elektro.info

Zaawansowane wyszukiwanie

Dobór mocy źródeł zasilania awaryjnego i gwarantowanego

Metodyka projektowania ochrony przeciwporażeniowej w instalacjach elektrycznych zasilanych z tych źródeł (cz. 2)

Autor publikacji przedstawia problematykę ochrony przeciwpożarowej w instalacji zasilanej z generatora zespołu prądotwórczego oraz zasady projektowania takiej ochrony przy zasilaniu z UPS

Autor publikacji przedstawia problematykę ochrony przeciwpożarowej w instalacji zasilanej z generatora zespołu prądotwórczego oraz zasady projektowania takiej ochrony przy zasilaniu z UPS

W temacie publikacji zawarta jest problematyka ochrony przeciwpożarowej w instalacji zasilanej z generatora zespołu prądotwórczego oraz zasady projektowania takiej ochrony przy zasilaniu z UPS

W artykule:

• Projektowanie ochrony przeciwporażeniowej w instalacji zasilanej z generatora zespołu prądotwórczego z przywołaniem rysunków poglądowych i metodologii obliczeń
• Szkic zasad projektowania ochrony przeciwporażeniowej przy zasilaniu z UPS

Projektowanie ochrony przeciwporażeniuowej w instalacji zasilanej z generatora zespołu prądotwórczego

Zespół prądotwórczy w stosunku do Systemu Elektroenergetycznego jest źródłem „miękkim”, w którym impedancja obwodu zwarciowego ulega szybkim zmianom w czasie zwarcia (przyjmuje się, że system elektroenergetyczny charakteryzuje się stałą impedancją obwodu zwarciowego z uwagi na dużą wartość mocy zwarciowej, w upraszczających założeniach przyjmowaną jako nieskończoną). W chwili wystąpienia zwarcia ulega zmianie rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego. Rozpływy strumieni w generatorze podczas zwarcia przedstawia rys. 1.

b dobor mocy zrodel zasilania rys1 1

Rys. 1. Przebieg wypychanego poza wirnik strumienia stojana w czasie zwarcia: a) stan podprzejściowy, b) stan przejściowy, c) stan ustalony; [źródło: DIN VDE 0100 Errichten von Niederspannungsanlagen - Teil 5-55: Auswahl und Errichtung elektrischer Betriebsmittel - Andere Betriebsmittel - Abschnitt 551: Niederspannungsstromerzeugungseinrichtungen - Anschluss von Stromerzeugungseinrichtungen für den Parallelbetrieb mit anderen Stromquellen einschließlich einem öffentlichen Stromverteilungsnetz]

W początkowej fazie zwarcia nazywanej stanem podprzejściowym, wskutek działania klatki tłumiącej strumień główny wytwarzany przez prądy płynące w uzwojeniu stojana jest wypychany poza wirnik (rys. 1a). W stanie tym reaktancja generatora charakteryzuje się mała wartością, wynoszącą przeciętnie (10–15)% znamionowej wartości reaktancji generatora w stanie statycznym. Stan ten trwa bardzo krótko ze względu na małą wartość elektromagnetycznej stałej czasowej T, wynoszącej dla generatorów nn średnio 0,01 s.

Działanie klatki tłumiącej ze względu na małą wartość jej rezystancji szybko ustaje, co skutkuje powolnym wchodzeniem strumienia głównego w wirnik (rys. 1b). Stan ten nazywany jest stanem przejściowym i charakteryzuje się wzrostem reaktancji generatora, która dla generatorów nn wynosi średnio (30–40)% wartości reaktancji znamionowej generatora.

Generator w krótkim czasie przechodzi w stan ustalony zwarcia, co objawia się dalszym wzrostem reaktancji obwodu zwarciowego. W stanie ustalonym zwarcia strumień główny oraz strumień wzbudzenia zamykają się przez wirnik generatora (rys. 1c).

Ponieważ kierunki tych strumieni są przeciwne, strumień wypadkowy ulega zmniejszeniu. Zjawisko to prowadzi do gwałtownego wzrostu reaktancji generatora, która dla generatorów nn wynosi (200–300)% wartości reaktancji znamionowej generatora.

W zespołach prądotwórczych konstruowanych obecnie, instalowany jest regulator prądu wzbudzenia wyposażony w układ forsowania, który pozwala podczas zwarcia na utrzymanie określonej wartości reaktancji generatora przez czas nie dłuższy od 10 s, liczony od momentu zainicjowania zwarcia.

