elektro.info

Nowoczesne oświetlenie Neonica

Nowoczesne oświetlenie Neonica

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą...

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą zarówno układu mebli, wykorzystanych materiałów czy koloru ścian. Jednak przede wszystkim warto dokładnie i z uwagą podjąć decyzje związane z wyborem odpowiedniego oświetlenia.

news Skuter elektryczny od Seata

Skuter elektryczny od Seata

Seat przedstawił nowy, całkowicie elektryczny skuter, który pojawi się na drogach w przyszłym roku. Model e-Scooter został zaprojektowany w taki sposób, aby jak najlepiej wpisać się w rosnący trend współdzielonej...

Seat przedstawił nowy, całkowicie elektryczny skuter, który pojawi się na drogach w przyszłym roku. Model e-Scooter został zaprojektowany w taki sposób, aby jak najlepiej wpisać się w rosnący trend współdzielonej mobilności.

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (część 2.)

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

W tej części artykułu prezentujemy metodykę projektowania ochrony przeciwporażeniowej oraz zagorożenia stwarzane przez gazy wydzielane przez baterie akumulatorów wraz ze sposobami ich neutralizacji.

Zasady doboru przewodów elektrycznych w instalacjach oddymiających

Nagromadzenie dymu i ciepła w budynku, w którym brak jest instalacji oddymiającej

Głównym zagrożeniem w czasie pożaru, przyczyniającym się do większości wypadków śmiertelnych, jest zadymienie. W skład dymu wchodzą produkty spalania, gazy pożarowe i tlenek węgla. Bardzo niebezpieczna jest też ich wysoka temperatura, która stwarza dodatkowe zagrożenie np. poprzez rozgorzenie (detonacyjne spalanie dymu powstające wskutek gwałtownego napływu powietrza do zadymionego pomieszczenia objętego pożarem). Silne zadymienie utrudnia sprawne przeprowadzenie ewakuacji oraz walkę z pożarem, dlatego przepisy z zakresu ochrony przeciwpożarowej w niektórych przypadkach nakładają obowiązek stosowania specjalnych instalacji do odprowadzania dymu i ciepła z budynków.

Zgodnie z Rozporządzeniem Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 r. w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów, rozdział 5 § 15 ust. 1 „Z każdego miejsca przeznaczonego na pobyt ludzi w obiekcie powinny być zapewnione odpowiednie warunki ewakuacji, zapewniające możliwość szybkiego i bezpiecznego opuszczenia strefy zagrożonej lub objętej pożarem, dostosowane do liczby i stanu sprawności osób przebywających w obiekcie oraz jego funkcji, konstrukcji i wymiarów, a także zastosowane techniczne środki zabezpieczenia przeciwpożarowego, polegające m.in. na (...) (pkt 4) zabezpieczeniu przed zadymieniem wymienionych w przepisach techniczno budowlanych dróg ewakuacyjnych, w tym: na stosowaniu urządzeń zapobiegających zadymieniu lub urządzeń i innych rozwiązań techniczno-budowlanych zapewniających usuwanie dymu”.

Zobacz także: Szybkość tworzenia się zagrożeń utrudniających bezpieczną i skuteczną ewakuację podczas pożarów instalacji elektrycznych w budynkach

Z kolei w §16 ust. 1 stwierdza się, że „Podstawą do uznania użytkowanego budynku istniejącego za zagrażający życiu ludzi jest niezapewnienie przez występujące w nim warunki techniczne możliwości ewakuacji ludzi, w szczególności w wyniku (…) (ust. 2 pkt 5) niezabezpieczenia przed zadymieniem dróg ewakuacyjnych wymienionych w przepisach techniczno-budowlanych, w określony tam sposób”. Przepisy budowlane nakazują, aby w szczególności urządzenia zapobiegające zadymieniu lub samoczynne urządzenia oddymiające uruchamiane za pomocą systemu wykrywania dymu były stosowane w następujących przypadkach:

  • na klatkach schodowych i przedsionkach przeciwpożarowych, stanowiących drogę ewakuacyjną w budynku wysokim (W) dla strefy pożarowej ZL II oraz w budynku wysokościowym (WW) dla stref pożarowych innych niż ZL IV, 
  • klatkach schodowych i przedsionkach przeciwpożarowych, stanowiących drogę ewakuacyjną w budynku wysokim (W) dla stref pożarowych ZL I, ZL III, ZL V lub PM oraz w budynku wysokościowym (WW) dla strefy pożarowej ZL IV, 
  • szybach dźwigów dla ekip ratowniczych,
  • klatkach schodowych obudowanych i zamykanych drzwiami w budynkach: 
  • niskim (N), zawierającym strefę pożarową ZL II, 
  • średniowysokim (SW), zawierającym strefę pożarową ZL I, ZL II, ZL III lub ZLV,
  • niskim (N) i średniowysokim (SW), zawierającym strefę pożarową PM o gęstości obciążenia ogniowego powyżej 500 MJ/m2 lub pomieszczenie zagrożone wybuchem.

 

Zobacz także: Wpływ wody na funkcjonowanie przewodów ognioodpornych

Oddymianie polega na wytworzeniu odpowiedniej różnicy ciśnień. Można to uzyskać wykorzystując instalacje grawitacyjne oraz instalacje mechaniczne. Zjawisko gromadzenia się dymu w budynku pozbawionym instalacji oddymiającej przedstawia rysunek 1. Natomiast na rysunku 2. zilustrowano zasadę odprowadzania dymu.

Zadania urządzeń i instalacji oddymiających

Urządzenia i instalacje oddymiające powinny:

  • zapewnić w chronionym pomieszczeniu wystarczającą widoczność,
  • obniżyć stężenie toksycznych gazów pożarowych,
  • utrzymać odpowiedni poziom tlenu,
  • usunąć ciepło powstające w czasie pożaru.

 

 

 

Proces oddymiania z reguły powinien przebiegać w dwóch etapach:

  • etap I – utrzymanie dostępności do pomieszczeń w celu ewakuacji ludzi, dlatego instalacja powinna zostać uruchomiona w jak najkrótszym czasie, zaraz po powstaniu pożaru,
  • etap II – powstrzymanie rozprzestrzeniania się dymu poza przestrzeń objętą pożarem.

 

Zobacz także: Jak dobierać przewody do urządzeń elektrycznych, które muszą funkcjonować podczas pożaru?

Rozróżniamy dwa podstawowe sposoby oddymiania: oddymianie grawitacyjne i oddymianie mechaniczne.

Instalacje oddymiania grawitacyjnego

W przypadku powstania pożaru w zamkniętym pomieszczeniu lub budynku bardzo szybko gromadzi się dym i gazy pożarowe, wypełniając je najpierw w górnej części, a potem stopniowo obniżając się ku dołowi. Gazy pożarowe posiadają stosunkowo wysoką temperaturę sięgającą nawet 1000°C, mogącą przyczynić się do naruszenia konstrukcji budynku. Jeżeli w budynku występuje instalacja oddymiająca, w odpowiednim czasie po wykryciu pierwszych oznak pożaru (dymu lub ciepła) następuje jej zadziałanie. Polega ono na otwarciu klap lub okien oddymiających i tym samym odprowadzeniu nagromadzonych gazów i ciepła na zewnątrz.

Instalacje grawitacyjne są stosowane do odprowadzania gazów pożarowych z klatek schodowych budynków oraz oddymiania powierzchni produkcyjnych i magazynowych o dużej powierzchni. W przypadku oddymiania klatek schodowych skuteczność oddymiania jest dostateczna, jeżeli budynki posiadają powyżej 5. kondygnacji (im wyższy komin, tym silniejsze zasysanie). Otwarciu klapy na stropie lub okna na najwyższej kondygnacji powinno towarzyszyć otwarcie odpowiednich otworów napowietrzających w dolnej części budynku. Na rysunku 3. została przedstawiona konfiguracja systemu oddymiania, a na rysunku 4. – rozmieszczenie elementów systemu oddymiania grawitacyjnego.

