji urządzenia. W tej sytuacji poddawanie SF6 recyklingowi jest logicznym etapem jego użytkowania. Technika SF6 na bieżąco oferuje najlepszy, możliwy kompromis w odniesieniu do kosztów, wykorzystania naturalnych surowców, efektywności eksploatacyjnej, bezpieczeństwa i zwartości konstrukcji aparatury SN.

Na całym świecie użytkownicy aparatury z SF6, producenci, organizacje zawodowe i kompetentne autorytety zobowiązują się do działań minimalizujących uwalnianie do otoczenia gazu SF6 na wszystkich etapach produkcji i eksploatacji urządzeń elektrycznych. Udział emisji SF6 pochodzącej z urządzeń elektrycznych SN i WN w globalnej emisji gazów cieplarnianych jest znikomy. Wynosi on około 0,1% i wykazuje tendencję spadkową.

przyszłościowe układy pracy sieci rozdzielczych

Prognozy przewidują, że następować będzie wzrost zapotrzebowania na energię elektryczną. Dotyczyć to przede wszystkim ośrodków mocno zurbanizowanych. Taki stan rzeczy będzie wymagał radykalnych rozwiązań – polegać one będą na zasadniczej zmianie struktury sieci rozdzielczej średniego i niskiego napięcia. Zmieni się tutaj proporcja długości sieci – będzie malała długość sieci niskiego napięcia, przy równoczesnym wydłużeniu długości sieci średniego napięcia. Efekt tych zmian to jak najdalsze dotarcie średnim napięciem do finalnego odbiorcy. Strategia ta będzie możliwa jedynie przy wykorzystaniu stacji małogabarytowych wykorzystujących SF6.

W tym względzie nieodzowne są dalsze badania i analizy zmierzające do określenia ekonomiczno-technicznych uwarunkowań proponowanych rozwiązań – zostaną one zaprezentowane w oddzielnym opracowaniu [9, 16].

Przeczytaj także: Systemy pomiarowe w inteligentnych sieciach Smart Grids

Smart grids jest próbą stworzenia uniwersalnych ram dla technologii służących sprostaniu istniejącym i przyszłym wyzwaniom technicznym i rynkowym. Sieć inteligentna dostarcza klientom nowe usługi z wykorzystaniem techniki cyfrowej, zapewniając poprawę świadomości użytkowania energii, obniżenie jej kosztów, zwiększenie efektywności przepływów energii w sieci oraz zintegrowanie w systemie licznych źródeł rozproszonych.

Wymaga to jednak zwiększania zaangażowania odbiorców, którzy obecnie są zainteresowani przede wszystkim najniższą ceną kupowanej energii i usług oraz jej maksymalną dostępnością w ciągu roku. Z punktu widzenia użytkownika, w momencie upowszechniania sieci inteligentnych pojawi się możliwość bardziej precyzyjnego monitorowania pobierania mocy i energii, a nawet zawierania kontraktów lepiej dopasowanych do wymagań i potrzeb wszystkich stron” [14].

Przeczytaj także: Zastosowanie źródeł energii odnawialnej do wspomagania zasilania budynków w energię elektryczną

Zagadnieniem inteligentnych sieci od lat zajmują się zespoły badawcze, należy także stwierdzić, że zarówno w wymiarze europejskim, jak i krajowym zostały zainicjowane formalne organy zajmujące się tymi zagadnieniami. Trzeba tu wspomnieć o European Smart Grids Technology Platform – Directorate-General for Research Sustainable Energy System [7], gdzie zawarto wizję nowoczesnego rozwiązania sieci w przyszłości.

