W artykule:
• Straty w transformatorze
|
Straty w transformatorze
Obwód magnetyczny transformatora rozdzielczego składa się najczęściej z trzech kolumn połączonych jarzmami. Kolumny zewnętrzne spełnią funkcję jarzm zamykających strumień magnetyczny i pozostają bez uzwojeń. Schodkowy przekrój kolumny rdzenia jest zbliżony do przekroju kołowego. Konstrukcja rdzenia jest istotnym czynnikiem wpływającym na sprawność transformatora. Geometryczne rozmieszczenie elementów rdzenia i dobrane materiały decydują o stratach jałowych i poziomie hałasu. Do konstrukcji rdzenia najczęściej jest stosowana blacha krzemowa zimnowalcowana o dużej przenikalności magnetycznej. Jest ona cięta poprzecznie z blachy i składana w pakiety kolumn i jarzm. Wykonywanie tych czynności odbywa się na stanowiskach automatycznych, co zapewnia wysoką dokładność wymiaru oraz dużą wartość współczynnika wypełnienia i niskie straty.
Czytaj też: Transformatory rozdzielcze – czynniki wpływające na ograniczenie strat >>
W transformatorach występują dwa rodzaje strat energii: straty w uzwojeniach, które są zależne od obciążenia transformatora, oraz straty w rdzeniu – niezależne od obciążenia. Większość transformatorów energetycznych, z wyjątkiem jednostek w obszarach silnie uprzemysłowionych, pracuje przy obciążeniu wynoszącym około 20%. W przypadku takich warunków pracy głównym czynnikiem odpowiedzialnym za straty w transformatorze są straty w jego rdzeniu. Poprawa sprawności transformatorów energetycznych możliwa jest poprzez zastosowanie materiałów magnetycznych o jak najniższej stratności, takich jak taśmy amorficzne oraz nanokrystaliczne [1].
W literaturze podaje się, że zastąpienie rdzenia z blachy transformatorowej przez rdzeń amorficzny daje 75–80% spadek strat w rdzeniu transformatora. Dla jednofazowego transformatora o mocy 50 kVA redukcja tych strat wynosi około 175 W, natomiast dla transformatora trójfazowego o mocy 500 kVA, będącego typową jednostką pracującą powszechnie w Europie, uzyskuje się redukcję strat w rdzeniu rzędu 450 W [1]. Dla przypadku pojedynczego transformatora redukcja strat jest niewielka, jednakże biorąc pod uwagę miliony jednostek pracujących na świecie, całkowite roczne oszczędności energii stają się znaczące. Szacuje się, że dla pięciu największych konsumentów energii elektrycznej, takich jak USA, kraje Unii Europejskiej, Japonia, Chiny oraz Indie, oszczędność energii może wynieść 150–160 TWh [1]. Powyższe szacunki były przeprowadzone przy założeniu sinusoidalnego przebiegu prądu i napięcia w sieci energetycznej. W rzeczywistych warunkach w sieciach występują wyższe harmoniczne, które dodatkowo powodują wzrost strat w transformatorze. Dla transformatorów z rdzeniami z blach elektrotechnicznych, wzrost ten może być 2-krotnie, a nawet 3-krotnie większy, niż w przypadku transformatorów z rdzeniami amorficznymi. Wynika stąd, że możliwy poziom oszczędności energii przy zastosowaniu transformatorów z rdzeniami amorficznymi może być jeszcze wyższy niż podawany w literaturze [1, 2, 3].
Straty mocy
Straty mocy czynnej w transformatorach można podzielić na dwie grupy [4]:
- straty w rdzeniu żelaznym, zwane krótko stratami w żelazie ΔPFe lub stratami jałowymi – ΔPj,
- straty w przewodach uzwojenia, zwane stratami w miedzi ΔPCu lub stratami obciążeniowymi – ΔPo.
Straty jałowe są proporcjonalne do kwadratu napięcia i nie zależą od obciążenia. Ponieważ w normalnych warunkach ruchowych napięcie nie ulega większym zmianom, dlatego też straty jałowe uważa się za stałe. Wartość tych strat podawana jest w katalogach. Straty obciążeniowe są wynikiem przepływu prądu przez uzwojenie, a więc można je wyrazić w pewnym uproszczeniu taką samą zależnością, jak straty w przewodach związane są z rezystancją przewodu i w układzie 3-fazowym, przy stałym obciążeniu przewodu [5]:

gdzie:
RT – rezystancja jednej fazy uzwojenia transformatora,
I – prąd płynący przez uzwojenie.
Przy przepływie prądu znamionowego [4]:

Dzieląc stronami równania (1) i (2) otrzymuje się:

gdzie:
S – moc pozorna obciążenia.
Zależność (3) pozwala na obliczenie strat przy dowolnym obciążeniu transformatora w zależności od strat przy obciążeniu znamionowym, które podawane są w katalogach.
W szczególności, dla obciążenia maksymalnego [4]:

Łączne straty mocy czynnej w transformatorze są sumą strat jałowych i obciążeniowych:

Jałowe straty energii czynnej trwają przez czas załączenia transformatora pod napięcie, zaś straty obciążeniowe tylko przy obciążeniu transformatora. Przy założeniu, że transformator załączony jest przez cały rok (365 dni · 24 h = 8760 h), łączne straty energii czynnej w transformatorze można wyznaczyć z zależności [4]:

gdzie:
Smax – obciążenie maksymalne,
tΔPmax – czas trwania maksymalnych strat.
Chcesz być na bieżąco? Czytaj nasz newsletter! |
[transformatory, transformatory rozdzielcze, energia elektryczna, straty energii, energooszczędność]