Na rys. 2. przedstawiono uproszczone charakterystyki zmienności reaktancji zwarciowej w generatorze nowoczesnego zespołu prądotwórczego oraz zmienności prądu zwarciowego na jego zaciskach.

b dobor mocy zrodel zasilania rys2 1

Rys. 2. Unormowane charakterystyki: a) zmienności reaktancji zwarciowej generatora, b) zmienności prądu zwarciowego generatora, przy zwarciu na jego zaciskach, gdzie: XnG – znamionowa reaktancja generatora (wartość w stanie statycznym), w [Ω], Xk1G – reaktancja generatora dla zwarć jednofazowych, [Ω], InG – prąd znamionowy generatora, w [A], Ik1G – prąd zwarcia jednofazowego dla zwarć na zaciskach generatora, w [A], Tk – czas trwania zwarcia, w [s] [źródło: DIN VDE 0100 Errichten von Niederspannungsanlagen - Teil 5-55: Auswahl und Errichtung elektrischer Betriebsmittel - Andere Betriebsmittel - Abschnitt 551: Niederspannungsstromerzeugungseinrichtungen - Anschluss von Stromerzeugungseinrichtungen für den Parallelbetrieb mit anderen Stromquellen einschließlich einem öffentlichen Stromverteilungsnetz]

Parametry obwodu zwarciowego ulegają szybkim zmianom, co powoduje trudności w uzyskaniu skutecznej ochrony przeciwporażeniowej w odległej instalacji odbiorczej realizowanej przez samoczynne wyłączenie. Dla porównania zachowania się generatora podczas zwarcia na rys. 3. został przedstawiony dwuuzwojeniowy jednofazowy transformator dla stanu pracy jałowej, stanu pracy normalnej oraz stanu zwarcia.

Z rysunku tego wynika, że w przeciwieństwie do generatora transformator charakteryzuje się stałą drogą przepływu strumienia magnetycznego. Stan ten wskazuje na niezmienność parametrów zwarciowych transformatora.

W nowoczesnych zespołach prądotwórczych producent zapewnia (wskutek działania układów automatyki) utrzymanie prądu zwarciowego na zaciskach generatora o wartości 3×In przez 10 s (dłuższe utrzymywanie takiego stanu grozi zniszczeniem izolacji uzwojeń).

Dzięki temu do obliczeń skuteczności samoczynnego wyłączenia można przyjmować wartość reaktancji zwarciowej generatora Xk1G (na jego zaciskach) wyliczoną ze wzoru:

b dobor mocy zrodel zasilania wz1 1

Wzór 1

gdzie:

UnG – napięcie znamionowe generatora zespołu prądotwórczego, w [kV],

SnG – moc znamionowa generatora zespołu prądotwórczego, w [MVA].

b dobor mocy zrodel zasilania rys3 1

Rys. 3. Porównanie drogi strumienia magnetycznego w transformatorze jednofazowym dla różnych stanów pracy; rys. J. Wiatr

b dobor mocy zrodel zasilania wz2 1

Wzór 2

można zapisać wzór na reaktancję generatora dla zwarć jednofazowych jako:

b dobor mocy zrodel zasilania wz4 1

Wzór 3

gdzie:

n – krotność prądu znamionowego utrzymywana podczas zwarć na zaciskach generatora, podawana przez producenta ZP w DTR).

Dla porównania tych wartości w tab. 1. zostały przedstawione impedancje wybranych transformatorów przyłączonych do Systemu Elektroenergetycznego oraz generatorów zespołów prądotwórczych.

b dobor mocy zrodel zasilania tab1 1

Tab. 1. Zestawienie impedancji transformatora i generatora o tej samej mocy

Przedstawiona w tab. 1. reaktancja generatorów po 10 sekundach od chwili powstania zwarcia ulega znacznemu zwiększeniu (rys. 2.).

Porównując dane przedstawione w tab. 1. widać, jak duże rozbieżności występują w wartościach impedancji zwarciowych obydwu źródeł.

Przez okres działania układu forsowania wzbudzenia (10 s od chwili zainicjowania zwarcia) stosunek impedancji transformatora do impedancji generatora, zgodnie z tab. 2., wyniesie:

Zk1G/ZkT ≈ 7,33

b dobor mocy zrodel zasilania tab2 1

Tab. 2. Dopuszczalne czasy samoczynnego wyłączenia w układach zasilania TN oraz TT [na podstawie: PN HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41. Ochrona dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym.]

b dobor mocy zrodel zasilania rys4 1

Rys. 4. Schemat jednofazowego obwodu zwarcia w instalacji zasilającej z zespołu prądotwórczego [na podstawie: PN HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41. Ochrona dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym.]

Po upływie czasu działania układu forsowania wzbudzenia stosunek tych impedancji uzyskuje wartość: ZkG/ZkT ≅ 22, przy której spełnienie warunku samoczynnego wyłączenia jest niemożliwe.

Obwód zwarciowy dla potrzeb ochrony przeciwporażeniowej przedstawia rys. 4.