streszczenie

W artykule przedstawiono uwarunkowania rozwoju przyszłościowych rozwiązań sieci przesyłowych i dystrybucyjnych. Smart Grid powinien być postrzegany nie tylko jako nowa koncepcja organizacyjna pracy nowych komponentów, które pojawią się w niej, lecz także, a może przede wszystkim, jako innowacyjne rozwiązania infrastruktury sieciowej, takie jak przewody niskozwisowe, szersze wykorzystanie tzw. linii tymczasowych oraz nowoczesna i innowacyjna aparatura rozdzielcza – do takiej należą stacje transformatorowe z SF6. Artykuł skupia się na zaprezentowaniu wieloaspektowego uzasadnienia celowości stosowania tego typu rozwiązań w przyszłościowej infrastrukturze sieciowej.



abstract

Transformer substation with SF6 as the innovative  element Smart Grid in the  transmission and distributive network of the electrical energy
The report  introduced conditionings of the development of future solutions of transmission and distributive networks. Smart Grid should be noticed not only as the new organizational idea of the work of new components which will appear in it, but also, and perhaps first of all as  innovative solutions of the network infrastructure, such as: lines of high temperature low sag conductor, the wider utilization – so called temporary lines and the modern and innovative distributive equipment – to this such belong the  distribution substation with SF6.The article focuses on introducing of the multifarious reasons of the advisability of the usage of this type of solutions in the future network infrastructure.

Przeczytaj także: Architektura i zastosowania technologii inteligentnego domu

Podobne inicjatywy powstały w Polsce, należy tu wymienić Platformę AGH oraz liczne konferencje poświęcone tym zagadnieniom organizowane przez URE. Bardzo konkretną formą działania w tym zakresie jest powołanie 3 listopada 2010 roku na Politechnice Wrocławskiej Konsorcjum Smart Power Grids Polska. Przedmiotem działania oraz celem tego konsorcjum jest [14]:

    • opracowanie koncepcji rozwoju inteligentnych sieci elektroenergetycznych przesyłowych i dystrybucyjnych oraz narzędzi wykorzystywanych dla jej optymalizacji, zabezpieczania i sterowania oraz opracowanie podstawowych kierunków rozwoju sieci i jej parametrów technicznych,
    • prowadzenie prac badawczych i rozwojowych dla praktycznej realizacji idei inteligentnych sieci elektroenergetycznych oraz opracowanie ogólnych zasad eksploatacji tych sieci,
    • szeroko rozumiana działalność edukacyjna, standaryzacja i konferencyjna,
    • dokonywanie wspólnych zamówień narzędzi i materiałów niezbędnych do prowadzenia prac badawczych i wdrożeniowych w zakresie rozwoju sieci oraz usług w tym zakresie,komercjalizacja wypracowanych na skutek działań konsorcjum wyników badań i rozwiązań technologicznych, występowanie o pozyskanie środków z instytucji finansujących prace badawczo-rozwojowe, zarówno krajowych, jak i europejskich.

Główne zadania, które powinny zrealizować sieci w inteligentnym wydaniu, to [9, 10, 16, 17]:

1) zapewnienie bezpieczeństwa energetycznego poprzez eliminację przerw w dostarczaniu odbiorcom usług energetycznych oraz maksymalizację efektywności przepływu energii od źródła jej wytwarzania do odbiorcy końcowego. Temu celowi służą miedzy innymi lepsze, mądrzejsze i szybsze układy diagnostyki i sterowania, pozwalające na bardziej zaawansowane zarządzanie przepływami energii, układami zabezpieczeń, procesami restytucyjnymi sieci itp. Istotne jest także zapewnienie bezpiecznej i niezawodnej transmisji danych warunkującej wprowadzenie zautomatyzowanych, szybkich i samonaprawiajacych procedur oraz koordynację sterowania na różnych poziomach systemu od lokalnego do globalnego z odpowiednią szybkością oraz odpowiednim poziomem redundancji,

2) minimalizację kosztów usług elektroenergetycznych przez optymalną i ciągłą integrację przyjaznych środowisku lokalnych zasobów energii,

3) zapewnienie zróżnicowania i zindywidualizowania poziomów jakości dostarczanej energii, zgodnie z potrzebami klienta, między innymi poprzez zastosowanie zaawansowanych układów energoelektronicznych, np. układów FACTS lub CUSTOM POWER,