Zasada działania systemu oddymiania

W momencie wykrycia produktów spalania przez czujki dymu lub przyrostu temperatury przez czujki temperatury, następuje ich pobudzenie. Sygnał alarmu dociera do centrali oddymiania, a następnie za pośrednictwem siłowników centrala steruje otwarciem okien lub klap oddymiających oraz napowietrzających. Jednocześnie sygnał przekazywany jest do centrali sygnalizacji pożarowej budynku (o ile taka jest w budynku). Uruchomienie systemu może też nastąpić poprzez wciśnięcie ręcznego przycisku oddymiania. Otwarcie klap jest sygnalizowane optycznie i akustycznie zazwyczaj w przyciskach alarmowych oddymiania lub za pomocą sygnalizatorów optyczno-akustycznych. Tego typu systemy posiadają też możliwość otwarcia klap, w celu przewietrzenia pomieszczeń. Służą do tego specjalne przyciski przewietrzające, które umożliwiają ręczne otwarcie i zamknięcie klap i okien oddymiających. Dodatkowo, w celu zabezpieczenia zarówno samej instalacji, jak i elementów budynku oraz materiałów w nim zgromadzonych, stosuje się specjalne moduły pogodowe, które zapewniają automatyczne zamknięcie otworów przy silnym wietrze lub deszczu.

System oddymiania powinien mieć możliwość współpracy z systemem sygnalizacji pożarowej. W takim przypadku wymagana jest możliwość uruchomienia centrali oddymiania przez centralę sygnalizacji pożarowej, jednocześnie zwrotnie powinna zostać przekazana informacja potwierdzająca uruchomienie siłowników, a także przekazanie alarmu uszkodzeniowego. W tym celu do przekaźników alarmu pożarowego oraz alarmu uszkodzeniowego systemu oddymiania należy połączyć obwody wejściowe CSP (np. liniowe moduły wejściowe), z kolei do elementu wykonawczego CSP należy podłączyć wejście uruchamiające systemu oddymiania oraz zastosować rozwiązanie umożliwiające nadzorowanie wszystkich sterowań i połączeń.

Ponieważ ze względu na występujące spadki napięcia na przewodach łączących sterownik z siłownikiem (zasilany jest on napięciem 24 Vdc, średni pobór prądu od 0,3 A do ok. 2 A) są stosowane rozwiązania, w których centrala oddymiania znajduje się w bezpośredniej bliskości siłownika. Z tego wynika konieczność zapewnienia odpowiedniej jej odporności na wysoką temperaturę.

Instalacja zapobiegająca zadymieniu, nadciśnieniowa

Instalacje nadciśnieniowe są wykorzystywane w celu oddymiania oraz niedopuszczenia do zadymienia na klatkach schodowych i drogach ewakuacyjnych. Ich działanie polega na wytworzeniu regulowanego nadciśnienia, które nie dopuszcza do wtargnięcia dymu na drogi ucieczki. Specjalny układ elektroniczny kontroluje za pośrednictwem dwóch niezależnych linii oddymiania i grup napędów oraz specjalnych wyłączników nadciśnieniowych cały proces oddymiania i przyrostu ciśnienia. Odpowiednie wysterowanie zainstalowanych w obszarze klap oddymiających i napowietrzających powoduje również skuteczne oddymianie chronionego obszaru. Przykładowy schemat układu instalacji nadciśnieniowego oddymiania został przedstawiony na rysunku 5.

Przy projektowaniu instalacji nadciśnieniowych przyjmuje się, że nadciśnienie w klatce schodowej będzie wynosić od 20 do 80 Pa, a prędkość przepływającego powietrza w klatce schodowej będzie nie większa niż 5 m/s. Powietrze powinno napływać do klatki schodowej w sposób równomierny, tzn. wlot powietrza powinien zapewniać jego rozpływ w dolnej części klatki schodowej i przemieszczanie się w górę całym jej przekrojem. Otwór wlotowy świeżego powietrza najlepiej spełnia swoją funkcję, kiedy umieszczony jest możliwie nisko, nie niżej jednak niż 0,5 m nad podłogą. Nawiew musi dostarczać wymaganą ilość świeżego powietrza z zewnątrz. Zastosowany układ stopniowania ciśnień pozwala na ukierunkowanie przepływu świeżego powietrza.

