elektro.info

Nowa seria młotowiertarek Modeco Expert

Nowa seria młotowiertarek Modeco Expert

Gama produktów Modeco została rozszerzona o nowe elektronarzędzia przeznaczone do wiercenia udarowego w betonie. Dzięki wydajnym mechanizmom udarowym, mocnym silnikom i pyłoszczelnym łożyskom, nowe młotowiertarki...

Gama produktów Modeco została rozszerzona o nowe elektronarzędzia przeznaczone do wiercenia udarowego w betonie. Dzięki wydajnym mechanizmom udarowym, mocnym silnikom i pyłoszczelnym łożyskom, nowe młotowiertarki marki Modeco sprawdzą się w roli podstawowego elektronarzędzia dla wszystkich majsterkowiczów.

Valena Allure – ikona designu

Valena Allure – ikona designu

Valena Allure to nowa seria osprzętu firmy Legrand, łącząca wysmakowaną awangardę i nowoczesność. Wyróżniający ją kształt ramek oraz paleta różnorodnych materiałów zachęcają do eksperymentowania. Valena...

Valena Allure to nowa seria osprzętu firmy Legrand, łącząca wysmakowaną awangardę i nowoczesność. Wyróżniający ją kształt ramek oraz paleta różnorodnych materiałów zachęcają do eksperymentowania. Valena Allure pomoże z łatwością przekształcić Twój dom w otoczenie pełne nowych wrażeń i stanowić będzie źródło kolejnych inspiracji.

news Schematy w chmurze obliczeniowej EPLAN eBuild

Schematy w chmurze obliczeniowej EPLAN eBuild

Na targach SPS 2019 zostanie zaprezentowane nowe oprogramowanie EPLAN eBuild do generowania schematów elektrycznych i hydraulicznych działające w chmurze obliczeniowej. Jest to oprogramowanie przeznaczone...

Na targach SPS 2019 zostanie zaprezentowane nowe oprogramowanie EPLAN eBuild do generowania schematów elektrycznych i hydraulicznych działające w chmurze obliczeniowej. Jest to oprogramowanie przeznaczone dla tych użytkowników Platformy EPLAN 2.8, którzy dopiero rozpoczynają swoje doświadczenia w środowisku rozwiązań chmurowych. Do korzystania z tego nowego oprogramowania freemium wymagana jest rejestracja w systemie EPLAN ePulse lub za pomocą Platformy EPLAN w wersji 2.8.

Pomiary instalacji elektrycznych

dr inż Piotr Bilski | 2009-05-11
Przenośny analizator sieci typu AS-3diagnoza firmy Twelve Electric

Instalacja elektryczna w budynku oraz innych obiektach budowlanych pełni funkcję krytyczną, od jej stanu technicznego zależy bowiem funkcjonowanie wielu urządzeń. Dlatego konieczne jest przeprowadzanie regularnych przeglądów oraz okresowych pomiarów instalacji w celu sprawdzenia, czy jej stan pozwala na utrzymanie poziomu i jakości zasilania budynku lub obiektu budowlanego. Drugim powodem przeprowadzania pomiarów eksploatacyjnych jest bezpieczeństwo. Niesprawnie działająca instalacja może być przyczyną porażeń prądem elektrycznym i/lub pożarów, w konsekwencji prowadzących do poważnych obrażeń lub śmierci użytkowników.

Ze względu na pojawianie się coraz bardziej zaawansowanych systemów zasilanych prądem elektrycznym (czego przykładem może być idea inteligentnego budynku), jakość energii dostarczanej przez instalację ma coraz większe znaczenie. W artykule przedstawiono zasady wykonywania pomiarów instalacji elektrycznych oraz normy określające sposoby postępowania w takich sytuacjach.

Konfiguracje instalacji elektrycznej

Energia elektryczna doprowadzana jest do budynku z sieci elektroenergetycznej poprzez złącze kablowe lub napowietrzne. Od niego rozpoczyna się instalacja elektryczna wewnątrz budynku, ograniczona również rozdzielnicą główną. Na rysunku 1. zostały przedstawione symbolicznie poszczególne elementy zasilania instalacji elektrycznej budynku. Wyróżnia się trzy rodzaje instalacji niskiego napięcia (za [1]):

  • instalacje niskonapięciowe (nn) w budynkach, zasilane napięciem 230/400 V. Są to instalacje stosowane w budynkach mieszkalnych, obiektach handlowych oraz użyteczności publicznej, 
  • instalacje niskonapięciowe w obiektach przemysłowych, zasilane napięciem 600 lub 900 V w przypadku napięcia stałego. Wykorzystywane są one najczęściej w fabrykach do zasilania silników, dużych grzejników itp., 
  • instalacje zasilane napięciem Un≤120 V, wykorzystywane do zasilania aparatów telefonicznych, zewnętrznych zestawów głośnikowych, itp.