Projektowanie ochrony przeciwporażeniuowej w instalacji zasilanej z generatora zespołu prądotwórczego (ciąg dalszy)

Spośród trzech układów sieci: TT, IT oraz TN (TN-C; TN-C-S i TN‑S), przy zasilaniu obiektów budowlanych najbardziej nadaje się układ TN-S lub TN‑C‑S. Układ IT może być stosowany tylko w ograniczonym zakresie pod warunkiem, że drugie zwarcie przekształci go w układ TN i spełniony zostanie warunek samoczynnego wyłączenia w czasie podanym w tab. 2.

Warunek samoczynnego wyłączenia w sieci TN, należy uznać za spełniony jeżeli:

b dobor mocy zrodel zasilania wz4 1 1

Wzór 4

b dobor mocy zrodel zasilania wz5

Wzór 5

gdzie:

Zs – impedancja pętli zwarciowej obejmującej źródło zasilania, przewód roboczy aż do punktu zwarcia i przewód ochronny miedzy punktem zwarcia a źródłem, w [Ω],

Ia – prąd powodujący samoczynne zadziałanie urządzenia wyłączającego w czasie określonym przez normę PN‑HD 60364-4-41 [5],

RkG – rezystancja uzwojeń generatora, w [Ω]:

b dobor mocy zrodel zasilania wz6

Wzór 6

Xk1G – reaktancja generatora dla zwarć jednofazowych (wg wzoru 1), w [Ω].

Schemat układu zasilania TN z oznaczonym obwodem zwarcia przedstawia rys. 5.

b dobor mocy zrodel zasilania rys5

Rys. 5. Schemat układu zasilania TN-C-S z oznaczeniem obwodu zwarcia [źródło: DIN VDE 0100 Errichten von Niederspannungsanlagen - Teil 5-55: Auswahl und Errichtung elektrischer Betriebsmittel - Andere Betriebsmittel - Abschnitt 551: Niederspannungsstromerzeugungseinrichtungen - Anschluss von Stromerzeugungseinrichtungen für den Parallelbetrieb mit anderen Stromquellen einschließlich einem öffentlichen Stromverteilungsnetz]

W tym przypadku prąd zwarciowy zamyka się w obwodzie wyznaczonym przez żyły przewodzące przewodów, w przeciwieństwie do układu zasilania TT (rys. 6.), gdzie obwód prądów zwarciowych zamyka się przez rezystancje uziemienia RA oraz RB.

b dobor mocy zrodel zasilania rys6

Rys. 6. Schemat układu zasilania TT [źródło: DIN VDE 0100 Errichten von Niederspannungsanlagen - Teil 5-55: Auswahl und Errichtung elektrischer Betriebsmittel - Andere Betriebsmittel - Abschnitt 551: Niederspannungsstromerzeugungseinrichtungen - Anschluss von Stromerzeugungseinrichtungen für den Parallelbetrieb mit anderen Stromquellen einschließlich einem öffentlichen Stromverteilungsnetz]

Duże wartości rezystancji uziemień w układzie zasilania TT powodują znaczne ograniczanie wartości prądów zwarciowych, co skutkuje trudnościami w spełnieniu warunku samoczynnego wyłączenia dla zabezpieczeń o prądzie znamionowym większym od 16 A.

Przy zasilaniu z zespołu prądotwórczego uzyskanie skutecznej ochrony przeciwporażeniowej przy zastosowaniu tylko urządzeń przetężeniowych może być nieskuteczne. Konieczne zatem wydaje się zastosowanie urządzeń różnicowoprądowych w instalacji odbiorczej.

Do instalacji zasilającej gniazda przeznaczone do zasilania odbiorników ręcznych należy stosować wyłączniki różnicowoprądowe o znamionowym prądzie różnicowym nie większym od 30 mA.

W układzie TT w zależności od przyjętego aparatu zabezpieczającego obowiązują następujące warunki samoczynnego wyłączenia:

a) zabezpieczenie nadprądowe:

b dobor mocy zrodel zasilania wz7

Wzór 7

b) zabezpieczenie wyłącznikiem różnicowoprądowym (IDn – znamionowy prąd różnicowy wyłącznika różnicowoprądowego; UL – dopuszczalne długotrwale napięcie dotykowe):

b dobor mocy zrodel zasilania wz8

Wzór 8

W przypadku układu zasilania IT, którego schemat przedstawia rys. 7., obowiązują nieco odmienne wymagania, gdyż pojedyncze zwarcie jest niegroźne i powinno być zasygnalizowane przez UKSI (pominięty na rys. 7.) w celu podjęcia natychmiastowych działań mających na celu niedopuszczenie do drugiego zwarcia.

b dobor mocy zrodel zasilania rys7

Rys. 7. Układ zasilania IT: a) pojedyncze zwarcie, b) podwójne zwarcie [źródło: DIN VDE 0100 Errichten von Niederspannungsanlagen - Teil 5-55: Auswahl und Errichtung elektrischer Betriebsmittel - Andere Betriebsmittel - Abschnitt 551: Niederspannungsstromerzeugungseinrichtungen - Anschluss von Stromerzeugungseinrichtungen für den Parallelbetrieb mit anderen Stromquellen einschließlich einem öffentlichen Stromverteilungsnetz]

Pojawiające się drugie zwarcie przekształca układ zasilania w zależności od sposobu uziemienia w układ zasilania TN lub TT.