4) rozszerzenie funkcjonalności usług świadczonych przez dostawcę na rzecz odbiorcy, tj. inteligentne opomiarowanie i fakturowanie (np. liczniki dwukierunkowe, zmienność ceny konsumowanej energii w czasie), zarządzanie energią oraz monitorowanie warunków jej dostawy itp. Takie „inteligentne” wyposażenie daje odbiorcom możliwość uczestnictwa w grze rynkowej oraz możliwość kontrolowanej indywidualnej generacji i magazynowania energii. Zdolność interakcji z siecią zasilającą umożliwia bardziej precyzyjne zawieranie kontraktów na dostawę energii lepiej dostosowanych do wymagań i potrzeb wszystkich stron. Jednym z etapów w tym procesie jest budowa, na bazie zainstalowanych mierników, rozproszonych systemów monitorowania stanu sieci elektroenergetyki zawodowej i/lub sieci przemysłowych. Nie jest to tożsame z „informatyzacją” w potocznym znaczeniu tego pojęcia. Wykorzystanie najnowszych zdobyczy nauki, w tym informatyki, to zaledwie jeden z elementów tych działań,

5) integrację rozproszonych źródeł odnawialnych o ograniczonej dyspozycyjności mocy i energii. Generacja małej i średniej skali (panele fotowoltaiczne, małe turbiny wiatrowe, małe elektrownie wodne, łączone niekiedy z siecią na zasadzie plug and play), wykorzystująca zasoby lokalne i zintegrowana często z budynkiem/mieszkaniem oraz zdolna do współpracy z siecią kreuje nowe pojęcie tzw. „inteligentnego domu”, autonomicznego energetycznie, zdolnego do przekazywania nadmiaru wytwarzanej energii i traktującego sieć jako źródło rezerwowe. Dzięki inteligentnemu opomiarowaniu możliwe staje się samoczynne ograniczanie poboru mocy (i energii) w okresach szczytowego obciążenia bez naruszenia jakości życia mieszkańców. Dotychczasowy tradycyjny, bierny konsument energii elektrycznej zaczyna pełnić funkcję aktywnego „prosumenta” zdolnego nie tylko do konsumowania, ale także do wytwarzania energii elektrycznej. W przypadku generacji rozproszonej dużej skali (np. farmy wiatrowej) upowszechnia się proces wykorzystania w ich sterowaniu modeli prognostycznych czynników meteorologicznych, co pozwala na zwiększony udział źródeł odnawialnych i redukcję niezbędnej systemowej rezerwy mocy.

konieczność restrukturyzacji istniejących sieci zasilających

Europejskie cele ochrony środowiska nie mogą być osiągnięte bez zmian sieci elektroenergetycznych. Pilność inwestowania w zasoby odnawialne, generację rozproszoną i pojazdy elektryczne wymaga infrastruktury, która zdolna jest aktywnie zintegrować działania wytwórców, konsumentów i podmiotów realizujących obydwie te funkcje oraz zaspokoić ciągle rosnące zapotrzebowanie na energię elektryczną. Tradycyjne struktury sieci konstruowane dla jednokierunkowego przepływu energii, mają trudności z integracją źródeł rozproszonych.

Spowodowane ich obecnością odwrócenie kierunków rozpływów energii prowadzi niekiedy do poważnych problemów technicznych w zakresie bezpieczeństwa i niezawodności pracy systemu (blackout). Sieci inteligentne są szansą opanowania kaskadowego rozwoju zdarzeń awaryjnych. Do tej kategorii działań można także zaliczyć zyskującą na popularności koncepcję mikrosieci o zdefiniowanym poziomie autonomiczności. Może nią być pojedyncze gospodarstwo domowe, wydzielony obszar lub grupa odbiorców o zbilansowanej konsumpcji i lokalnej generacji energii. Bliskość odbiorcy względem źródła wytwarzania redukuje straty sieciowe i stwarza warunki lepszej integracji źródeł rozproszonych [3, 5, 6, 13, 15].