Kable i przewody w systemach sterowania oddymianiem

Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 roku w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75/2002 r., poz. 690, z późniejszymi zmianami), określa w § 187, że czas dostawy energii elektrycznej do urządzeń ppoż., które muszą funkcjonować w czasie pożaru jest uzależniony od czasu, w którym urządzenie musi funkcjonować. Wyjątek stanowią przestrzenie objęte ochroną stałych urządzeń gaśniczych wodnych, gdzie czas ten może zostać ograniczony do 30 minut. W większości przypadków czas ten może wynosić nawet 90 minut, kiedy to temperatura pożaru uzyskuje wysokie wartości.

Podstawowym kryterium wynikającym z przepisów ppoż. jest odporność ogniowa przewodów i kabli przez określony czas, przez który gwarantują one dostawę energii elektrycznej do zasilanych urządzeń po czym tracą właściwości dielektryczne. Według oznaczeń określonych przez CEN, kryteriami, według których przeprowadza się ocenę odporności ogniowej, są:

  • nośność oznaczana jako R – jest to zdolność elementu (próbnego nośnego elementu konstrukcji) do utrzymania obciążenia badawczego bez przekraczania określonych kryteriów pod względem wielkości i prędkości przemieszczenia,
  • szczelność dymowa oznaczana jako E – jest to zdolność elementu próbnego (oddzielającego elementu konstrukcji budowlanej) do zapobieżenia przejściu płomieni i gorących gazów oraz do zapobieżenia pojawienia się płomieni na powierzchni nie nagrzewanej,
  • izolacyjność ogniowa oznaczana jako I – jest to zdolność elementu próbnego (oddzielającego elementu konstrukcji budowlanej), poddanego oddziaływaniu ognia z jednej strony, do ograniczenia przyrostu temperatury nie nagrzewanej powierzchni poniżej określonych poziomów.

 

Dodatkowymi kryteriami użytkowymi są:

  • przepuszczalność promieniowania „W” – jeżeli o izolacyjności decyduje promieniowanie cieplne,
  • odporność na działanie mechaniczne „M” – w przypadku, kiedy o odpornośwci materiału decyduje oddziaływanie mechaniczne,
  • samozamykalność „C” – kryterium dotyczy drzwi zaopatrzonych w samozamykacze,
  • ograniczenie rozprzestrzeniania się dymu „S” – dla elementów, które powinny zapewniać ograniczenie rozprzestrzeniania się dymu,
  • ciągłość dostawy energii: – pH – ciągłości dostawy energii przez przewody (kable) o średnicy do 2,5 mm,
  • H – ciągłości dostawy energii przez przewody (kable) o średnicy przewodów równej lub większej niż 2,5 mm.

 

Zgodnie z wymaganiami zwartymi w przepisach poszczególne odcinki kabli i przewodów w instalacjach sterowania oddymianiem i zapobiegania zadymieniu powinny spełniać kryteria określone w tabeli 1. Na rysunku 6. zostały przedstawione rodzaje oprzewodowania stosowane w systemach oddymiania.

Przewody i osprzęt użyty do wykonania instalacji powinien prawidłowo funkcjonować w przedziałach czasu 30, 60 i 90 min, co odpowiada kryterium zachowania funkcji zespołu kablowego (kabel + osprzęt) E30, E60 i E90 [1] lub PH30, PH60, PH90 – wg PN-EN 50200 [2]. Urządzenia oddymiania wymagają skutecznej ochrony przeciwporażeniowej zgodnie z wymaganiami normy PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41: Instalacje dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym. Ponieważ urządzenia te muszą funkcjonować przez wymagany czas pod działaniem wysokiej temperatury, pojawiają się problemy z dostawą energii elektrycznej o właściwych parametrach. Ulega zwiększeniu ich rezystancja. Zgodnie z prawem Wiedemanna–Franza:

ei 3 2011 zasady doboru przewodow elektrycznych wzor 1
(1)

gdzie:

γ – konduktywność przewodnika, w [m/(Ω·m·m2)],

λ – współczynnik przewodności cieplnej przewodnika, w [W/(m·K)],

L – stała Lorentza:

T – temperatura przewodnika, w [K].

Stosunek przewodnictwa cieplnego i przewodnictwa elektrycznego w dowolnym metalu jest wprost proporcjonalny do temperatury. Wraz ze wzrostem temperatury powstaje wzrost przewodnictwa cieplnego i spadek przewodnictwa elektrycznego.