Na rysunku 2. przedstawiono układy sieci zasilających nn:

  • TN (charakteryzuje się tym, że punkt neutralny transformatora jest bezpośrednio uziemiony),
  • TN-C jest to układ 4-przewodowy (trzy przewody liniowe L1, L2 i L3 oraz przewód ochronno-neutralny PEN). Ochrona przeciwporażeniowa jest realizowana przez połączenie wszystkich dostępnych części przewodzących instalacji z przewodem PEN,
  • TN-S jest to układ 5-przewodowy (trzy przewody liniowe L1, L2 i L3 oraz przewód ochronny PE i neutralny N). Ochrona przeciwporażeniowa jest realizowana przez połączenie wszystkich dostępnych części przewodzących instalacji z przewodem PE,
  • TN-C-S układ jest połączeniem układów TN-C i TN-S. Punkt rozdziału funkcji przewodu na PE i N następuje w złączu kablowym lub rozdzielnicy. Punkt ten powinien być uziemiony,
  • TT jest to układ sieci 4-przewodowy (L1, L2, L3 i N), w którym punkt neutralny transformatora jest bezpośrednio uziemiony. Ochronę przeciwporażeniową realizuje się przez uziemienie indywidualne lub grupowe dostępnych części czynnych przewodzących,
  • IT jest to układ 3- lub 4-przewodowy. Punkt neutralny transformatora jest izolowany lub uziemiony przez dużą rezystancję. Ochronę przeciwporażeniową realizuje się przez uziemienie dostępnych części czynnych przewodzących.

 

Należy podkreślić, że części przewodzące dostępne to te elementy instalacji, których człowiek lub zwierzę może dotknąć (np. obudowy), a które w normalnych warunkach przy sprawnej izolacji podstawowej nie są pod napięciem.

Każda instalacja elektryczna powinna być badana:

  • przed przyłączeniem jej do sieci elektroenergetycznej i oddaniem do eksploatacji, należy dokonać oględzin, badań oraz prób odbiorczych, zgodnie z wymaganiami PN-EN 60364-6-61 [5], 
  • w całym okresie użytkowania instalacji elektrycznej, zgodnie z Ustawą Prawo budowlane [4] nie rzadziej niż co 5 lat (pozostałe terminy przedstawiono w tabeli 1.).

 

Każde oględziny i badania instalacji mają na celu niedopuszczenie do takiego stanu, w którym ludzie lub zwierzęta ulegną porażeniu prądem elektrycznym, oraz wyeliminowanie zagrożeń pożarowych stwarzanych przez instalację.

Metody ochrony przeciwporażeniowej i przeciwpożarowej w instalacji elektrycznej

Normy określają trzy główne rodzaje ochrony przed porażeniem. Są to:

  • ochrona przed dotykiem bezpośrednim (tzw. ochrona podstawowa),
  • ochrona przed dotykiem pośrednim (ochrona przy uszkodzeniu),
  • ochrona uzupełniająca.

 

Elementami ochrony podstawowej są: izolacja podstawowa, przegroda lub obudowa ochronna, bariera lub przeszkoda ochronna oraz umieszczenie poza zasięgiem ręki. Środkami realizującymi ochronę przy uszkodzeniu są: samoczynne wyłączenie zasilania, separacja elektryczna, zastosowanie urządzeń II klasy ochronności lub izolacji równoważnej, zastosowanie układów SELV lub PELV. Natomiast ochrona uzupełniająca jest realizowana z wykorzystaniem wysokoczułych wyłączników różnicowoprądowych oraz połączeń wyrównawczych.

Samoczynne wyłączenie zasilania i/lub uziemienie są jednymi z najważniejszych środków ochrony przy uszkodzeniu. Normy wymuszają stosowanie uziemień na końcu każdej linii, na końcu przyłącza oraz co pięćset metrów w elektroenergetycznych liniach napowietrznych nn. Normy określają również wymagania dotyczące wartości rezystancji uziemienia. Istnieje przy tym podział na uziemienie robocze oraz ochronne, w zależności od tego, czy do uziomu podłączony jest przewód neutralny (wówczas mówi się o uziemieniu roboczym), czy też części przewodzące (co jest charakterystyczne dla uziemienia ochronnego).

Ochrona przeciwporażeniowa realizowana przez samoczynne wyłączenie polega na połączeniu dostępnych części przewodzących z przewodem ochronno-neutralnym (PEN) lub przewodem ochronnym (PE) w zależności od przyjętego układu sieci zasilającej. Jego zadaniem będzie wówczas odłączenie zasilania w przypadku zwarcia w zasilanym urządzeniu. W przewodzie neutralnym nie wolno wówczas instalować zabezpieczeń, zamiast tego zaleca się stosowanie łącznika wielobiegunowego, służącego do przerywania ciągłości (rozłączania) przewodu neutralnego. Odłączenie zasilania musi nastąpić w dostatecznie krótkim czasie, określanym w zeszycie 41. normy PN-IEC 60364 Instalacje elektryczne w obiektach budowlanych, w zależności od przyjętego układu zasilania.

Jako ochronę uzupełniającą w przypadku, gdy ochrona podstawowa (izolacja) okaże się nieskuteczna, stosuje się wyłącznik różnicowoprądowy wysokoczuły o znamionowym prądzie różnicowym ΔIn≤30 mA. Wyłącznik różnicowoprądowy jest aparatem elektrycznym składającym się z elementu pomiarowego (dla pomiaru prądu różnicowego) oraz elementu wyłączającego zasilanie. Tor pomiarowy mierzy różnicę prądów wpływających i wypływających z instalacji. Gdy suma ta jest równa zero, oznacza to, że:

  • rezystancja izolacji chronionego układu zasilania oraz urządzeń do niej przyłączonych nie wykazuje nadmiernego zużycia (prądy upływu w instalacji są nie większe niż ½ΔIN),
  • przewód fazowy i/lub neutralny nie jest zwarty z przewodem PE (z obudową chronionego urządzenia).

