elektro.info

Zaawansowane wyszukiwanie

Ochrona przeciwpożarowa kabli i przewodów (część 1.)

Nagrzewanie się urządzeń elektrycznych i uszkodzenia izolacji roboczej

Przebieg czasowy nagrzewania się przewodu dla t=1T: Θt/Θust.=0,63; dla t=2T: Θt/Θust.=0,86; dla t=3T: Θt/Θust.=0,95; dla t=5T: Θt/Θust.=0,99 [1]

Przebieg czasowy nagrzewania się przewodu dla t=1T: Θt/Θust.=0,63; dla t=2T: Θt/Θust.=0,86; dla t=3T: Θt/Θust.=0,95; dla t=5T: Θt/Θust.=0,99 [1]

Bezpieczeństwo pożarowe jest jednym z podstawowych wymagań stawianych obiektom budowlanym przez przepisy techniczno-prawne, w tym Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 roku w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75/2002, poz. 690, z późniejszymi zmianami), szczególnie zaliczanych do kategorii zagrożenia ludzi (ZLI - ZLV).

Zobacz także

mgr inż. Piotr Wasiucionek Zgodnie z warunkami technicznymi, jakim powinny odpowiadać budynki i ich usytuowanie [1], „Przeciwpożarowy wyłącznik prądu, odcinający dopływ prądu do wszystkich obwodów, z wyjątkiem obwodów zasilających instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, należy stosować w strefach pożarowych o kubaturze przekraczającej 1000 m3 lub zawierających strefy zagrożone wybuchem.

Zgodnie z warunkami technicznymi, jakim powinny odpowiadać budynki i ich usytuowanie [1], „Przeciwpożarowy wyłącznik prądu, odcinający dopływ prądu do wszystkich obwodów, z wyjątkiem obwodów zasilających instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, należy stosować w strefach pożarowych o kubaturze przekraczającej 1000 m3 lub zawierających strefy zagrożone wybuchem. Zgodnie z warunkami technicznymi, jakim powinny odpowiadać budynki i ich usytuowanie [1], „Przeciwpożarowy wyłącznik prądu, odcinający dopływ prądu do wszystkich obwodów, z wyjątkiem obwodów zasilających instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, należy stosować w strefach pożarowych o kubaturze przekraczającej 1000 m3 lub zawierających strefy zagrożone wybuchem.

Zgodnie z warunkami technicznymi, jakim powinny odpowiadać budynki i ich usytuowanie [1], „Przeciwpożarowy wyłącznik prądu, odcinający dopływ prądu do wszystkich obwodów, z wyjątkiem obwodów zasilających...

Zgodnie z warunkami technicznymi, jakim powinny odpowiadać budynki i ich usytuowanie [1], „Przeciwpożarowy wyłącznik prądu, odcinający dopływ prądu do wszystkich obwodów, z wyjątkiem obwodów zasilających instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, należy stosować w strefach pożarowych o kubaturze przekraczającej 1000 m sześc. lub zawierających strefy zagrożone wybuchem.*)

mł. bryg. mgr inż. Piotr Musielak Instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, zasilane sprzed przeciwpożarowego wyłącznika prądu (PWP)

Instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, zasilane sprzed przeciwpożarowego wyłącznika prądu (PWP) Instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, zasilane sprzed przeciwpożarowego wyłącznika prądu (PWP)

W niniejszym artykule autor stara się odpowiedzieć na pytanie: jakie urządzenia i instalacje, które muszą funkcjonować podczas pożaru, powinny być zasilane sprzed przeciwpożarowego wyłącznika prądu, na...

W niniejszym artykule autor stara się odpowiedzieć na pytanie: jakie urządzenia i instalacje, które muszą funkcjonować podczas pożaru, powinny być zasilane sprzed przeciwpożarowego wyłącznika prądu, na czym polega zasada zapewnienia ciągłości dostawy energii elektrycznej lub przekazu sygnału przez czas wymagany do uruchomienia i działania urządzenia oraz w jaki sposób wymagania te powinny być realizowane w obiekcie budowlanym.

mgr inż. Michał Świerżewski Dobór urządzeń elektrycznych do przestrzeni potencjalnie zagrożonych wybuchem – zagadnienia wybrane (cz. 2.)

Dobór urządzeń elektrycznych do przestrzeni potencjalnie zagrożonych wybuchem – zagadnienia wybrane (cz. 2.) Dobór urządzeń elektrycznych do przestrzeni potencjalnie zagrożonych wybuchem – zagadnienia wybrane (cz. 2.)

Bezpieczna eksploatacja urządzeń elektrycznych w przestrzeniach zagrożonych wybuchem zależy przede wszystkim od prawidłowego ich doboru do warunków pracy, tzn. do właściwości występujących w danej przestrzeni...