Nowoczesne i innowacyjne rozwiązania w sferze infrastruktury sieciowej to przede wszystkim coraz szersze zastosowanie przewodów wysokotemperaturowych [3, 16] oraz coraz powszechniejsze wprowadzanie stacji rozdzielczych w izolacji gazu SF6.

sześciofluorek gazu SF6 – element Smart Grids nowoczesnych stacji i rozdzielnic

Sześciofluorek siarki (SF6) jako czynnik gaszący łuk elektryczny oraz ośrodek izolacyjny w urządzeniach elektrycznych wysokich i średnich napięć zaczęto stosować począwszy od roku 1960. Czołowe firmy aparatowe na świecie rozwinęły produkcję wysokonapięciowych rozdzielnic osłoniętych z izolacją SF6 oraz wysokonapięciowych wyłączników, w których ten gaz stanowił medium gaszące łuk elektryczny. Prefabrykowane elementy rozdzielnic z izolacją stałą o wymaganej wytrzymałości dielektrycznej były ciężkie i zawodne, na skutek pęknięć odlewów żywicznych o dużej objętości.

Rozdzielnice z izolacją olejową były niebezpieczne pod względem wybuchowym i pożarowym, jak również ciężkie. Wobec tego SF6 szybko stał się alternatywą, przyczyniając się do zwiększenia efektywności systemów przesyłu i rozdziału energii elektrycznej z punktu widzenia bezpieczeństwa, ekonomii i racjonalizacji technicznej. Uogólniona ocena, która obejmuje aspekty: ekologiczne, ekonomiczne, techniczne i bezpieczeństwa wykazała, że SF6 został doskonale wybrany jako ośrodek izolacyjny i gasiwo. Przez lata technika SF6 była stale doskonalona w dziedzinie przesyłu i rozdziału energii elektrycznej. Dziś uczestniczy ona w dalszym rozwoju technicznym i ekonomicznym [1, 2, 8, 11].

Badania wykazały, że w gazie SF6 jest intensywne odprowadzanie ciepła z łuku, co prowadzi do zmniejszenia jego średnicy i wzrostu rezystancji łuku [2]. Te wyjątkowo dobre właściwości gazu jako medium gaszące łuk elektryczny pozwoliły na zastosowanie SF6 w komorach gaszeniowych wyłączników. Już pierwsze próby (1954 r., USA) wykazały, że przy swobodnym wyłączaniu prądu, zdolność gaszenia w SF6 przekracza około 100-krotnie zdolność gaszenia w powietrzu.

Najważniejsze w produkcji urządzeń w izolacji SF6 jest oddziaływanie na środowisko. Wieloletnie badania wykazały, że ilość i skład produktów rozpadu SF6 zależy w decydującym stopniu od czystości montażu, suszenia, uzyskania wysokiej próżni i zachowania reżimu napełnienia gazem. W procesie produkcji kluczowymi czynnościami kontrolnymi są badania spadków napięć, badanie nieszczelności zbiorników, wytrzymałości dielektrycznej i wyładowań niezupełnych. Producent gazu firma Solvay oraz badania przeprowadzone przez naukowców dowodzą, że wpływ gazu SF6 na środowisko jest niewielki i dotyczy urządzeń z wyłącznikami zwłaszcza wysokich napięć. SF6 nie szkodzi ekosystemom, gdyż jest to gaz obojętny o bardzo niskiej rozpuszczalności w wodzie, nie jest więc niebezpieczny dla wód i gleby.

Mimo że współczynnik globalnego ocieplenia dla SF6 (WOG) jest 22 500–22 200 razy większy od CO2 i jest to gaz trwały w atmosferze (Atmospheric Life Time – ALT=650–3200 rok), stwierdza się, że wpływ gazu SF6 dostającego się do atmosfery na efekt cieplarniany jest pomijalny. Gaz ten nie uczestniczy w efekcie stratosferycznego rozkładu ozonu – ponieważ nie ma w swym składzie atomów chloru, nie ulega aktywności fotolitycznej. Jednak SF6, podobnie jak wiele innych gazów, np. CO2, absorbuje promieniowanie podczerwone. Jego obecność w atmosferze może przyczynić się do tak zwanego wtórnego sztucznego napromieniowania podczerwonego, powracającego w dolne partie atmosfery, powodującego efekt cieplarniany.