 

Najczęstszą przyczyną powstania niezerowego prądu różnicowego jest uszkodzenie izolacji (przewodu lub odbiornika). Aby wyłącznik działał prawidłowo, obudowy chronionych urządzeń muszą zostać uziemione. Wyłączniki stanowią bardzo dobre uzupełnienie ochrony przed dotykiem bezpośrednim (ΔIn≤30 mA), a wyłączniki o znamionowym prądzie różnicowym nie większym od – ΔIn≤300 mA, chronią instalację przed pożarami wywołanymi prądami upływowymi.

W zależności od rodzaju prądu, na który reagują, wyłączniki dzielą się na trzy grupy: typu AC (reagujące na sinusoidalny prąd przemienny), typu A (reagujące na prąd przemienny oraz pulsujący, co ma miejsce np. w przypadku zasilania silnika prądu stałego) oraz typu B (reagujące na prąd przemienny, pulsujący i stały; ze względu na niewielką liczbę urządzeń zasilanych takim prądem, zastosowanie takich wyłączników jest niewielkie).

Wymagania odnośnie przewodów ochronnych i uziomów wynikają z dążenia do zapewnienia maksymalnej ich skuteczności. Stąd dokładne określenie minimalnego przekroju przewodu ochronnego oraz uziomowego, a także wyspecyfikowanie, które przewody mogą być wykorzystane do tego celu (np. jedna z żył przewodu wielożyłowego). W przypadku uziomów w największym stopniu powinny zostać wykorzystane elementy naturalne, np. konstrukcje metalowe znajdujące się na miejscu przed położeniem instalacji, urządzenia mające bezpośredni kontakt z ziemią itp. Uziomy muszą również charakteryzować się minimalnymi rozmiarami, które zależą głównie od ich charakteru (pionowy lub poziomy) oraz typu (taśma, pręt, blacha itp.). Duży nacisk jest również kładziony na wartość maksymalną rezystancji uziemienia (która może ulegać zmianie, np. w wyniku oddziaływania zjawisk atmosferycznych, jednak nie może być większa od wartości określonej w normie).

Wymienione sposoby zapobiegania porażeniom mają za zadanie eliminować powstawanie niebezpiecznego napięcia dotykowego, tzn. takiego, które powstaje w części przewodzącej (np. na obudowie urządzenia) i powoduje przepływ tzw. prądu zakłóceniowego przez przewód ochronny PE do ziemi. W przypadku, gdy człowiek dotknie części przewodzącej, może przez niego również popłynąć część prądu zakłóceniowego. Prąd ten nazywany jest prądem rażeniowym. Ze względów bezpieczeństwa napięcie dotykowe dopuszczalne długotrwale w zależności od warunków środowiskowych nie może być większe niż:

  • UL≤50 V AC lub UL≤120 V DC dla warunków normalnych,
  • UL≤25 V AC lub UL≤60 V DC dla warunków zwiększonego zagrożenia porażeniowego,
  • UL≤12 V AC lub UL≤30 V DC dla warunków szczególnego zagrożenia porażeniowego (bezpośredni kontakt ciała z wodą).

 

Metody pomiarów parametrów instalacji elektrycznej

Weryfikacja poprawnego działania instalacji elektrycznej składa się z dwóch etapów. Pierwszym są wstępne oględziny, pozwalające stwierdzić, czy nie występują widoczne uszkodzenia mechaniczne, jaki jest stan przewodów oraz połączeń. Wszystkie czynności wykonywane podczas odbioru instalacji powinny zostać opisane w protokole, przy czym nie jest on wymagany podczas doraźnych przeglądów już działającej instalacji (jest on natomiast wymagany podczas oględzin przed wprowadzeniem instalacji do użytku). Dokładny zakres czynności pomiarowych zależy od charakteru instalacji oraz urządzeń do niej podłączonych (szczegóły można znaleźć w [1]). W artykule położono nacisk na najważniejsze pomiary dotyczące ochrony przeciwporażeniowej.

Pomiar rezystancji izolacji

Izolacja jest podstawowym środkiem chroniącym człowieka przed bezpośrednim kontaktem z przewodzącymi żyłami przewodów. Badana jest nie tylko izolacja mająca separować obwód od otoczenia, ale również poszczególne elementy obwodu między sobą. W tym drugim przypadku chodzi o zapobieganie zwarciom, prądom upływu itp. Zastosowanie odpowiednich materiałów izolacyjnych (spełniających wymagania odnośnie minimalnej rezystancji) pozwala zminimalizować zarówno ryzyko porażenia, jak i zwarcia. Pomiar rezystancji izolacji należy wykonywać miernikiem na prąd stały przy obciążeniu prądem 1 mA, po wcześniejszym wyłączeniu zasilania oraz odłączeniu odbiorników.