Bezpieczna eksploatacja urządzeń elektrycznych w przestrzeniach zagrożonych wybuchem zależy przede wszystkim od prawidłowego ich doboru do warunków pracy, tzn. do właściwości występujących w danej przestrzeni czynników tworzących z powietrzem atmosfery wybuchowe, przyjętej klasyfikacji do stref zagrożenia wybuchem, określonego poziomu zabezpieczenia urządzeń (EPL), prawidłowego montażu, zasilania i zabezpieczenia przed skutkami zwarć i przeciążeń.

Według dyrektywy Unii Europejskiej 89/106/EEC z grudnia 1988 r. jakość materiałów i wyrobów budowlanych powinna być taka, aby dobrze zaprojektowany i wykonany budynek mógł spełniać następujące wymagania:

  • nośność i stateczność,
  • bezpieczeństwo pożarowe,
  • higiena i zdrowie,
  • bezpieczeństwo użytkowania,
  • ochrona przed hałasem,
  • oszczędność energii i zachowanie ciepła.

Analizując zagrożenie związane z eksploatacją instalacji elektrycznych, okazuje się, że znaczna część pożarów powstaje na skutek niewłaściwego doboru, użytkowania i wykonania instalacji, a zwłaszcza przewodów i kabli elektrycznych.

Bezpieczeństwo użytkowania instalacji w budynkach sprowadza się głównie do zapewnienia ochrony przed:

  • porażeniem prądem elektrycznym,
  • prądami przetężeniowymi,
  • przepięciami łączeniowymi oraz pochodzącymi od wyładowań atmosferycznych,
  • negatywnymi skutkami oddziaływania cieplnego,
  • negatywnym oddziaływaniem na środowisko i otoczenie.

Z punktu widzenia bezpieczeństwa pożarowego najważniejszym zagadnieniem jest zapewnienie ochrony przed oddziaływaniem cieplnym instalacji na otoczenie i odwrotnie. Aby zmniejszyć ryzyko powstania pożaru i ograniczyć negatywne skutki, należy na etapie projektowania właściwie dobrać rozwiązania i zapewnić późniejsze poprawne wykonanie instalacji.

Dobór kabli lub przewodów polega na wyznaczeniu minimalnego ich przekroju ze względu na:

  • długotrwałą obciążalność prądową i przeciążalność,
  • warunki zwarciowe,
  • spadek napięcia,
  • skuteczność ochrony przeciwporażeniowej.

Bardzo istotnym zagadnieniem jest dobór właściwej izolacji ze względu na napięcie nominalne. Przewód lub kabel o niepoprawnie dobranej izolacji będzie ulegał szybkiemu nagrzewaniu wskutek prądów upływowych, które w konsekwencji mogą doprowadzić do zapalenia się izolacji. Dobierając kable lub przewody należy również przeanalizować warunki środowiskowe, w jakich będą one pracowały. Wytyczne w zakresie doboru przewodów do warunków otoczenia zostały przedstawione w tabeli 1.

Nagrzewanie się przewodów i kabli przez prąd elektryczny

Zgodnie z prawem Joule’a, we wszystkich przewodach, w których płynie prąd, a które posiadają niezerową rezystancję, wytwarza się ciepło, które można obliczyć ze wzoru:

ei 4 2008 ochrona ppoz kabli wzor1

Wzór 1

gdzie:

ΔP=k⋅I2⋅R – moc wydzielona na rezystancji zastępczej, w [W],

k – współczynnik zależny od liczby faz lub biegunów, przez które przepływa prąd (k=3 dla obwodów trójfazowych; k=2 dla obwodów jednofazowych),

R – rezystancja jednej fazy lub bieguna, w [Ω],

I – prąd przepływający przez przewód, w [A],

t – czas przepływu prądu, w [s].

Część wytworzonego ciepła powoduje wzrost temperatury, a część zostaje oddana do otoczenia. Ilość oddanego do otoczenia ciepła jest tym większa, im mniejsza jest pojemność cieplna izolacji oraz większa różnica temperatur pomiędzy nagrzewanym elementem a otoczeniem. Ilość wytworzonego ciepła w głównej mierze zależy od wartości płynącego prądu. Dodatkowym oporem, jaki napotyka płynący prąd, jest rezystancja styków w miejscach łączenia przewodów.Punktem wyjścia do rozważań na temat nagrzewania się przewodów jest bilans cieplny, który można wyrazić następującym równaniem [1]:

ei 4 2008 ochrona ppoz kabli wzor2

Wzór 2

gdzie:

I – prąd płynący przez przewód, w [A],

R – rezystancja przewodu, w [Ω],

b – współczynnik balastu cieplnego przewodu,

c – ciepło właściwe żyły, w [W⋅s/ mm3⋅K],

s – przekrój żyły przewodu, w [mm2],

Θ – przyrost temperatury żyły przewodu ponad temperaturę otoczenia, w [K],

L – długość przewodu, w [m],

k – oporność cieplna, w [K⋅m/W].