W rozpatrywanym przypadku najkorzystniejszym jest przejście układu IT, przy drugim zwarciu w układ TN. Wymaga to zbiorowego uziemienia wszystkich odbiorników zasilanych ze wspólnego źródła i oceny czasu samoczynnego wyłączenia właściwego dla układu zasilania TN.

Sposoby uziemiania odbiorników przy zasilaniu w układzie IT przedstawia rys. 8.

b dobor mocy zrodel zasilania rys8

Rys. 8. Sposoby uziemiania odbiorników w układzie zasilania IT [źródło: DIN VDE 0100 Errichten von Niederspannungsanlagen - Teil 5-55: Auswahl und Errichtung elektrischer Betriebsmittel - Andere Betriebsmittel - Abschnitt 551: Niederspannungsstromerzeugungseinrichtungen - Anschluss von Stromerzeugungseinrichtungen für den Parallelbetrieb mit anderen Stromquellen einschließlich einem öffentlichen Stromverteilungsnetz]

Wymagania w zakresie samoczynnego wyłączenia przy podwójnym zwarciu zgodnie normą [5] przedstawiają poniższe wzory:

a) układ zasilania z przewodem neutralnym:

b dobor mocy zrodel zasilania wz9

Wzór 9

b) układ zasilania bez przewodu neutralnego:

b dobor mocy zrodel zasilania wz10

Wzór 10

gdzie:

Zs; Zs – impedancja obwodu zwarciowego dla zwarć podwójnych, w [Ω],

U0 – napięcie pomiędzy przewodem fazowym a uziemionym przewodem ochronnym, w [V],

Un – napięcie międzyfazowe, w [V],

Ia – prąd wyłączający zabezpieczenie w czasie dopuszczonym przez normę PN-HD 60364-4-41 [5].

b dobor mocy zrodel zasilania rys9

Rys. 9. Wymagania dotyczące uziemienia zespołu prądotwórczego zgodnie z normą N SEP-E001 [źródło: N SEP-E 001 Sieci elektroenergetyczne niskiego napięcia. Ochrona przeciwporażeniowa.]

Rezystancja uziemienia punktu neutralnego generatora stacjonarnego zespołu prądotwórczego pracującego w układzie zasilania awaryjnego nie może być wyższa niż 5 W. Wymagania w tym zakresie precyzuje norma N SEP-E 001 Sieci elektroenergetyczne nn. Ochrona przeciwporażeniowa [6], a ich ilustrację graficzną przedstawia rys. 9. (zgodnie z niemiecką normą DIN VDE 0100-5-55 [11] w warunkach polowych wymagana wartość uziemienia punktu neutralnego generatora nie może być większa od 50 Ω).

Wymagania określone w normie N SEP-E 001 [6], wynikają bezpośrednio z rys. 9.

W celu niedopuszczenia do pojawienia się napięcia niebezpiecznego dla zasilanych odbiorników w fazach nieobjętych zwarciem, rezystancja punktu neutralnego generatora nie może przekraczać 5 W. Wartość ta wynika z następującego rozumowania:

b dobor mocy zrodel zasilania wz11b

Wzór 11

Przy nieprzekroczeniu wartości 50 V wektora napięcia punktu neutralnego w fazach nieuszkodzonych pojawi się napięcie o wartości nie większej od 260 V, co zabezpiecza zasilane odbiorniki przed uszkodzeniem:

b dobor mocy zrodel zasilania wz12

Wzór 12

Wartość 5 Ω była właściwa do momentu obowiązywania napięcia dotykowego dopuszczalnego długotrwale o wartości 65 V oraz wartości RE = 12 Ω.

W 1991 roku nastąpiła zmiana wymagań w tym zakresie, która wprowadziła UL = 50 V oraz RE = 10 Ω. W jej wyniku właściwa wartość RB = 2,8 Ω.

Norma w tym przypadku złagodziła ten wymóg, żądając, by wypadkowa rezystancja uziemienia wszystkich uziomów w zakresie wspólnego źródła nie przekraczała wartości 5 Ω.

W przypadku rezystywności gruntu ρ ≥ 500 W×m, warunek uziemienia jest określony następującym wzorem [6]:

b dobor mocy zrodel zasilania wz13

Wzór 13

W przypadku przyłączenia zespołu prądotwórczego poprzez transformator nn/SN, jak zostało przedstawione na rys. 10., co występuje przy dużych odległościach od zasilanych odbiorników, wartości prądów zwarciowych będą uzależnione od zmian impedancji generatora i należy je uwzględnić w obliczeniach.

b dobor mocy zrodel zasilania rys10

Rys. 10. Obwód zwarcia przy doziemieniu przewodu fazowego z pominięciem przewodu PEN: a) obwód zwarciowy, b) wykres wskazowy napięć; rys. J. Wiatr

Jednokreskowy schemat obwodu zwarciowego w takim przypadku przedstawia rys. 11.