Należy jednak podkreślić, iż omawiany wyżej efekt cieplarniany jest wywoływany sztucznie, powiększany przez działalność człowieka, w odróżnieniu od naturalnego ocieplania powodowanego przez wydzielającą się parę wodną, CO2 itp. Roczny wskaźnik emisji SF6 z urządzeń elektroenergetycznych stanowi 0,1% rocznego wskaźnika emisji globalnie wytwarzanych przez człowieka gazów cieplarnianych (tzw. szklarniowych). Na międzynarodowej konferencji CIGRE przyjęto dopuszczalny poziom emisji 1% rocznie. Tu przykład: emisja europejskich producentów i użytkowników stanowi tylko 0,008% globalnej emisji. Na rysunku 1. pokazano wpływ gazów na efekt cieplarniany.

Szacując przyszły wpływ SF6 na omawiane zjawisko, przyjęto, że w roku 2100 ilość uwolnionego do atmosfery gazu wyniesie 1/3 globalnej produkcji, to jednak wpływ SF6 będzie rzędu 0,2% całego wpływu wszystkich wytwarzanych w wyniku działalności człowieka gazów. Zatem wykazano, iż mimo dużego relatywnego i potencjalnego wpływu na globalne ocieplenie, jednak przyczynienie się SF6 zarówno obecnie, jak i w przyszłości do zwiększenia efektu cieplarnianego będzie nieistotne. Wynika to głównie z ograniczenia ubytków gazu z urządzeń i emisji gazu wskutek błędów obsługi.

Sześciofluorek siarki ma tak długo właściwości gazu obojętnego, dokąd nie zostanie poddany działaniu termicznemu. Praktyka wykazuje, że podczas normalnej eksploatacji wyłącznika, tzn. w okresie wykonania przypisanych trwałością łączeniową wyłączeń prądu roboczego i zwarciowego, niewielka ilość gazu ulega zużyciu. W przedziałach rozdzielnicy osłoniętej, w których nie zachodzą procesy łączeniowe, nie powinna następować degradacja gazu. Jedyną przyczyną pojawienia się tu rozpadu SF6 mogą być wyładowania koronowe niezupełne – spowodowane przez defekty, wady izolacji. Mogą one występować lokalnie w wielu częściach rozdzielnicy na bardzo niskim poziomie energetycznym, lecz długotrwale.

W dyskusji nad wpływem SF6 na atmosferę ziemską jest często przyjmowane (oczywiście niesłusznie) założenie, że cała wyprodukowana ilość tego gazu zostanie ostatecznie uwolniona do atmosfery. Jednakże, w przeciwieństwie do innych wytworzonych przez człowieka gazów, SF6 zastosowany w urządzeniach energetycznych, nie musi tam trafić. Jedną z opcji jest recykling, mający na celu zapobieganie powstawaniu odpadów od produkcji do likwidacji urządzenia.

Szczegółowe wyjaśnienia dotyczące recyklingu znajdą się w Technicznej Broszurze CIGRE nr 117. Termin recykling należy rozumieć jako połączenie regeneracji i ponownego użycia na miejscu zainstalowania urządzenia energetycznego lub oczyszczenie gazu u producenta, gdy nie może być on łatwo zregenerowany na miejscu, aż po nieszkodliwe dla środowiska naturalnego ostateczne usunięcie SF6 z ekocyklu.