Lewa strona równania (2) oznacza ilość ciepła dostarczonego do przewodu w czasie dt. Prawa strona równania określa ilość ciepła powodującą podwyższenie temperatury przewodu oraz ilość ciepła oddaną do otoczenia. Wielkość: b⋅c⋅s⋅k=T określa stałą czasową, która jest miarą szybkości osiągnięcia przez przewód ustalonej temperatury. W wyniku rozwiązania równania (2) otrzymuje się:

ei 4 2008 ochrona ppoz kabli wzor3

Wzór 3

gdzie:

Θt – przyrost temperatury przewodu po czasie t, w [K],

Θust. – przyrost temperatury, który ustaliłby się przy długotrwałym przepływie prądu, w [K],

Θpocz. – przyrost temperatury w chwili początkowej, w [K],

T – cieplna stała czasowa, w [s].

Przebieg czasowy nagrzewania się przewodów został przedstawiony na rysunku 1.

Na podstawie przeprowadzonych obliczeń można określić T jako czas, w którym przyrost temperatury przewodu określa 0,63 przyrostu ustalonego. Krzywa nagrzewania przewodów powstaje przy założeniu dostarczania i oddawania ciepła. Gdyby założyć nagrzewanie bez oddawania ciepła, temperatura przewodu wzrosłaby według prostej Θpocz., (2), a więc do nieskończoności. Z przeprowadzonych rozważań wynika, że istnieje wartość prądu, która może przepływać nieskończenie długi czas i nie spowoduje uszkodzenia przewodu oraz jego izolacji. Na podstawie równania stanu ustalonego można zapisać następującą zależność:

ei 4 2008 ochrona ppoz kabli wzor4

Wzór 4

gdzie:

λ⋅S=1/K’; λ – straty ciepła na jednostkę przewodu w [W/mm2⋅K],

S – powierzchnia zewnętrzna przewodu, w [mm2].

Jest to wzór teoretyczny, który posłużył do opracowania tabel dopuszczalnej obciążalności prądowej kabli i przewodów; wartości dopuszczalnych długotrwale obciążeń prądowych podają producenci kabli i przewodów katalogach wyrobów.

Oprócz dopuszczalnego długotrwale prądu obciążenia określa się maksymalną dopuszczalną temperaturę w warunkach normalnych oraz przy zwarciu. W warunkach zwarciowych występują duże prądy, znacznie większe niż w warunkach normalnych. Podczas zwarcia mamy do czynienia z adiabatycznym wydzielaniem ciepła. Temperatura przewodu oraz izolacji gwałtownie rośnie i może być przyczyną zapłonu izolacji. W tabeli 2. zostały przedstawione dopuszczalne temperatury pracy w warunkach normalnych oraz podczas zwarcia dla kabli i przewodów powszechnie stosowanych w elektroenergetyce.

Przekroczenie tych temperatur w czasie normalnej eksploatacji grozi zainicjowaniem zapłonu i szybkiego rozprzestrzeniania się ognia. Należy również zauważyć, że dopuszczalna temperatura powstająca przy zwarciu jest określona dla czasów trwania zwarć nie dłuższych niż 5 s. W związku z tym podstawowym środkiem ograniczającym możliwość zapłonu kabli i przewodów elektrycznych wskutek przepływu prądu jest właściwe ich zabezpieczenie przed skutkami zwarć oraz przeciążeń, oraz właściwa koordynacja dobranych zabezpieczeń i przekrojów poszczególnych żył. Przebieg czasowy nagrzewania się przewodów w czasie zwarcia przedstawiono na rysunku 2.

Ograniczenie prądu zwarciowego

Ograniczenia prądu zwarciowego można dokonać:

  • pasywnie, poprzez projektowanie układów o zwiększonej impedancji zwarciowej Zk, tzn. poprzez unikanie zbyt dużej mocy nominalnej transformatorów (generatorów) zasilających, prowadzenie równolegle ułożonych przewodów itp.
  • aktywnie, poprzez szybkie wyłączenie zwarcia przez urządzenie wyłączające o wymuszonym gaszeniu łuku, które nie dopuszcza do wystąpienia spodziewanej szczytowej wartości prądu zwarciowego.

Jako zabezpieczenie stosuje się zarówno bezpieczniki topikowe, jak i wyłączniki nadprądowe. Przebieg wyłączenia prądu zwarciowego przedstawiono na rysunku 3.

W wyłącznikach ograniczających od chwili elektrodynamicznego odrzutu styków (punkt 1 na rysunku 3b) mija znaczny czas do chwili ugaszenia łuku. W przypadku bezpieczników topikowych punkty 1 i 2 na rysunku 3a pokrywają się. Oznacza to, że bezpiecznik topikowy znacznie lepiej ogranicza skutek cieplny wywoływany przez prąd zwarciowy.

Producenci bezpieczników i wyłączników ograniczających podają charakterystyki prądu ograniczonego, z których można odczytać maksymalną wartość prądu zwarciowego przepuszczaną przez nie przy spodziewanym prądzie początkowym zwarcia. Dla przykładu przy prądzie początkowym Ik”=17,5 kA wkładka bezpiecznikowa WTNgG63 skutecznie ogranicza prąd do wartości 6,5 kA (rys. 4.). Natomiast wyłącznik ograniczający wymaga większego czasu. Wyłącza praktycznie przy drugim naturalnym przejściu prądu przez zero. Efekt cieplny charakteryzowany całką Joule’a jest zatem w bezpiecznikach topikowych znacznie mniejszy niż w wyłącznikach ograniczających, które przepuszczają cały prąd zwarciowy.