Pomiar rezystancji izolacji należy wykonywać pomiędzy przewodami czynnymi a przewodem ochronnym, przyłączonym do układu uziemiającego. W celu pomiarów przewody czynne można połączyć ze sobą (Czytaj więcej na ten temat). W pomieszczeniu, w którym występuje zagrożenie pożarowe, pomiar rezystancji izolacji powinien być wykonany pomiędzy przewodami czynnymi. W takim przypadku rezystancję izolacji można mierzyć: między kolejnymi parami przewodów czynnych lub między każdym przewodem czynnym a ziemią. Przewody ochronne PE i ochronno-neutralne PEN mogą służyć jako połączenie z ziemią izolacji między przewodami stanowiącymi część instalacji, co wymaga pomiaru rezystancji. Jeśli otrzymana wartość rezystancji izolacji jest zgodna z wymaganiami przedstawionymi w tabeli 2., test uważa się za udany. W przeciwnym wypadku konieczna jest naprawa lub modyfikacja instalacji.

W przypadku pomiaru rezystancji izolacji kabli elektroenergetycznych o napięciu znamionowym powyżej 1 kV, pomiar należy wykonywać za pomocą miernika o napięciu 2,5 kV, a w przypadku kabli o napięciu mniejszym od 1 kV – miernikiem o napięciu 1 kV. Rezystancja powinna wynosić – względem pozostałych żył: zwartych ze sobą i uziemionych – przeliczona na temperaturę 20°C na każdy 1 km długości linii nie mniej niż:

  • 20 MΩ – dla kabli o izolacji papierowej,
  • 20 MΩ – dla kabli o izolacji polwinitowej,
  • 75 MΩ – dla kabli o izolacji gumowej,
  • 100 MΩ – dla kabli o izolacji polietylenowej.

 

Dla kabli o długości większej niż 1 km, w celu przeliczenia rezystancji kabla na 1 km należy skorzystać ze wzoru:

gdzie:

Ri/T=20°C/km – rezystancja kabla przeliczona na 1 km długość, w [Ω],

Rzm – zmierzona rezystancja kabla, w [Ω],

l – długość kabla, w [km],

K20 – współczynnik przeliczeniowy według tabeli 3.

Badanie ciągłości przewodów ochronnych, uziemiających i roboczych

Podstawową funkcją przewodów ochronnych jest niedopuszczenie do powstania na częściach przewodzących napięcia o wartości większej niż dopuszczalne długotrwale. Z tego powodu zadaniem osoby wykonującej pomiary jest sprawdzenie, czy spełniają one swoją funkcję (w szczególności, czy zachowują ciągłość). Pomiary wykonuje się przy użyciu źródła prądu stałego lub przemiennego o wartości 4 V≤U≤24 V i natężeniu prądu nie mniejszym niż 0,2 A. W praktyce stosuje się następujące metody pomiarowe: za pomocą miliomomierza (rys. 3a), metodą techniczną (rys. 3b), za pomocą latarki (rys. 3c).

Pomiar rezystancji uziemienia

Uziemienie lub układ uziomowy służy do połączenia z ziemią części przewodzących poprzez instalację uziemiającą. Instalacja uziemiająca składa się z uziomu lub elementów metalowych wykorzystywanych do tego celu (np. zbrojenie fundamentów, powłoki kabli itp.), przewodów uziemiających i wyrównawczych.

Układ systemu uziomowego zależy od rezystywności gruntu, konfiguracji instalacji elektrycznej, położenia obiektu i jego budowy. Na całkowitą rezystancję związaną z systemem uziemiającym składa się zarówno rezystancja uziomu (części przewodzącej umieszczonej w gruncie), jak i rezystywność samego gruntu. Wartość rezystywności gruntu bardzo zależy od warunków atmosferycznych i pory roku (np. w lutym jest największa, a najmniejsza przypada na sierpień). W tabeli 4. przedstawiono średnie wartości rezystywności różnych rodzajów gruntu.

Pomiaru rezystancji uziemienia dokonuje się induktorowym miernikiem uziemienia (IMU) w układzie przedstawionym na rysunku 5. Rozmieszczenie sond pomocniczych zależy od układu systemu uziomowego (tab. 5.).

Zmierzoną wartość rezystancji należy podstawić do wzoru (2) przy uwzględnieniu współczynnika poprawkowego kp (tab. 5.).

ei 5 2009 pomiary instalacji elektrycznych wzor2
(2)

gdzie:

Robl – rezystancja uziemienia obliczona, w [Ω],

Rzm – rezystancja uziemienia zmierzona, w [Ω],

kp – współczynnik poprawkowy uwzględniający stan wilgotności gruntu według tabeli 6.

Otrzymana wartość nie powinna być większa niż wytyczne zawarte w N SEP-E001 Sieci elektroenergetyczne niskiego napięcia. Ochrona przeciwporażeniowa.

Pomiar napięcia dotykowego i dotykowego rażeniowego

W pewnych warunkach uzyskanie skuteczności samoczynnego wyłączenia w wymaganym przez normy [8] czasie nie jest możliwe. W takiej sytuacji jedynym sposobem zapewnienia skuteczniej ochrony przeciwporażeniowej będzie obniżenie spodziewanego napięcia dotykowego do wartości dopuszczalnej długotrwale.

Do pomiaru najlepiej wykorzystać miernik z funkcją pomiaru napięcia dotykowego i dotykowego wrażeniowego, np. MZC-310S firmy SONEL. Przyrząd ma wbudowany rezystor 1 kΩ symulujący rezystancję wewnętrzną człowieka. Napięcia mierzy się wykorzystując dodatkowy piąty przewód w metodzie czteroprzewodowej (rys. 5.).