Spodziewany wzrost rezystancji przewodu w temperaturze większej niż 20°C można wyznaczyć ze wzoru [13]:

gdzie:

RTk – rezystancja przewodu w temperaturze Tk, w [Ω],

Tk – temperatura końcowa, w której oblicza się rezystancję przewodu RTk, w [K],

R20 – rezystancja przewodu w temperaturze 20°C, w [Ω].

Przebieg wzrostu rezystancji przewodu funkcji temperatury zgodnie ze wzorem (2) przedstawia rysunek 7.

Wzrost rezystancji przewodów zasilających pod działaniem temperatury powoduje pogorszenie warunków ochrony przeciwporażeniowej oraz wzrost spadków napięć, który skutkuje pogorszeniem jakości dostarczanej energii elektrycznej zasilającej te urządzenia. W celu zneutralizowania wpływu tego niekorzystnego zjawiska, przewody zasilające muszą zostać przewymiarowane. Wymagany przekrój przewodów należy wyznaczyć z uproszczonych wzorów (właściwych dla przewodów SCu ≤50 mm2 lub SAl ≤70 mm2), które uwzględniają współczynnik wzrostu rezystancji spowodowany działaniem temperatury:

  • dla obwodu jednofazowego:
ei 3 2011 zasady doboru przewodow elektrycznych wzor 4
(3)

gdzie:

Unf – fazowe napięcie nominalne, w [V],

kp – współczynnik wzrostu rezystancji przewodu powodowany działaniem temperatury, w [-]:

  • dla obwodu trójfazowego:

W normie PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41. Ochrona dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym (tab. 2.) zostały jednoznacznie określone dopuszczalne czasy wyłączenia zasilania podczas zwarć doziemnych jednofazowych. Najbardziej ostre wymagania w odniesieniu do czasu wyłączenia norma określa w odniesieniu do układu zasilania TT. Czasy te są o połowę krótsze od największych dopuszczalnych czasów określonych dla układów zasilania TN (TN-S, TN-C-S, TN-C).

W układach zasilania TT obwód zwarciowy zamyka się przez rezystancję uziemienia transformatora oraz rezystancję uziomu ochronnego, co tworzy znaczną impedancję i może powodować trudności w uzyskaniu samoczynnego wyłączenia przy zwarciu w obwodach zabezpieczonych wyłącznikami nadprądowymi lub bezpiecznikami topikowymi. Z tego względu jedynym skutecznym zabezpieczeniem przed porażeniem realizowanym przez samoczynne wyłączenie w układzie zasilania TT jest wyłącznik różnicowoprądowy, który nie nadaje się do zabezpieczania urządzeń ppoż., które muszą funkcjonować w czasie pożaru. Sytuacja ta powoduje, że układ zasilania TT w praktyce nie nadaje się do zasilania urządzeń elektrycznych, które muszą funkcjonować w czasie pożaru. Nieprzydatność wyłącznika różnicowoprądowego w obwodach zasilających urządzenia ppoż. została wyjaśniona w dalszej części artykułu.

W odniesieniu do urządzeń ppoż., które muszą funkcjonować w czasie pożaru przy zasilaniu w układzie TN, spodziewany prąd zwarcia jednofazowego należy obliczać z następującego wzoru:

ei 3 2011 zasady doboru przewodow elektrycznych wzor 9
(5)

gdzie:

kp – współczynnik wzrostu rezystancji przewodu powodowanej działaniem temperatury określony wzorem, w [-].

Należy zwrócić uwagę na to, że podczas pożaru izolacja przewodów podlega silnemu nagrzewaniu, przez co ulega ona jonizacji, która skutkuje znacznymi wartościami doziemnych prądów upływowych. Prądy te mogą powodować niekontrolowane działanie urządzeń różnicowoprądowych powodując wyeliminowanie urządzenia, które musi funkcjonować podczas akcji gaśniczej.

Zabezpieczenia obwodów zasilających urządzenia ppoż., których funkcjonowanie jest wymagane podczas akcji gaśniczej, należy dobierać tak, aby zachowana była skuteczna ochrona przeciwporażeniowa oraz wyeliminowana możliwość ich zadziałania wskutek:

  • prądów rozruchowych silników,
  • prądów załączeniowych lamp, transformatorów, zasilaczy impulsowych itp. urządzeń,
  • zwiększonych prądów podczas normalnego użytkowania,
  • braku wybiórczości z zabezpieczeniami na niższych stopniach zabezpieczeń.