W celu ograniczenia prądów zwarciowych stosuje się również inne rozwiązania, takie jak:

  • stosowanie transformatorów o zwiększonym napięciu zwarcia, co powoduje wzrost impedancji źródła,
  • wzrost impedancji obwodu zwarciowego poprzez właściwy podział obwodów odbiorczych wykonywanych przewodami o mniejszych przekrojach.

Dlatego też dla zachowania bezpieczeństwa pożarowego przewody oraz ich zabezpieczenia powinny być dobierane zgodnie z wymaganiami aktualnie obowiązujących norm i przepisów techniczno-prawnych. Źle dobrany przewód lub jego zabezpieczenie może być przyczyną zainicjowania pożaru na skutek przepływu prądów przetężeniowych, które powodują gwałtowny wzrost temperatury izolacji przewodów. Zagrożenie pożarowe mogą stwarzać również powszechnie stosowane w instalacjach elektrycznych ograniczniki przepięć, jeżeli zostaną pozbawione dodatkowych zabezpieczeń lub przyłączone przewodami o zbyt małym przekroju.

Wyłącznik różnicowoprądowy jako element ochrony przeciwpożarowej

W każdej instalacji elektrycznej występują prądy upływu, które są wynikiem skończonej rezystancji izolacji przewodów. W budynkach powszechnie są stosowane wyłączniki różnicowoprądowe jako środek dodatkowej ochrony przeciwporażeniowej. Wyłączniki te przy prądzie IΔn≤300 mA doskonale nadają się do ochrony przeciwpożarowej.

Prąd upływowy o wartości IΔn≤300 mA wskutek przepływu przez podłoże palne powoduje wydzielenie energii, która nie jest w stanie spowodować zapłonu. W tabeli 3. przedstawiono porównanie różnych zabezpieczeń w instalacjach powszechnego użytku w zależności od granicznych parametrów ich zadziałania.

Podane w tabeli 3. wartości należy traktować jako orientacyjne z uwagi na rozrzut parametrów urządzeń zabezpieczających. Należy jednak pamiętać, że wyłącznik różnicowoprądowy reaguje tylko na doziemne uszkodzenia. Prądy upływu zamykające się między żyłami roboczymi przewodów nie będą wykrywane i wyłączane przez te urządzenia. Wyłączenie takiego obwodu z uszkodzoną izolacją roboczą nastąpi w momencie przekroczenia prądu zadziałania zabezpieczenia nadmiarowo-prądowego.

Przy inicjacji pożaru spowodowanego przez urządzenia elektryczne bardzo ważnym parametrem jest czas trwania zwarcia. Dlatego w zeszycie 41. normy PNIEC 60364 zostały określone czasy dotyczące ochrony przeciwporażeniowej. Praktyka pokazuje, że spełnienie wymagań w zakresie czasu samoczynnego wyłączenia określonego przez zeszyt 41. normy PN-IEC 60364 sprawi, że nagrzanie przewodów wskutek działania prądów zwarciowych nie spowoduje zainicjowania zapłonu izolacji. W przypadku, gdy instalacja jest narażona na obecność palnych pyłów, celowe jest przyjęcie granicznego prądu upływu o wartości równej 0,1 A [3].

Uszkodzenie izolacji w przewodzie wielożyłowym pomiędzy żyłami roboczymi powoduje przepływ prądu i wydzielenie energii w ścieżce upływu, która spowoduje podgrzewanie oraz postępującą degradację izolacji. Powstające w wyniku tego zjawiska ciepło jest odprowadzane do ziemi poprzez izolację powłoki przewodu, która tym samym jest narażona na uszkodzenie. Wynika z tego, że uszkodzenia izolacji roboczej powodują uszkodzenia izolacji doziemnej (powłoki przewodu) i zadziałanie wyłącznika różnicowoprądowego. Takie wnioskowanie może prowadzić do błędnej oceny, gdyż zadziałanie wyłącznika nastąpi wskutek wtórnego zjawiska towarzyszącego zwarciu wewnętrznemu, które powoduje degradację powłoki przewodu. To negatywne zjawisko można by wyeliminować przez produkcję przewodów wielożyłowych tak, by uziemiony przewód ochronny PE znajdował się pomiędzy żyłami roboczymi. Graficznie zostało to przedstawione na rysunku 5.