Pomiary składowych harmonicznych

Wzrost urządzeń o charakterystyce nieliniowej doprowadził do tego, że w systemie elektroenergetycznym pojawiła się duża zawartość wyższych harmonicznych napięć i prądów. Jest to zjawisko bardzo groźne, gdyż może doprowadzić do: niekontrolowanych zadziałań aparatury zabezpieczającej, nieprawidłowej pracy odbiorników energii elektrycznej, przegrzewania się elementów instalacji, a w efekcie do pożarów. Parametry jakościowe energii elektrycznej zostały zapisane w Prawie energetycznym.

Detekcja oraz identyfikacja składowych harmonicznych możliwa jest przy użyciu osobnego urządzenia nazywanego analizatorem widma. W praktyce znacznie częściej spotyka się urządzenia zwane analizatorami sieci, które mają bardziej rozbudowane funkcje pomiarowe:

  • napięcia fazowe i międzyfazowe oraz asymetrii napięć,
  • prądy fazowe i obliczanie prądu w przewodzie neutralnym, 
  • cosinus i tangens, dla każdej fazy i trójfazowo,
  • częstotliwość,
  • harmoniczne, ich zawartość i współczynnik mocy dla każdej harmonicznej oraz THD (dla napięć i prądów), współczynnik K dla transformatora,
  • moce (czynne, bierne, pozorne, modułowe, odkształcone) czterokwadrantowo, w każdej fazie i trójfazowo,
  • energie (czynne, bierne) czterokwadrantowo,
  • przekroczenia nastawionych progów maksymalnych minimalnych mierzonych parametrów, wartości średnie z 200 ms,
  • przekroczenia nastawionych 2 poziomów tolerancji napięcia średniego z jednoczesną rejestracją stanów liczydeł energii, 
  • zaniki i skoki napięcia (rozdzielczości 1/2 okresu sieci),
  • zaniki zasilania lub restarty przyrządu,
  • modyfikacje konfiguracji.

 

Przenośny analizator sieci został przedstawiony na fotografii 1.

Podsumowanie

Wykonywanie pomiarów eksploatacyjnych instalacji elektrycznej ma znaczenie nie tylko dlatego, że wadliwie działająca instalacja może być przyczyną obrażeń użytkowników lub nawet ich śmierci. W typowym budynku nieustannie rośnie liczba coraz bardziej skomplikowanych odbiorników, których poprawna praca zależy m.in. od jakości zasilającego je prądu. Należy spodziewać się, że przy rosnącym zapotrzebowaniu na energię elektryczną, projektowanie oraz weryfikacja instalacji elektrycznych zyskają na znaczeniu, co będzie miało odbicie w liczniejszych i bardziej wymagających normach.

Galeria zdjęć

Tytuł
przejdź do galerii

Powiązane

Charakterystyka zaawansowanych architektur sterowników PLC (cz. 1 – sprzęt)

Charakterystyka zaawansowanych architektur sterowników PLC (cz. 1 – sprzęt)

W artykule przedstawiono współczesne zaawansowane sterowniki PLC, oferowane przez większość producentów tego rodzaju sprzętu. Dokonano w szczególności porównania ich z prostszymi odpowiednikami, a także...

W artykule przedstawiono współczesne zaawansowane sterowniki PLC, oferowane przez większość producentów tego rodzaju sprzętu. Dokonano w szczególności porównania ich z prostszymi odpowiednikami, a także szczegółowo opisano parametry czyniące z nich zaawansowane komputerowe systemy przemysłowe.

Przegląd bezprzewodowych technologii komunikacyjnych krótkiego zasięgu w zastosowaniach przemysłowych

Przegląd bezprzewodowych technologii komunikacyjnych krótkiego zasięgu w zastosowaniach przemysłowych

W artykule przedstawiono technologie komunikacji bezprzewodowej bliskiego zasięgu działające w paśmie poniżej 1 GHz. Po krótkim wprowadzeniu do standardów SDR omówiono ich parametry fizyczne (m.in. dopuszczalną...

W artykule przedstawiono technologie komunikacji bezprzewodowej bliskiego zasięgu działające w paśmie poniżej 1 GHz. Po krótkim wprowadzeniu do standardów SDR omówiono ich parametry fizyczne (m.in. dopuszczalną moc i typową prędkość transmisji), co obejmuje również liczbę i szerokość kanałów komunikacyjnych, wykorzystywane modulacje, a także zdolność do poprawnego odbioru danych cyfrowych w warunkach zakłóceń. Przedstawiono również typowe zastosowania omawianych standardów, zarówno obecne, jak i...

Metody pomiaru zużycia energii elektrycznej

Metody pomiaru zużycia energii elektrycznej

Od początku XXI wieku rządy większości państw wysoko rozwiniętych przejawiają wyjątkową dbałość o środowisko naturalne. Niekorzystne zmiany klimatyczne (wliczając w to efekt cieplarniany) oraz coraz wyraźniejsze...

Od początku XXI wieku rządy większości państw wysoko rozwiniętych przejawiają wyjątkową dbałość o środowisko naturalne. Niekorzystne zmiany klimatyczne (wliczając w to efekt cieplarniany) oraz coraz wyraźniejsze widmo wyczerpania kopalnianych źródeł energii skłaniają do przyjmowania kolejnych dyrektyw dotyczących przede wszystkim oszczędzania energii.