Natomiast impedancję obwodu zwarciowego należy określić za pomocą następującego wzoru:

b dobor mocy zrodel zasilania wz14

Wzór 14

Należy pamiętać, że zmiany impedancji generatora podczas zwarć są śledzone nadążnie w zasilanym odbiorniku.

b dobor mocy zrodel zasilania rys11

Rys. 11. Układ zasilania odbiorników nn, znajdujących się w znacznej odległości od ZP; rys. J. Wiatr

Ograniczenie impedancji źródła do niezmiennej wartości dolnych uzwojeń transformatora SN/nn przyjmowanej przy zasilaniu z Systemu Elektroenergetycznego prowadzi do błędów.

W tab. 2. podane zostały dopuszczalne czasy samoczynnego wyłączenia dla układu zasilania TN oraz układu zasilania TT, zgodne z wymaganiami normy [5].

W przypadku gdy spełnienie warunku samoczynnego wyłączenia w instalacji zasilanej z zespołu prądotwórczego jest niemożliwe, należy przeprowadzić ocenę skuteczności ochrony przeciwporażeniowej przy uszkodzeniu (przed dotykiem pośrednim) przez sprawdzenie, czy w czasie zwarcia doziemnego przy przepływie prądu zwarciowego równego wartości prądu Ia wyłączającego zabezpieczenie w czasie dopuszczonym przez normę [5], na częściach przewodzących dostępnych wystąpi napięcie dotykowe UST o wartości nieprzekraczającej wartości napięcia dotykowego dopuszczalnego długotrwale UL w danych warunkach środowiskowych (UST ≤ UL).

b dobor mocy zrodel zasilania rys12

Rys. 12. Jednokreskowy schemat obwodu zwarciowego dla układu zasilania awaryjnego z przyłączonym zespołem prądotwórczym do linii SN; rys. J. Wiatr

Obwód zwarciowy w takim przypadku przedstawia rys. 12., na którym widoczny jest przewód ochronny PE łączący chronione urządzenie z Główną Szyną Uziemiającą (GSU) budynku.

W takim przypadku, zgodnie z wymaganiami określonymi w PN-HD 60364-4-41 [5] uważa się, że ochrona jest skuteczna, jeżeli napięcie dotykowe UST jest mniejsze od napięcia dotykowego UL dopuszczalnego długotrwale w danych warunkach środowiskowych. Przy upraszczającym założeniu (ZPE ≅ RPE) oraz przyjęciu Ik = Ia, można zapisać następujący warunek:

b dobor mocy zrodel zasilania wz15

Wzór 15

gdzie:

Ia – prąd wyłączający urządzenia zabezpieczającego (w obwodzie zasilania zespołu prądotwórczego lub urządzenia odbiorczego) w czasie określonym w normie PN-HD 60364-4-41 [5], w [A],

RPE – wartość rezystancji przewodu połączenia wyrównawczego miejscowego PE pomiędzy częściami przewodzącymi dostępnymi jednocześnie, w [Ω],

UL – dopuszczalna długotrwale w danych warunkach środowiskowych wartość napięcia dotykowego, w [V],

l – długość przewodu ochronnego łączącego chronione urządzenie z GSU, w [m],

γ – konduktywność żyły przewodzącej, w [m/(Ω×mm2)].

Przekształcenia wzoru (15) pozwalają uzyskać wzór na wymagany przekrój przewodu ochronnego PE, łączącego chronione urządzenie z GSU:

b dobor mocy zrodel zasilania wz16

Wzór 16

w którym przepływający prąd zwarcia jednofazowego Ik1 spowoduje:

  • przy Ik1 ≥ Ia, samoczynne wyłączenie zasilania chronionego odbiornika,
  • przy Ik1 < Ia, pojawienie się napięcia dotykowego spełniającego warunek: UST ≤ UL.

Przyjęcie takiego sposobu rozwiązania ochrony przeciwporażeniowej gwarantuje jej zachowanie przy dowolnej wartości spodziewanego prądu zwarciowego.