Zagrożenia stwarzane przez palące się kable

W praktyce nie można wykluczyć możliwości powstania pożaru wskutek działania termicznego kabli i przewodów. Cechą charakterystyczną kabli i przewodów elektrycznych jest łatwość zapłonu, czyli mała odporność na działanie zewnętrznych źródeł ognia, w praktyce określana najniższą wartością temperatury otoczenia, przy której na stępuje samozapalenie się materiału izolacji oraz wartością temperatury zapłonu, tj. wartością najniższej tempera tury, w której pary substancji tworzą z powietrzem mieszaninę wybuchającą i oraz temperatury zapalenia. Palące się kable i przewody charakteryzują następujące cechy:

  • dymotwórczość, zwana inaczej stopniem zadymienia spalin lub gęstością optyczną dymów. Polega ona na określeniu minimalnej wartości przepuszczalności (transmisji) światła przez dym powstały podczas spalania kabla w zdefiniowanych warunkach lub przy pomiarze współczynnika osłabienia kon trastu,
  • korozyjność – czyli, jaki współczynnik pH posiadają gazy powstałe w wyniku spalania materiałów izolacji,
  • toksyczność gazów – czyli, ile przy spalaniu wydziela się toksycznego pro duktu (gazu, np. CO, CO2, HCN, NO2, HCl, SO2) rozkładu i spalania (wyrażone go w gramach) z jednostki masy materiału spalanego (w gramach),
  • stopień wydzielania ciepła podczas pożaru – czyli kinetyka ciepła, inaczej gęstość strumienia energii cieplnej wy dzielanej przez palący się materiał, który ma wpływ na potęgowanie pożaru, a zale ży od masy i ciepła spalania materiału,
  • rozprzestrzenianie płomieni po powierzchni materiału, 
  • stopień spalenia.

Najbardziej niebezpiecznymi gazami powstałymi w procesie palenia się kabli są: dwutlenek węgla (CO2), tlenek węgla (CO), cyjanowodór (HCN), tlenki siarki (SO2, SO3), fluorowodór (HF), bromowodór (HBr) oraz chlorowodór (HCl), wydzielający się głównie przy paleniu się polichlorku winylu.

Zgodnie z Rozporządzeniem Ministra Infrastruktury z dnia 12 kwietnia 2002 roku w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [12], określono, że w budynkach o kubaturze 1000 m3 lub większej oraz w budynkach, lub pomieszczeniach zagrożonych wybuchem należy instalować przeciwpożarowy wyłącznik prądu. Wyłącznik ten nie może jednak wyłączać zasilania obwodów urządzeń pożarowych, do których należy zaliczyć:

  • windy przeznaczone dla ekip ratowniczych,
  • pompy pożarowe,
  • oświetlenie awaryjne,
  • dźwiękowy system ostrzegania (DSO),
  • wentylację pożarową,
  • system sygnalizacji pożarowej.

Przewody zastosowane do budowy tych obwodów powinny zapewnić ciągłość dostawy energii elektrycznej oraz możliwość przekazywania sygnałów przez wymagany czas działania urządzenia określony w przepisach: 30, 60 lub 90 min.

Palące się kable i przewody wydzielają zarówno dym, jak i agresywne gazy. Poddana działaniu ognia izolacja kabli (przewodów) może podsycać pożar, jeśli zawiera dużo materiałów palnych. Paląca się izolacja przewodów może powodować rozprzestrzenianie się ognia wzdłuż trasy ich ułożenia, a wydzielający się dym i toksyczne produkty rozkładu powodują dodatkowe zagrożenie dla ludzi. Dyrektywa 89/106EEC dotycząca wyrobów budowlanych i bezpieczeństwa pożarowego w budynkach, uwzględniająca kable jako jeden z rodzajów wyrobów budowlanych, nakazuje projektowanie i wykonywanie instalacji elektrycznych w taki sposób, aby nie były one przyczyną powstawania pożarów oraz ograniczały ich rozprzestrzenianie.

Zmniejszenie zagrożenia pożarowego może być osiągnięte przez odpowiedni dobór materiału izolacyjnego kabla lub przewodu, który w wyniku wysokiej temperatury w czasie pożaru będzie wydzielał niewielkie ilości substancji lotnych. Ponieważ substancje te zwykle podtrzymują palenie i ułatwiają rozprzestrzenianie się ognia, producenci niejednokrotnie wprowadzają do materiałów izolacyjnych środki niepalne lub samogasnące. Konieczna jest zatem znajomość właściwości ogniowych tych środków, tzn. palności, szybkości wydzielania ciepła, emisji związków toksycznych i dymu oraz szybkości rozprzestrzeniania się płomienia po jej powierzchni. Dodatkowo bada się też stopień kwasowości (korozyjność) gazów powstających w czasie spalania izolacji. Materiał izolacyjny z dodatkami niepalnymi jest odporny na temperatury przekraczające 200°C. Przykładem takiej izolacji jest powłoka kabla produkcji japońskiej zastosowanego w instalacjach w warszawskim metrze. Zbudowana jest ona z polietylenu usieciowanego Sunikon RM-E-1600, modyfikowanego przeciwogniowo dużą ilością wodorotlenku glinu. Materiał ten nie ulega rozkładowi nawet w temperaturze ok. 400°C, a przy 900°C ubytek jego masy wynosi jedynie ok. 50 % masy początkowej. Izolację powinna też charakteryzować niewielka szybkość wydzielania ciepła (poniżej 200 kW/m2), mała toksyczność produktów rozkładu termicznego, mała intensywność dymienia i szybkość rozprzestrzeniania się płomienia [19].