 

W celu wyeliminowania zbędnych zadziałań zabezpieczeń, nie należy w tych obwodach stosować:

  • wyłączników różnicowoprądowych,
  • zabezpieczeń przeciążeniowych działających na wyłączenie.

 

Prądy znamionowe lub nastawcze zabezpieczeń zwarciowych należy zwiększyć o jeden lub dwa stopnie w stosunku do wartości wynikających z obliczeń przy spełnieniu warunku odporności cieplnej dobieranych przewodów przy zwarciach i przeciążeniach.

W celu wyjaśnienia tego problemu niżej zostanie przedstawiona zasada działania wyłącznika różnicowoprądowego. Wyłącznik różnicowoprądowy (RCD) jest to urządzenie, które mierzy różnicę prądu wpływającego (przewodem L) i wypływającego (przewodem N) z chronionej instalacji (rys. 8. i rys. 9.). Prąd różnicowy ΔI (zwany również prądem upływu) stanowi różnicę pomiędzy prądem płynącym w przewodzie fazowym (przewodach fazowych) a prądem płynącym w przewodzie neutralnym N:

ei 3 2011 zasady doboru przewodow elektrycznych wzor 7
(6)

Jednym z najważniejszych parametrów wyłącznika różnicowoprądowego jest znamionowy prąd różnicowy IΔn.

Prąd zadziałania wyłącznika różnicowoprądowego zawiera się w granicach 0,5 IΔn – 1 IΔn. Zatem poprawnie działający wyłącznik różnicowoprądowy spowoduje wyłączenie zasilania, jeżeli spełniony będzie warunek:

ei 3 2011 zasady doboru przewodow elektrycznych wzor 8
(7)

Parametry wyłączników różnicowoprądowych:

  • napięcie znamionowe Un, w [V],
  • znamionowy różnicowy IΔn, w [A],
  • prąd znamionowy długotrwały In, w [A],
  • typ wyłącznika (A, AC, B),
  • rodzaj wyzwalacza (np. selektywny – S),
  • wytrzymałość zwarciowa, w [kA],
  • częstotliwość znamionowa, w [Hz].

 

Wyłączniki różnicowoprądowe dzieli się również ze względu na ich czułość:

  • wysokoczułe IΔn≤30 mA,
  • średnioczułe 30 mA<IΔn≤300 mA,
  • niskoczułe 300 mA<IΔn≤3000 mA.

 

Wyłącznik różnicowoprądowy pełni następujące funkcje w instalacji:

  • realizuje samoczynne wyłączenie zasilania w ochronie przy uszkodzeniu i jest uzupełnieniem ochrony przy dotyku bezpośrednim (dla IΔn≤30 mA),
  • jest urządzeniem chroniącym instalację przed pożarami wywołanymi (dla IΔn≤300 mA):

          - zwarciami doziemnymi,

          – prądami upływowymi.

Zastosowanie wyłączników różnicowoprądowych w instalacjach zasilających urządzenia ppoż. obniża niezawodność ich działania wskutek możliwych niekontrolowanych wyłączeń spowodowanych wzrostem prądów upływowych pod działaniem temperatury, która jonizuje izolację przewodów lub kabli. Wyłącznik różnicowoprądowy powinien zadziałać, gdy prąd upływowy uzyska wartość w przedziale (0,5–1)IΔn, co w przypadku nagrzania izolacji przewodu lub kabla nastąpi bardzo szybko, powodując tym samym pozbawienie zasilanego urządzenia swojej funkcji.

Literatura

1. DIN 4102-12 Zachowanie się materiałów i elementów budowlanych pod wpływem ognia. Podtrzymywanie funkcji urządzeń w czasie pożaru. Wymagania i badania.

2. PN-EN 50200 Metoda badania palności cienkich przewodów i kabli bez ochrony specjalnej stosowanych w obwodach zabezpieczających.