Zasady projektowania ochrony przeciwporażeniowej przy zasilaniu z UPS

W zasilaczu UPS przy zwarciu na jego wyjściu automatyka przekształtnika powoduje ograniczenie prądu zwarciowego do wartości 2,5 In.

b dobor mocy zrodel zasilania rys13

Rys. 13. Napięcie dotykowe na obudowie uszkodzonego odbiornika przy zwarciu jednofazowym z ziemią, gdzie: Ik – prąd zwarciowy, RkG – rezystancja uzwojenia generatora, Xk1G – reaktancja generatora przyjmowana do obliczania zwarć jednofazowych, Rp – rezystancja przewodów zasilających odbiornik, Xp – reaktancja przewodów zasilających odbiornik, RPE – rezystancja przewodu ochronnego, XPE – reaktancja przewodu ochronnego, F – zabezpieczenie, GSU – główna szyna uziemiająca, RB – rezystancja uziemienia generatora zespołu prądotwórczego [źródło: N SEP-E 005 Dobór przewodów elektrycznych do zasilania urządzeń, których funkcjonowanie jest niezbędne w czasie pożaru]

Ograniczenie prądu zwarciowego do takiej wartości jest podyktowane koniecznością ochrony elementów aktywnych przekształtnika. Może jednak to skutkować ­niemożliwością samoczynnego wyłączenia w czasie wymaganym przez normę PN-HD 60364-4-41:2009 [5].

Należy jednak pamiętać, ze w tym przypadku zwarcie jednofazowe jest cyklicznie zasilane przez wszystkie trzy fazy wskutek działania automatyki przekształtnika. W takim przypadku zasadnym jest zabezpieczenie obwodów odbiorczych wyłącznikami różnicowoprądowymi o znamionowym prądzie różnicowym nie większym od 30 mA lub połączeniu chronionego odbiornika z GSU budynku przewodem PE o przekroju dobranym zgodnie ze wzorem (16).

W konsekwencji należy rozpatrywać dwa przypadki:

  • praca w warunkach normalnych, gdzie obowiązują opisane ograniczenia,
  • praca na byypasie, gdzie konieczna jest ocena samoczynnego ­wyłączenia na ogólnych zasadach (rys. 13.).

Literatura

  1. Rozporządzeniu Ministra Infrastruktury z 12 kwietnia 2002 roku w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. z 2015 roku poz.1422)
  2. Rozporządzeniu Ministra Łączności z 21 kwietnia 1995 roku w sprawie zasilania energią elektryczną obiektów budowlanych łączności (Dz. U. Nr 50/1995 poz. 271)
  3. Rozporządzenia Ministra Gospodarki z dnia 4 maja 2007 roku w sprawie szczegółowych warunków funkcjonowania systemu elektroenergetycznego (Dz. U. Nr 93/2007 poz. 623)
  4. PN – ISO 8528-5 Zespoły prądotwórcze napędzane silnikiem spalinowym tłokowym. Zespoły prądotwórcze.
  5. PN HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41. Ochrona dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym.
  6. N SEP-E 001 Sieci elektroenergetyczne niskiego napięcia. Ochrona przeciwporażeniowa.
  7. PN-EN 50160:2010 Parametry jakościowe napięcia w publicznych sieciach rozdzielczych.
  8. N SEP-E 005 Dobór przewodów elektrycznych do zasilania urządzeń, których funkcjonowanie jest niezbędne w czasie pożaru.
  9. DIN 14686:2010-05 Feuerwehrwesen-Schaltschränke für fest eingebaute Stromerzeuger (Generatorsätze) ≥ 12 kVA für den Einsatz Feuerwehrfahrzugen
  10. DIN 14686:2007-02 Feuerwehrwesen-Fest eingebaute Stromerzeugerkleiner 12 kVA für den Einsatz Feurewehrfahrzugen.
  11. DIN VDE 0100 Errichten von Niederspannungsanlagen - Teil 5-55: Auswahl und Errichtung elektrischer Betriebsmittel - Andere Betriebsmittel - Abschnitt 551: Niederspannungsstromerzeugungseinrichtungen - Anschluss von Stromerzeugungseinrichtungen für den Parallelbetrieb mit anderen Stromquellen einschließlich einem öffentlichen Stromverteilungsnetz.
  12. J. Wiatr; M. Orzechowski – Poradnik projektanta elektryka – DW Medium 2012 wydanie V
  13. J. Wiatr – Zespoły prądotwórcze w układach zasilania awaryjnego – DW Medium 2008
  14. R. Kacejko; J. Machowski – Zwarcia w systemach elektroenergetycznych – WNT 2001
  15. praca zbiorowa pod redakcją J. Wiatr – Poradnik Projektanta systemów zasilania awaryjnego i gwarantowanego – EATON POWER QUALITY 2008
  16. J. Wiatr; M. Miegoń – Zasilacze UPS i baterie akumulatorów w układach zasilania gwarantowanego – DW Medium 2008
  17. T. Sutkowski – Rezerwowe i bezprzerwowe zasilanie w energię elektryczną. Urządzenia i układy – COS i W SEP 2007
  18. L. Danielski; R. Zacirka – Badanie ochrony przeciwporażeniowej w obiektach z przemiennikami częstotliwości – elektro.info nr 12/2005
  19. E. Musiał – Ochrona przeciwporażeniowa w instalacjach zasilanych z zespołów prądotwórczych – inpe nr 170-171 listopad-grudzień 2013 r.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Najnowsze produkty i technologie

PHOENIX CONTACT Sp.z o.o. Efektywność prefabrykacji przewodów

Efektywność prefabrykacji przewodów Efektywność prefabrykacji przewodów

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo...