W celu wyeliminowania zagrożeń stwarzanych przez toksyny powstające podczas palenia się izolacji kabli lub przewodów, należy stosować przewody i kable o izolacji bezhalogenkowej. Kable te nie tylko nie wydzielają toksycznych gazów, ale umożliwiają również nieprzerwaną dostawę energii elektrycznej. Zastosowane w tradycyjnych izolacjach kabli halogenki czyli pierwiastki z grupy chlorowców: chlor (w polichlorku winylu PCW), fluor, brom (ochrona przed płomieniem) i jod powodują w czasie spalania wydzielanie się tych substancji do otoczenia. Natomiast w izolacji kabli wolnych od halogenków zastosowano powłokę zewnętrzną wolną wykonaną z polimerów na bazie czystych tworzyw węglowodorowych, np. polietylenu lub polipropylenu. Podczas spalania tego rodzaju materiałów nie powstają korozyjne ani toksyczne gazy, wydzielany jest tylko dwutlenek węgla oraz para wodna. Dodatkowo, w celu uzyskania trudnozapalności i samogaśnięcia izolacji, dodaje się do nich np. wodorotlenek glinu, z którego po ogrzaniu zostaje wytrącona woda, co powoduje utrudniony dostęp tlenu do strefy spalania.

Kable do pracy w wysokiej temperaturze

Do podtrzymania podstawowych funkcji instalacji elektrycznej w przypadku pożaru są stosowane specjalne kable odporne na działanie wysokiej temperatury. W zależności od minimalnego czasu sprawnego działania kabli – odpowiednio 30, 60, 90 minut – mogą one mieć różne klasy podtrzymania funkcji E30, E60 i E90 (DIN VDE 4102 cz. 12) [20] lub klasy odporności ogniowej PH15, PH30, PH60, PH90 (PN-EN 50200) [21].

Do obiektów o podwyższonych wymaganiach przeciwpożarowych, takich jak: budynki handlowe, hotele, kina, teatry, szpitale, muzea, centra przetwarzania danych, centrale telefoniczne, banki, dworce lotnicze, można jeszcze zaliczyć m.in. elektrownie, kopalnie, stocznie i tunele. Kable do pracy w podwyższonej temperaturze są stosowane także w instalacjach elektrycznych lokomotyw oraz do podłączenia akumulatorów [18].

Literatura

  1. T. Kahl, Sieci elektroenergetyczne, WNT, Warszawa 1976.
  2. E. Musiał, Prądy zwarciowe w niskonapięciowych instalacjach i urządzeniach prądu przemiennego, „INPE” nr 40, lipiec-sierpień 2001.
  3. E. Musiał, Przydatność wyłączników różnicowoprądowych do przeciwpożarowej ochrony budynków, Konferencja Naukowo-Techniczna „Instalacje i urządzenia elektryczne w strefach zagrożonych pożarem i wybuchem”, Zakopane 1997.
  4. R. Chybowski, W. Jaskółowski, Ograniczenie palności kabli przez zastosowanie powłok ochronnych, „elektro.info” nr 9/2005.
  5. E. Skiepko, Instalacje elektryczne funkcjonujące w czasie pożaru, materiały 40. Jubileuszowej Konferencji KRGEB, Warszawa, 17 maja 2007.
  6. M. Abramowicz, R. G. Adamski, Bezpieczeństwo pożarowe budynków, cz. I, SGSP, Warszawa 2002.
  7. D. Adamski, Przegląd wybranych technik wykrywania zagrożeń pożarowych.
  8. N SEP E 004 Elektroenergetyczne i sygnalizacyjne linie kablowe. Projektowanie i budowa.
  9. Materiały marketingowe firmy SIMENS.
  10. Materiały marketingowe firmy Schrack Seconet.
  11. J. Wiatr, M. Orzechowski, Poradnik projektanta elektryka, DW MEDIUM, Warszawa 2007.
  12. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 roku w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2002r. nr 75, poz. 690, z późniejszymi zmianami).
  13. Promat. Techniczna ochrona przeciwpożarowa w budownictwie.
  14. Materiały marketingowe firmy Knauf.
  15. Materiały marketingowe firmy Rigips.
  16. R. Chybowski, Wpływ degradacji izolacji roboczej przewodów instalacyjnych na ich izolację doziemną, materiały konferencyjne ELSAF 2005 Wrocław, wrzesień 2005.
  17. PN-IEC 60364 Instalacje elektryczne w obiektach budowlanych.
  18. H. Markiewicz, Instalacje elektryczne, WNT, Warszawa 2007.
  19. K. Kuczyński, Kable i przewody elektroenergetyczne w zastosowaniach specjalnych, „elektro.info” nr 5/2007.
  20. DIN 41021-12 Zachowanie się materiałów i elementów budowlanych pod wpływem ognia. Podtrzymywanie funkcji urządzeń w czasie pożaru. Wymagania i badania.
  21. PN-EN 50200 Metody badania palności cienkich przewodów i kabli bez ochrony specjalnej stosowanych w obwodach zabezpieczających.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Najnowsze produkty i technologie

PHOENIX CONTACT Sp.z o.o. Efektywność prefabrykacji przewodów

Efektywność prefabrykacji przewodów Efektywność prefabrykacji przewodów

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo...