Obecnie, gdy już w Polsce coraz więcej przedsiębiorstw ubiega się o certyfikację zarządzania środowiskowego według norm międzynarodowych serii ISO 14001, trudno się godzić na ewentualne, niefrasobliwe emitowanie SF6 do atmosfery w przypadku likwidacji urządzenia. W tej sytuacji poddawanie SF6 recyklingowi jest logicznym etapem jego użytkowania. Technika SF6 na bieżąco oferuje najlepszy, możliwy kompromis w odniesieniu do kosztów, wykorzystania naturalnych surowców, efektywności eksploatacyjnej, bezpieczeństwa i zwartości konstrukcji aparatury SN.

Na całym świecie użytkownicy aparatury z SF6, producenci, organizacje zawodowe i kompetentne autorytety zobowiązują się do działań minimalizujących uwalnianie do otoczenia gazu SF6 na wszystkich etapach produkcji i eksploatacji urządzeń elektrycznych. Udział emisji SF6 pochodzącej z urządzeń elektrycznych SN i WN w globalnej emisji gazów cieplarnianych jest znikomy. Wynosi on około 0,1% i wykazuje tendencję spadkową.

przyszłościowe układy pracy sieci rozdzielczych

Prognozy przewidują, że następować będzie wzrost zapotrzebowania na energię elektryczną. Dotyczyć to przede wszystkim ośrodków mocno zurbanizowanych. Taki stan rzeczy będzie wymagał radykalnych rozwiązań – polegać one będą na zasadniczej zmianie struktury sieci rozdzielczej średniego i niskiego napięcia. Zmieni się tutaj proporcja długości sieci – będzie malała długość sieci niskiego napięcia, przy równoczesnym wydłużeniu długości sieci średniego napięcia. Efekt tych zmian to jak najdalsze dotarcie średnim napięciem do finalnego odbiorcy. Strategia ta będzie możliwa jedynie przy wykorzystaniu stacji małogabarytowych wykorzystujących SF6.

W tym względzie nieodzowne są dalsze badania i analizy zmierzające do określenia ekonomiczno-technicznych uwarunkowań proponowanych rozwiązań – zostaną one zaprezentowane w oddzielnym opracowaniu [9, 16].

podsumowanie

Prezentowany artykuł jest próbą pokazania potencjału nowoczesnych rozdzielnic z sześciofluorkiem siarki jako innowacyjnych elementów smart grids przewidzianych do szerokiego zastosowania w przyszłościowych strukturach sieci rozdzielczych średniego i niskiego napięcia. Rozwiązania, które tu zasygnalizowano, są jedną z zasadniczych dróg prowadzących do podniesienia efektywności rozdziału energii elektrycznej w polskim systemie elektroenergetycznym, przyczyniając się do zmniejszenia energochłonności polskiego sektora energetycznego.

Literatura

BALL E.: Modern cable termintions in metalclad switchgear., IEE Conference on metalclad switchgear. Conf. Publ. 83;

BATTAGLIA B.: L’hexafluorure de soufre, nouveau moyen d’extinction de l’arc dans les disjoncteurs a haute tension., Bull. SFE, ser 8-e. T. III. 1962, nr 34

Baum K.: Linie wysokiego napięcia w technologii wysokotemperaturowych przewodów o małym zwisie. . Rynek Energii nr. 1(98) luty 2012

Dołęga W.: Odpowiedzialność ekonomiczna operatorów systemu przesyłowego i systemów dystrybucyjnych za bezpieczeństwo dostaw energii. Rynek Energii nr.6 (85) grudzień 2009

Dołęga W.: Ocena infrastruktury elektroenergetycznej w aspekcie bezpieczeństwa dostaw energii elektrycznej. Rynek Energii . Rynek Energii nr. 1(98) luty 2012

European SmartGrids Technology Platform, Directorate-General for Research Sustainable Energy System, Vision and Strategy for Europe`s Electricity Network s of the Future, European Commission , Luxembourg , Office for official Publications, 2006 IEC, Raport Techniczny Nr 1634 – Typu 2, 04 – 1995.