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo niewiele można zrobić, aby wpłynąć na te aspekty, dlatego coraz częściej w centrum uwagi znajduje się produkcja własna ze wszystkimi procesami i strukturami, a także ogólna struktura kosztów.

Zakłady Kablowe BITNER Sp. z o.o. Kompatybilność elektromagnetyczna na przykładzie kabli zasilających i sterowniczych przeznaczonych do pracy w urządzeniach kontrolnych i zabezpieczających oraz w obwodach sterowania

Kompatybilność elektromagnetyczna na przykładzie kabli zasilających i sterowniczych przeznaczonych do pracy w urządzeniach kontrolnych i zabezpieczających oraz w obwodach sterowania Kompatybilność elektromagnetyczna na przykładzie kabli zasilających i sterowniczych przeznaczonych do pracy w urządzeniach kontrolnych i zabezpieczających oraz w obwodach sterowania

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych...

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych w całość. Prawidłowe funkcjonowanie urządzeń może być zapewnione tylko i wyłącznie wtedy, gdy zakłócenia generowane przez otoczenie będą skutecznie blokowane. Generowane spodziewane zakłócenia elektromagnetyczne przez wyposażenie otaczające kable muszą zatem być w odpowiedni sposób odseparowane.

Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Jaki dysk zewnętrzny wybrać, robiąc backup danych? Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia...

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia kopii zapasowych. Czytaj dalej i dowiedz się, który z nich może odpowiadać Twoim potrzebom!

Renowa24.pl Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Dlaczego wybór okien dachowych jest ważny?

Dlaczego wybór okien dachowych jest ważny?

BayWa r.e. Solar Systems BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

BayWa r.e. Solar Systems otwiera magazyn w Gdańsku! BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie...

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie daje ponad 45 tys. m kw. powierzchni magazynowej BayWa r.e. Solar Systems w Polsce.

WAGO ELWAG Sp. z o.o. Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi...

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi – połączyć przewody o przekroju od 0,75 do 4 mm kw. Wystarczy po prostu odizolować końcówkę przewodu i bez użycia jakichkolwiek narzędzi wsunąć ją do złączki – i bezpieczne połączenie gotowe.

ASTAT Sp. z o.o. Modułowe filtry aktywne firmy Schaffner

Modułowe filtry aktywne firmy Schaffner Modułowe filtry aktywne firmy Schaffner

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej,...

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej, moc odbiorników czy budowa samej instalacji elektroenergetycznej. Dobór konkretnego rozwiązania powinien opierać się na analizie układu zasilającego zakład, reżimu pracy i zainstalowanych odbiorników. Bardzo ważnym punktem doboru jest wykonanie pomiarów Jakości Energii Elektrycznej i ich prawidłowa...

SIBA Polska Sp. z o.o. Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów...

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów zapewniających zasilanie całych zakładów. Jest zatem sprawą kluczową, aby systemy zasilania awaryjnego same działały bez zarzutu. Bezpieczniki produkowane przez firmę SIBA zabezpieczają urządzenia, które w przypadku awarii zasilania dostarczają energię kluczowym odbiorom.

IGE+XAO Polska Sp. z o.o. Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

SONEL S.A. Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV...

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV – pierwszy na świecie miernik przeznaczony do pomiarów impedancji pętli zwarcia w sieciach o napięciach dochodzących aż do 900 V AC, z kategorią pomiarową CAT IV 1000 V.

GROMTOR sp. z o.o. Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie...

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie zabezpieczać wszelkiego rodzaju obiekty, projektując i montując instalację odgromową zgodną z obowiązującymi przepisami.

Redakcja news Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami! Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa...

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa w nim wiosenna promocja, w której można wygrać supernagrody!

Solfinity sp. z o.o. sp.k. Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Inwertery hybrydowe: przyszłość zrównoważonej energetyki Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są...

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są przyszłością zrównoważonej energetyki.

CSI S.A Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210 Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel®...

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel® Celeron® N6210 o mocy 6,5 W.

Ewimar Sp. z o.o. Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Nowe ograniczniki przepięć do systemów automatyki i nie tylko Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Pewny Lokal Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków? Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych...

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych optymalizacja zużycia energii staje się priorytetem. Jednym z ważniejszych kroków prowadzących do obniżenia klasy energetycznej budynków jest wprowadzenie świadectwa energetycznego i nowoczesnych instalacji elektrycznych.

Fronius Polska Sp. z o.o. Fronius GEN24

Fronius GEN24 Fronius GEN24

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius...

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius GEN24.

Dominik Mamcarz, Ekspert ds. Techniczno-Rozwojowych w Alseva EPC CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem...