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo niewiele można zrobić, aby wpłynąć na te aspekty, dlatego coraz częściej w centrum uwagi znajduje się produkcja własna ze wszystkimi procesami i strukturami, a także ogólna struktura kosztów.

Zakłady Kablowe BITNER Sp. z o.o. Kompatybilność elektromagnetyczna na przykładzie kabli zasilających i sterowniczych przeznaczonych do pracy w urządzeniach kontrolnych i zabezpieczających oraz w obwodach sterowania

Kompatybilność elektromagnetyczna na przykładzie kabli zasilających i sterowniczych przeznaczonych do pracy w urządzeniach kontrolnych i zabezpieczających oraz w obwodach sterowania Kompatybilność elektromagnetyczna na przykładzie kabli zasilających i sterowniczych przeznaczonych do pracy w urządzeniach kontrolnych i zabezpieczających oraz w obwodach sterowania

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych...

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych w całość. Prawidłowe funkcjonowanie urządzeń może być zapewnione tylko i wyłącznie wtedy, gdy zakłócenia generowane przez otoczenie będą skutecznie blokowane. Generowane spodziewane zakłócenia elektromagnetyczne przez wyposażenie otaczające kable muszą zatem być w odpowiedni sposób odseparowane.

Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Jaki dysk zewnętrzny wybrać, robiąc backup danych? Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia...

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia kopii zapasowych. Czytaj dalej i dowiedz się, który z nich może odpowiadać Twoim potrzebom!

Renowa24.pl Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Dlaczego wybór okien dachowych jest ważny?

Dlaczego wybór okien dachowych jest ważny?

BayWa r.e. Solar Systems BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

BayWa r.e. Solar Systems otwiera magazyn w Gdańsku! BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie...

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie daje ponad 45 tys. m kw. powierzchni magazynowej BayWa r.e. Solar Systems w Polsce.

WAGO ELWAG Sp. z o.o. Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi...

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi – połączyć przewody o przekroju od 0,75 do 4 mm kw. Wystarczy po prostu odizolować końcówkę przewodu i bez użycia jakichkolwiek narzędzi wsunąć ją do złączki – i bezpieczne połączenie gotowe.

ASTAT Sp. z o.o. Modułowe filtry aktywne firmy Schaffner

Modułowe filtry aktywne firmy Schaffner Modułowe filtry aktywne firmy Schaffner

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej,...

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej, moc odbiorników czy budowa samej instalacji elektroenergetycznej. Dobór konkretnego rozwiązania powinien opierać się na analizie układu zasilającego zakład, reżimu pracy i zainstalowanych odbiorników. Bardzo ważnym punktem doboru jest wykonanie pomiarów Jakości Energii Elektrycznej i ich prawidłowa...

SIBA Polska Sp. z o.o. Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów...

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów zapewniających zasilanie całych zakładów. Jest zatem sprawą kluczową, aby systemy zasilania awaryjnego same działały bez zarzutu. Bezpieczniki produkowane przez firmę SIBA zabezpieczają urządzenia, które w przypadku awarii zasilania dostarczają energię kluczowym odbiorom.

IGE+XAO Polska Sp. z o.o. Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

SONEL S.A. Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV...

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV – pierwszy na świecie miernik przeznaczony do pomiarów impedancji pętli zwarcia w sieciach o napięciach dochodzących aż do 900 V AC, z kategorią pomiarową CAT IV 1000 V.

GROMTOR sp. z o.o. Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie...

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie zabezpieczać wszelkiego rodzaju obiekty, projektując i montując instalację odgromową zgodną z obowiązującymi przepisami.

Redakcja news Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami! Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa...

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa w nim wiosenna promocja, w której można wygrać supernagrody!

Solfinity sp. z o.o. sp.k. Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Inwertery hybrydowe: przyszłość zrównoważonej energetyki Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są...

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są przyszłością zrównoważonej energetyki.

CSI S.A Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210 Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel®...

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel® Celeron® N6210 o mocy 6,5 W.

Ewimar Sp. z o.o. Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Nowe ograniczniki przepięć do systemów automatyki i nie tylko Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Pewny Lokal Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków? Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych...

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych optymalizacja zużycia energii staje się priorytetem. Jednym z ważniejszych kroków prowadzących do obniżenia klasy energetycznej budynków jest wprowadzenie świadectwa energetycznego i nowoczesnych instalacji elektrycznych.

Fronius Polska Sp. z o.o. Fronius GEN24

Fronius GEN24 Fronius GEN24

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius...

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius GEN24.

Dominik Mamcarz, Ekspert ds. Techniczno-Rozwojowych w Alseva EPC CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem...