3. Materiały udostępnione przez firmę NIEDAX KLEINHUIS POLSKA Sp. z o.o.

4. PN-B-02851-1:1997 Ochrona przeciwpożarowa budynków. Badania odporności ogniowej elementów budynku. Wymagania ogólne i klasyfikacja.

5. M. Profit-Szczepańska, Wybrane problemy palności kabli elektrycznych, „Ochrona Przeciwpożarowa” nr 1/2003.

6. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75, poz. 690, z późniejszymi zmianami).

7. J. Sawicki, Zagadnienia związane ze sterowaniem pożarowych instalacji oddymiania i odprowadzania ciepła, Konferencja SAP, wrzesień 2004.

8. Materiały do projektowania instalacji oddymiających firmy D+H Mechatronic GmbH.

9. PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41: Instalacje dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym.

10. J. Wiatr, A. Boczkowski, M. Orzechowski, Ochrona przeciwporażeniowa oraz dobór przewodów i ich zabezpieczeń w instalacjach niskiego napięcia, DW MEDIUM, Warszawa 2010.

11. J. Wiatr, E. Skiepko, Dobór przewodów do zasilania urządzeń ppoż., które muszą funkcjonować w czasie pożaru, „elektro.info| 10/2010 - cz. I, „elektro.info” 11/2010 - cz. II.

12. E. Skiepko, Instalacje przeciwpożarowe, wyd. 2, DW MEDIUM, Warszawa 2010.

13. www.leonardo-energy.org

14. J. Wiatr, M. Orzechowski, Poradnik projektanta elektryka, wyd. 4, DW MEDIUM, Warszawa 2010.

15. Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów i terenów (DzU nr 109/2010, poz. 719).

16. J. Ciszewski, J. Sawicki, D. Ratajczak, Podręcznik projektanta systemów sygnalizacji pożarowej, SIPT, ITB, Warszawa 2009.

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Uproszczony projekt skablowania odcinka elektroenergetycznej linii napowietrznej SN

Uproszczony projekt skablowania odcinka elektroenergetycznej linii napowietrznej SN

W związku z budową drogi oraz wiaduktu drogowego, napowietrzna linia elektroenergetyczna SN 15 kV została wykonana jako dzielona – w celu skablowania odcinka zajętego przez nasyp wiaduktu. linia ta jest...

W związku z budową drogi oraz wiaduktu drogowego, napowietrzna linia elektroenergetyczna SN 15 kV została wykonana jako dzielona – w celu skablowania odcinka zajętego przez nasyp wiaduktu. linia ta jest wykonana przewodami 3×70 AFl-6 rozwieszonymi na słupach wirowanych.

Uproszczony projekt zasilania stacji ładowania schodów lotniskowych

Uproszczony projekt zasilania stacji ładowania schodów lotniskowych

Prezentowany projekt jest jedynie fragmentem projektu akumulatorowni lotniskowej i obejmuje tylko stację ładowania ruchomych schodów lotniskowych. Stacja ładowania schodów jest jednocześnie pomieszczeniem,...

Prezentowany projekt jest jedynie fragmentem projektu akumulatorowni lotniskowej i obejmuje tylko stację ładowania ruchomych schodów lotniskowych. Stacja ładowania schodów jest jednocześnie pomieszczeniem, gdzie są one garażowane. Ponieważ podczas ładowania akumulatorów wydobywa się wodór, który z powietrzem tworzy mieszaninę wybuchową, w celu zneutralizowania zagrożeń zastosowany został system detekcji stężenia wodoru, współpracujący z wentylatorem wyciągowym. Podobne rozwiązanie może zostać przyjęte...

Zastosowanie wentylatorów z silnikiem dwubiegowym do wentylacji pomieszczeń

Zastosowanie wentylatorów z silnikiem dwubiegowym do wentylacji pomieszczeń

Silniki indukcyjne zwarte (klatkowe) mają najprostszą budowę spośród wszystkich silników elektrycznych. Prosta jest również ich eksploatacja, co z pewnością przyczyniło się do tego, że są one powszechnie...

Silniki indukcyjne zwarte (klatkowe) mają najprostszą budowę spośród wszystkich silników elektrycznych. Prosta jest również ich eksploatacja, co z pewnością przyczyniło się do tego, że są one powszechnie stosowane w różnych układach napędowych.

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies.

Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.