Charakterystyka i zastosowania układów wykonawczych w systemach automatyki

Charakterystyka i zastosowania układów wykonawczych w systemach automatyki

Układy automatyki są obecnie jednymi z najintensywniej rozwijanych systemów elektroniki i elektrotechniki. Ułatwiają one pracę zarówno instalacji przemysłowych, takich jak elektrownie, cukrownie, czy fabryki...

Układy automatyki są obecnie jednymi z najintensywniej rozwijanych systemów elektroniki i elektrotechniki. Ułatwiają one pracę zarówno instalacji przemysłowych, takich jak elektrownie, cukrownie, czy fabryki odzieży, jak i budynków komercyjnych, m.in. biurowców czy centrów handlowych. Pomimo że ogólna idea takiego systemu pozostaje niezmienna od kilkudziesięciu lat, wprowadzenie układów mikroprocesorowych oraz zaawansowanych technologii czujników i elementów wykonawczych pozwoliło znacząco rozszerzyć...

Architektura i zastosowania technologii inteligentnego domu

Architektura i zastosowania technologii inteligentnego domu

Rozwój elektroniki i rozszerzanie możliwości jej zastosowań w dziedzinach pokrewnych (automatyka, pomiary wielkości nieelektrycznych) ułatwiają proponowanie nowoczesnych systemów pomiarowo-sterujących,...

Rozwój elektroniki i rozszerzanie możliwości jej zastosowań w dziedzinach pokrewnych (automatyka, pomiary wielkości nieelektrycznych) ułatwiają proponowanie nowoczesnych systemów pomiarowo-sterujących, które zwiększają komfort życia oraz usprawniają pracę tysięcy ludzi. Rozwiązania stosowane pierwotnie w wojsku, wkrótce trafiają do przemysłu, stając się standardowym rozwiązaniem w fabryce lub urządzeniach komputerowych (czego przykładem była magistrala ISA [1]). Na końcu stają się one elementem systemów...

Struktura, funkcjonalność i zastosowania systemów wbudowanych

Struktura, funkcjonalność i zastosowania systemów wbudowanych

Różnorodność urządzeń oraz systemów związanych z działalnością człowieka rośnie znacząco wraz z rozwojem techniki i nauki. Techniki mikroprocesorowe stosowane są praktycznie wszędzie i nie stanowią już...

Różnorodność urządzeń oraz systemów związanych z działalnością człowieka rośnie znacząco wraz z rozwojem techniki i nauki. Techniki mikroprocesorowe stosowane są praktycznie wszędzie i nie stanowią już tylko uniwersalnych maszyn obliczeniowych, lecz wykorzystywane są w modułach sterujących pracą praktycznie wszystkich systemów wykorzystywanych w przemyśle oraz w życiu codziennym.

Technologie przesyłania danych w systemach automatyki przemysłowej

Technologie przesyłania danych w systemach automatyki przemysłowej

Aplikacje przemysłowe są jednymi z najbardziej zaawansowanych i wymagających, zarówno, jeśli chodzi o wykorzystywany sprzęt, jak i metody komunikacji pomiędzy modułami wykonawczymi. Ze względu na fundamentalne...

Aplikacje przemysłowe są jednymi z najbardziej zaawansowanych i wymagających, zarówno, jeśli chodzi o wykorzystywany sprzęt, jak i metody komunikacji pomiędzy modułami wykonawczymi. Ze względu na fundamentalne znaczenie dla gospodarki oraz społeczeństwa, systemy wykorzystywane w przemyśle (cukrownictwo, petrochemia, hutnictwo itp.) muszą być projektowane ze szczególną precyzją. Ich działanie musi być również niezawodne, co sprzyja rozwijaniu metod monitorowania i diagnostyki. Pojawienie się...

Teoria sterowania - podstawy

Teoria sterowania - podstawy

W wielu gałęziach współczesnego przemysłu stosowane są zaawansowane układy automatyki, służące do kontroli i monitorowania procesów oraz obiektów (urządzeń, układów itp.). Najlepszym tego przykładem są...

W wielu gałęziach współczesnego przemysłu stosowane są zaawansowane układy automatyki, służące do kontroli i monitorowania procesów oraz obiektów (urządzeń, układów itp.). Najlepszym tego przykładem są sterowniki PLC (ang. Programmable Logic Controller), czyli mikroprocesorowe układy zbierające informacje na temat sygnałów w badanym systemie i podejmujących na tej podstawie decyzję o zmianie wartości sygnałów sterujących tym systemem.

news Obchody 100-lecia Stowarzyszenia Elektryków Polskich we Lwowie

Obchody 100-lecia Stowarzyszenia Elektryków Polskich we Lwowie

Do Lwowa na Ukrainie przeniosły się zapoczątkowane w kwietniu 2019 r. podczas III Kongresu Elektryków Polskich obchody 100-lecia Stowarzyszenia Elektryków Polskich. Ich kulminacją był XXXIX Nadzwyczajny...

Do Lwowa na Ukrainie przeniosły się zapoczątkowane w kwietniu 2019 r. podczas III Kongresu Elektryków Polskich obchody 100-lecia Stowarzyszenia Elektryków Polskich. Ich kulminacją był XXXIX Nadzwyczajny Walny Zjazd Delegatów SEP w czerwcu br. na Politechnice Warszawskiej.

news SEP świętuje 100 lat!