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem energii ze źródeł odnawialnych jest gromadzenie i przesyłanie wyprodukowanej energii elektrycznej. W tym kontekście technologia cable pooling zyskuje na znaczeniu, umożliwiając zoptymalizowane zarządzanie przesyłem energii elektrycznej ze źródeł OZE.

leroymerlin.pl Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz,...

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz, mają różne rozmiary, dzięki czemu można je dopasować do praktycznie każdego rodzaju lamp, są energooszczędne, a to tylko kilka z wielu ich zalet. Na co zwracać uwagę przy zakupie tego rodzaju żarówek i jak dopasować ich parametry do swoich potrzeb?

Bankier.pl Które produkty bankowe przydają się podczas remontu?

Które produkty bankowe przydają się podczas remontu? Które produkty bankowe przydają się podczas remontu?

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić...

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić niektóre produkty bankowe. O których z nich mowa? Tego lepiej dowiedzieć się jeszcze przed rozpoczęciem prac budowalnych.

NNV Sp z o.o. Czy fotowoltaika podnosi wartość nieruchomości?

Czy fotowoltaika podnosi wartość nieruchomości? Czy fotowoltaika podnosi wartość nieruchomości?

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest...

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest to ekologiczne źródło energii. Montaż paneli fotowoltaicznych na działce lub dachu domu ma jeszcze jedną zaletę – w przypadku sprzedaży nieruchomości podnosi jej wartość.

APATOR SA Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego...

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego producenta dla krajowych Operatorów Sieci Dystrybucji, którzy poszukują skutecznych rozwiązań technicznych do bilansowania sieci oraz redukcji nadmiernych obciążeń w szczytach produkcji energii z odnawialnych źródeł.

PHOENIX CONTACT Sp.z o.o. Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych....

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych. Dodatkowo w różnych materiałach marketingowych również można znaleźć nie zawsze pełne informacje na temat wymagań stawianych SPD, co nie pomaga w właściwym doborze odpowiedniego modelu do aplikacji. W tym artykule postaramy się przybliżyć najważniejsze zagadnienia, które pozwolą dobrać bezpieczne ograniczniki...

PHOENIX CONTACT Sp.z o.o. Modularny system drukujący – Thermomark E series

Modularny system drukujący – Thermomark E series Modularny system drukujący – Thermomark E series

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym...

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym cyklu roboczym. Rozwiązanie to umożliwia proste i bardzo wydajne oznaczanie przemysłowe, dzięki czemu efektywność naszej produkcji może wzrosnąć diametralnie.

Brother Polska Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Drukarki etykiet dla elektryków i elektroinstalatorów Brother Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch...

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch E550WVP to przenośne i szybkie urządzenia, które oferują specjalne funkcje do druku najpopularniejszych typów etykiet. Urządzenia pozwalają na szybkie i bezproblemowe drukowanie oznaczeń kabli, przewodów, gniazdek elektrycznych, przełączników oraz paneli krosowniczych.

Finder Polska Sp. z o.o. Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni...

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni z tradycyjnego domu budynku pasywnego. Niewątpliwie jednak należy pamiętać, że elementy automatyki budynkowej są składową pasywnych budowli i nawet zwykłe mieszkanie potrafią uczynić bardziej oszczędnym i ekologicznym.

F&F Pabianice MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa...

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa wykazują dużą determinację do zmian prowadzących do optymalizacji kosztów, co zapewnić ma im zachowanie przewagi konkurencyjnej, wynikającej np. z przyjętej strategii przewagi kosztowej.

Grupa Pracuj S.A. W jakich zawodach niezwykle ważna jest odporność na stres?

W jakich zawodach niezwykle ważna jest odporność na stres? W jakich zawodach niezwykle ważna jest odporność na stres?

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest...

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest wtedy odporność psychiczna osoby zatrudnionej na danym stanowisku. To cecha, jaką doceni wielu pracodawców. Dowiedzmy się więc, w jakich kategoriach zawodowych jest ona szczególnie istotna i jak może wpłynąć na Twoją karierę!

BayWa r.e. Solar Systems SMA – pełne portfolio dla rynku PV

SMA – pełne portfolio dla rynku PV SMA – pełne portfolio dla rynku PV

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

CADMATIC CADMATIC Electrical

CADMATIC Electrical CADMATIC Electrical

CADMATIC Electrical to najbardziej wszechstronne, dostępne na rynku oprogramowanie przeznaczone dla projektantów elektryków, dzięki któremu możemy w kompleksowy sposób zaprojektować instalację elektryczną...

CADMATIC Electrical to najbardziej wszechstronne, dostępne na rynku oprogramowanie przeznaczone dla projektantów elektryków, dzięki któremu możemy w kompleksowy sposób zaprojektować instalację elektryczną w budynku. Rozwiązanie automatyzuje i usprawnia proces projektowania, zapewniając integralność danych i stworzenie wysokiej jakości rezultatów i raportów na wszystkich etapach projektowania.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.