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem energii ze źródeł odnawialnych jest gromadzenie i przesyłanie wyprodukowanej energii elektrycznej. W tym kontekście technologia cable pooling zyskuje na znaczeniu, umożliwiając zoptymalizowane zarządzanie przesyłem energii elektrycznej ze źródeł OZE.

leroymerlin.pl Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz,...

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz, mają różne rozmiary, dzięki czemu można je dopasować do praktycznie każdego rodzaju lamp, są energooszczędne, a to tylko kilka z wielu ich zalet. Na co zwracać uwagę przy zakupie tego rodzaju żarówek i jak dopasować ich parametry do swoich potrzeb?

Bankier.pl Które produkty bankowe przydają się podczas remontu?

Które produkty bankowe przydają się podczas remontu? Które produkty bankowe przydają się podczas remontu?

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić...

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić niektóre produkty bankowe. O których z nich mowa? Tego lepiej dowiedzieć się jeszcze przed rozpoczęciem prac budowalnych.

NNV Sp z o.o. Czy fotowoltaika podnosi wartość nieruchomości?

Czy fotowoltaika podnosi wartość nieruchomości? Czy fotowoltaika podnosi wartość nieruchomości?

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest...

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest to ekologiczne źródło energii. Montaż paneli fotowoltaicznych na działce lub dachu domu ma jeszcze jedną zaletę – w przypadku sprzedaży nieruchomości podnosi jej wartość.

APATOR SA Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego...

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego producenta dla krajowych Operatorów Sieci Dystrybucji, którzy poszukują skutecznych rozwiązań technicznych do bilansowania sieci oraz redukcji nadmiernych obciążeń w szczytach produkcji energii z odnawialnych źródeł.

Finder Polska Sp. z o.o. Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni...

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni z tradycyjnego domu budynku pasywnego. Niewątpliwie jednak należy pamiętać, że elementy automatyki budynkowej są składową pasywnych budowli i nawet zwykłe mieszkanie potrafią uczynić bardziej oszczędnym i ekologicznym.

Brother Polska Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Drukarki etykiet dla elektryków i elektroinstalatorów Brother Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch...

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch E550WVP to przenośne i szybkie urządzenia, które oferują specjalne funkcje do druku najpopularniejszych typów etykiet. Urządzenia pozwalają na szybkie i bezproblemowe drukowanie oznaczeń kabli, przewodów, gniazdek elektrycznych, przełączników oraz paneli krosowniczych.

PHOENIX CONTACT Sp.z o.o. Modularny system drukujący – Thermomark E series

Modularny system drukujący – Thermomark E series Modularny system drukujący – Thermomark E series

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym...

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym cyklu roboczym. Rozwiązanie to umożliwia proste i bardzo wydajne oznaczanie przemysłowe, dzięki czemu efektywność naszej produkcji może wzrosnąć diametralnie.

PHOENIX CONTACT Sp.z o.o. Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych....

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych. Dodatkowo w różnych materiałach marketingowych również można znaleźć nie zawsze pełne informacje na temat wymagań stawianych SPD, co nie pomaga w właściwym doborze odpowiedniego modelu do aplikacji. W tym artykule postaramy się przybliżyć najważniejsze zagadnienia, które pozwolą dobrać bezpieczne ograniczniki...

F&F Pabianice MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa...

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa wykazują dużą determinację do zmian prowadzących do optymalizacji kosztów, co zapewnić ma im zachowanie przewagi konkurencyjnej, wynikającej np. z przyjętej strategii przewagi kosztowej.

Grupa Pracuj S.A. W jakich zawodach niezwykle ważna jest odporność na stres?

W jakich zawodach niezwykle ważna jest odporność na stres? W jakich zawodach niezwykle ważna jest odporność na stres?

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest...

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest wtedy odporność psychiczna osoby zatrudnionej na danym stanowisku. To cecha, jaką doceni wielu pracodawców. Dowiedzmy się więc, w jakich kategoriach zawodowych jest ona szczególnie istotna i jak może wpłynąć na Twoją karierę!

BayWa r.e. Solar Systems SMA – pełne portfolio dla rynku PV

SMA – pełne portfolio dla rynku PV SMA – pełne portfolio dla rynku PV

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

CADMATIC CADMATIC Electrical

CADMATIC Electrical CADMATIC Electrical

CADMATIC Electrical to najbardziej wszechstronne, dostępne na rynku oprogramowanie przeznaczone dla projektantów elektryków, dzięki któremu możemy w kompleksowy sposób zaprojektować instalację elektryczną...

CADMATIC Electrical to najbardziej wszechstronne, dostępne na rynku oprogramowanie przeznaczone dla projektantów elektryków, dzięki któremu możemy w kompleksowy sposób zaprojektować instalację elektryczną w budynku. Rozwiązanie automatyzuje i usprawnia proces projektowania, zapewniając integralność danych i stworzenie wysokiej jakości rezultatów i raportów na wszystkich etapach projektowania.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.