SEP świętuje 100 lat!

Jak co roku targom ENERGETAB towarzyszą konferencje organizowane przez izby i stowarzyszenia patronujące. Z okazji obchodzonego w tym roku 100-lecia Stowarzyszenia Elektryków Polskich Bielsko-Bialski Oddział...

Jak co roku targom ENERGETAB towarzyszą konferencje organizowane przez izby i stowarzyszenia patronujące. Z okazji obchodzonego w tym roku 100-lecia Stowarzyszenia Elektryków Polskich Bielsko-Bialski Oddział SEP przygotował okolicznościową konferencję, która oprócz referatów poruszających m.in. tematy rozwoju źródeł energii elektrycznej oraz zasobników energii w systemie energetycznym, uczciła 160. rocznicę urodzin Karola Franciszka Pollaka, założyciela fabryki akumulatorów w Bielsku-Białej oraz...

Poradnik elektrotechnika

Poradnik elektrotechnika

Książka jest cennym źródłem informacji dla specjalistów z różnych dziedzin, a także dla uczniów i studentów.

Książka jest cennym źródłem informacji dla specjalistów z różnych dziedzin, a także dla uczniów i studentów.

Ocena systemów uziemień z wykorzystaniem pomiarów metodą udarową

Ocena systemów uziemień z wykorzystaniem pomiarów metodą udarową

Poprawnie przeprowadzone pomiary parametrów uziemień, a także właściwa interpretacja uzyskanych wyników, są bardzo ważnymi elementami zapewniającymi bezpieczeństwo obsługi oraz poprawną pracę urządzeń...

Poprawnie przeprowadzone pomiary parametrów uziemień, a także właściwa interpretacja uzyskanych wyników, są bardzo ważnymi elementami zapewniającymi bezpieczeństwo obsługi oraz poprawną pracę urządzeń elektrycznych i elektronicznych we wszelkich obiektach wyposażonych w uziemienia ochronne i robocze bądź też narażonych na oddziaływanie przepięć spowodowanych wyładowaniami atmosferycznymi. Metody właściwej oceny uziemień odgromowych powinny być przedmiotem wytycznych normalizacyjnych. Jednak procedury...

Pomiary oświetleniowe we wnętrzach

Pomiary oświetleniowe we wnętrzach

Zgodnie z normą PN-EN 12464-1:2004, obowiązującą od 2004 roku, ocena oświetlenia we wnętrzach polega na sprawdzeniu zgodności parametrów oświetlenia istniejącej instalacji oświetleniowej z wymaganiami...

Zgodnie z normą PN-EN 12464-1:2004, obowiązującą od 2004 roku, ocena oświetlenia we wnętrzach polega na sprawdzeniu zgodności parametrów oświetlenia istniejącej instalacji oświetleniowej z wymaganiami określonymi w normie oraz dokumentacji projektowej (wykonanej zgodnie z tą normą). W części 1. cyklu artykułów o podanym wyżej tytule [4] przedstawiono wymagania oświetleniowe, w części 2. [5] – zasady weryfikacji dokumentacji projektowej, której konieczność wprowadziła nowa norma PN-EN 12464-1:2004....

Metoda techniczna pomiaru rezystancji uziemienia

Metoda techniczna pomiaru rezystancji uziemienia

Na temat pomiarów rezystancji uziemienia napisano już wiele referatów, artykułów i innych publikacji, które w mniej lub bardziej przystępny sposób wyjaśniają tryb postępowania w trakcie badań uziemień....

Na temat pomiarów rezystancji uziemienia napisano już wiele referatów, artykułów i innych publikacji, które w mniej lub bardziej przystępny sposób wyjaśniają tryb postępowania w trakcie badań uziemień. W praktyce, niestety, powszechnie powiela się błędy i stosuje zasady, które w efekcie skutkują uzyskaniem błędnych wyników. Największą trudnością w prawidłowym przygotowaniu układu pomiarowego do badań, jest poprawne rozmieszczenie sond pomocniczych. Dlatego zrozumienie zasad rządzących zastosowaniem...

Mobilne stanowisko do pomiaru prądów fazowych SEM TS 12.

Mobilne stanowisko do pomiaru prądów fazowych SEM TS 12.

Instytut Tele- i Radiotechniczny prowadzi własne prace badawczo rozwojowe. W odpo-wiedzi na zapotrzebowanie rynku powstaje wiele innowacyjnych rozwiązań. Jednym z nich jest właśnie mobilne stanowisko do...

Instytut Tele- i Radiotechniczny prowadzi własne prace badawczo rozwojowe. W odpo-wiedzi na zapotrzebowanie rynku powstaje wiele innowacyjnych rozwiązań. Jednym z nich jest właśnie mobilne stanowisko do pomiarów prądów fazowych SEM TS 12. Urządzenie pracuje na bazie opracowanego w ITR sterownika modułowego SEM, i stanowi jedno z jego zastosowań.

Co musisz wiedzieć o licznikach energii elektrycznej?

Co musisz wiedzieć o licznikach energii elektrycznej?

Licznik energii elektrycznej powinien zostać zainstalowany w każdym domu. Zazwyczaj montuje go dostawca energii, który dzięki urządzeniu rejestruje, ile energii elektrycznej nam dostarcza. Jeśli chcemy...