Marzecki J.: Optymalna lokalizacja miejskich stacji transformatorowo – rozdzielczych 110kV/SN w warunkach gospodarki rynkowej. Rynek Energii nr.2 (81), kwiecień 2009

Malko J.: Sieci inteligentne jako czynnik kształtowania sektora energii elektrycznej. Rynek Energii nr.2 (87), kwiecień 2010

MAUTHE G. i inni; „SF6 and the global atmosphere”, Elektra nr 164, 1996r.;

Malko J., Sieci inteligentne – zasady i technologie, Rynek Energii 2009, nr 3.

Paska J.: Metodyka analizy i ocena niezawodności systemu elektroenergetycznego w warunkach rynku energii elektrycznej. Rynek Energii nr.6 (91) 2010

Rakowska A., Hajdrowski K..: Smart Grids – drogi realizacji i sposoby upowszechniania, Konferencja Smart grids a poprawa efektywności energetycznej, Nauka i standaryzacja w rozwoju koncepcji inteligentnych sieci, Warszawa 8.12.2011

Sokolik W., Jakubczak P., Poprawa efektywności przesyłu i dystrybucji energii elektrycznej za pomocą niskostratnych przewodów o małych zwisach typu ACCC/TW, Wiadomości Elektrotechniczne nr 2009/6, (2009)

Szkutnik J.: Szkutnik J.: Perspektywy i kierunki rozwoju systemu elektroenergetycznego. Zagadnienia wybrane. Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2011 r.

Szkutnik J.: Efektywność w sektorze dystrybucji energii elektrycznej, aspekty ekonomiczne, pod redakcją Jerzego Szkutnika, Wydawnictwo Tekst, Częstochowa 2009 r.

www..wikipedia.pl

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Stacje kontenerowe – wprowadzenie

Stacje kontenerowe – wprowadzenie

Prefabrykowane stacje kontenerowe charakteryzują się małymi wymiarami oraz krótkim czasem montażu, wykonywanym w docelowym miejscu instalacji. Służą do rozdziału energii elektrycznej oraz zasilania sieci...

Prefabrykowane stacje kontenerowe charakteryzują się małymi wymiarami oraz krótkim czasem montażu, wykonywanym w docelowym miejscu instalacji. Służą do rozdziału energii elektrycznej oraz zasilania sieci elektroenergetycznych.

Optymalna lokalizacja stacji transformatorowych SN/nn w zurbanizowanych terenach miejskich

Optymalna lokalizacja stacji transformatorowych SN/nn w zurbanizowanych terenach miejskich

W artykule przedstawiono trudności, z którymi projektant może spotkać się w pracy zawodowej przy ustalaniu optymalnej lokalizacji nowych stacji transformatorowych (przede wszystkim kontenerowych stacji...

W artykule przedstawiono trudności, z którymi projektant może spotkać się w pracy zawodowej przy ustalaniu optymalnej lokalizacji nowych stacji transformatorowych (przede wszystkim kontenerowych stacji małogabarytowych) w warunkach miejskiej zabudowy. Scharakteryzowano stacje transformatorowe Sn/nn, stacje wnętrzowe, stacje słupowe napowietrzne oraz stacje podziemne.

Prefabrykowane stacje transformatorowe SN/nn

Prefabrykowane stacje transformatorowe SN/nn

Elektroenergetyczne stacje rozdzielcze SN/nn zasilane są najczęściej z sieci SN o napięciu znamionowym od 6 do 36 kV. Ze względu na budowę stacje mogą być wnętrzowe lub napowietrzne. Funkcją stacji transformatorowej...

Elektroenergetyczne stacje rozdzielcze SN/nn zasilane są najczęściej z sieci SN o napięciu znamionowym od 6 do 36 kV. Ze względu na budowę stacje mogą być wnętrzowe lub napowietrzne. Funkcją stacji transformatorowej SN/nn jest transformacja energii elektrycznej ze średniego napięcia na niskie i rozdział tej energii w sposób determinowany konfiguracją sieci nn, z zachowaniem warunków technicznych określonych w obowiązujących przepisach [1, 2]. Wymagania w zakresie wykonania oraz badania prefabrykowanych...

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies.

Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.