Licznik energii elektrycznej powinien zostać zainstalowany w każdym domu. Zazwyczaj montuje go dostawca energii, który dzięki urządzeniu rejestruje, ile energii elektrycznej nam dostarcza. Jeśli chcemy wiedzieć, ile prądu zużyliśmy, to wystarczy spojrzeć na licznik. Dzięki niemu jesteśmy też w stanie kontrolować dostawcę energii oraz sprawdzać, czy płacimy odpowiedniej wysokości rachunki za prąd. Jak działa licznik energii elektrycznej i gdzie go zamontować?

Wprowadzenie do cyfrowych pomiarów napięcia woltomierzami z podwójnym całkowaniem

Wprowadzenie do cyfrowych pomiarów napięcia woltomierzami z podwójnym całkowaniem

W artykule przedstawiona została zasada działania woltomierzy z podwójnym całkowaniem. Zwrócono uwagę na dokładność pomiaru i odporność na zakłócenia.

W artykule przedstawiona została zasada działania woltomierzy z podwójnym całkowaniem. Zwrócono uwagę na dokładność pomiaru i odporność na zakłócenia.

Iskrobezpieczny Multimetr Wielofunkcyjny IMW-1

Iskrobezpieczny Multimetr Wielofunkcyjny IMW-1

Artykuł przedstawia rozwiązanie iskrobezpiecznego multimetru dla górnictwa. Urządzenie umożliwia pracę diagnostyczną (może służyć do wczesnej diagnostyki przedusterkowej) w warunkach zagrożenia wybuchem...

Artykuł przedstawia rozwiązanie iskrobezpiecznego multimetru dla górnictwa. Urządzenie umożliwia pracę diagnostyczną (może służyć do wczesnej diagnostyki przedusterkowej) w warunkach zagrożenia wybuchem metanu lub pyłu węglowego, służy zatem do pomiaru dopuszczalnych w tym środowisku wielkości elektrycznych.

Pomiary częstotliwości - wprowadzenie

Pomiary częstotliwości - wprowadzenie

Autor przedstawia definicję częstotliwości i jej jednostkę oraz omawia cyfrowe, bezpośrednie i pośrednie pomiary częstotliwości przywołując dla nich wzory matematyczne.

Autor przedstawia definicję częstotliwości i jej jednostkę oraz omawia cyfrowe, bezpośrednie i pośrednie pomiary częstotliwości przywołując dla nich wzory matematyczne.

Zastosowanie mierników cyfrowych do pomiaru prądu

Zastosowanie mierników cyfrowych do pomiaru prądu

W artykule przedstawiono podstawowe zależności dla obwodów prądu stałego i przemiennego. Omówiono zasadę działania miernika cęgowego.

W artykule przedstawiono podstawowe zależności dla obwodów prądu stałego i przemiennego. Omówiono zasadę działania miernika cęgowego.

Liczniki energii elektrycznej - przepisy krajowe a dyrektywa MID

Liczniki energii elektrycznej - przepisy krajowe a dyrektywa MID

Artykuł jest wstępem do prezentacji zmian wymagań w zakresie liczników energii elektrycznej. Prezentowane informacje mają na celu wskazanie problemów związanych z prawną kontrolą metrologiczną z nimi związaną.

Artykuł jest wstępem do prezentacji zmian wymagań w zakresie liczników energii elektrycznej. Prezentowane informacje mają na celu wskazanie problemów związanych z prawną kontrolą metrologiczną z nimi związaną.

Oscyloskopy cyfrowe - podstawowe parametry użytkowe

Oscyloskopy cyfrowe - podstawowe parametry użytkowe

Autor publikacji charakteryzuje współcześnie stosowane oscyloskopy cyfrowe: zastosowanie, przykłady wykonania, zasadę działania oraz zobrazowanie przebiegu.

Autor publikacji charakteryzuje współcześnie stosowane oscyloskopy cyfrowe: zastosowanie, przykłady wykonania, zasadę działania oraz zobrazowanie przebiegu.

Oscyloskopy

Oscyloskopy

Publikacja zawiera najważniejsze informacje dotyczące współcześnie eksploatowanych oscyloskopów. Autor podaje ich klasyfikacje, ponadto pisze o funkcjach i przykładowych zastosowaniach.

Publikacja zawiera najważniejsze informacje dotyczące współcześnie eksploatowanych oscyloskopów. Autor podaje ich klasyfikacje, ponadto pisze o funkcjach i przykładowych zastosowaniach.

Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids (część 1.)

Inteligentne cyfrowe liczniki energii elektrycznej jako element systemu Smart Power Grids (część 1.)

Artykuł związany z miernictwem dotyczy wybranych aspektów inteligentnych liczników w systemie Smart Power Grids / Smart Metering. Autor skupił się na charakterystyce inteligentnych systemów pomiarowych...

Artykuł związany z miernictwem dotyczy wybranych aspektów inteligentnych liczników w systemie Smart Power Grids / Smart Metering. Autor skupił się na charakterystyce inteligentnych systemów pomiarowych (inteligentnych liczników), korzyściach i kosztach wprowadzania systemów inteligentnego opomiarowania. Ponadto przedstawił aktualny stan wdrożeń systemów inteligentnego opomiarowania w UE i Polsce i omówił wybrane problemy bezpieczeństwa w takich systemach oraz sformułował końcowe uwagi i wnioski.

Komentarze

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.