Pełny numer elektro.info 7-8/2017 tylko dla Ciebie [PDF]

wystarczy założyć konto w portalu elektro.info.pl

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru (cz. 2)

mgr inż. Julian Wiatr  |  elektro.info 11/2017  |  13.12.2017  |  1
Artykuł wyjaśnia nieprzydatność wyłączników różnicowoprądowych w instalacjach przeciwpożarowych. M. in. porusza też problemy związane z projektowaniem ochrony przeciwporażeniowej w instalacjach elektrycznych zasilanych z generatora zespołu prądotwórczego.
Artykuł wyjaśnia nieprzydatność wyłączników różnicowoprądowych w instalacjach przeciwpożarowych. M. in. porusza też problemy związane z projektowaniem ochrony przeciwporażeniowej w instalacjach elektrycznych zasilanych z generatora zespołu prądotwórczego.
Rys. redakcja EI

W drugiej części artykułu wyjaśniona zostanie nieprzydatność wyłączników różnicowoprądowych w instalacjach przeciwpożarowych. Poruszono problemy związane z projektowaniem ochrony przeciwporażeniowej w instalacjach elektrycznych zasilanych z generatora zespołu prądotwórczego oraz wymagania dotyczące doboru i eksploatacji baterii akumulatorów. Sczególna uwaga zostanie zwrócona na zgorożenie wybuchowe stwarzane przez wodór wydzielający się z akumulatorów oraz metodykę neutralizacji tych zagrożeń.

W artykule:

• Rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego
• Rezystancja wewnętrzna akumulatora
• Przykład obliczeniowy

Zakaz stosowania wyłączników różnicowoprądowych w instalacjach bezpieczeństwa, zawarowany w normie [13], wyjaśnia analiza rys. 1., na którym została przedstawiona uproszczona budowa wyłącznika różnicowoprądowego.

Rys. 1. Uproszczona budowa wyłącznika różnicowoprądowego, zainstalowanego w układzie zasilania TT, gdzie: IL1; IL2; IL3 – prądy w przewodach fazowych, IN – prąd w przewodzie neutralnym, IΔn – znamionowy prąd różnicowy [28]
Rys. 1. Uproszczona budowa wyłącznika różnicowoprądowego, zainstalowanego w układzie zasilania TT, gdzie: IL1; IL2; IL3 – prądy w przewodach fazowych, IN – prąd w przewodzie neutralnym, IΔn – znamionowy prąd różnicowy; J. Wiatr, A. Boczkowski, M. Orzechowski – Ochrona przeciwporażeniowa oraz dobór przewodów i ich zabezpieczeń w instalacjach elektrycznych niskiego napięcia – DW MEDIUM Warszawa 2010 - wydanie I

Pod działaniem temperatury pożaru (krzywe pożarowe zostały opisane w I części artykułu opublikowanego w nr. 10/2017) degradacji ulega izolacja przewodów skutkując zwiększonymi prądami upływu doziemnego, które mogą prowadzić do niekontrolowanego działania wyłączników różnicowoprądowych, prowadząc do pozbawienia funkcji zasilanych urządzeń. Zjawisko to powoduje, że wyłącznik różnicowoprądowy nie nadaje się do stosowania w obwodach zasilających urządzenia przeciwpożarowe, których funkcjonowanie jest niezbędne w czasie pożaru. Nie stosuje się tego typu zabezpieczeń również w innych obwodach bezpieczeństwa z uwagi na wymaganą niezawodność.

Przewody w instalacjach przeciwpożarowych należy dobierać zgodnie z wymaganiami norm przedmiotowych w korelacji z wymaganiami normy [13].

W instalacjach elektrycznych poważnym problemem jest zachowanie ochrony przeciwporażeniowej przy zasilaniu z generatora zespołu prądotwórczego, gdzie impedancja źródła ulega zmianie wraz z upływem czasu trwania zwarcia.

Rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego

W chwili wystąpienia zwarcia ulega zmianie rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego, którego przebieg wraz z upływem czasu przedstawia rys. 2.

Rys. 2. Przebieg wypychanego poza wirnik strumienia stojana: a) stan podprzejściowy, b) stan przejściowy, c) stan ustalony
Rys. 2. Przebieg wypychanego poza wirnik strumienia stojana: a) stan podprzejściowy, b) stan przejściowy, c) stan ustalony

W początkowej fazie zwarcia, nazywanej stanem podprzejściowym, wskutek działania klatki tłumiącej strumień główny wytwarzany przez prądy płynące w uzwojeniu stojana jest wypychany poza wirnik (rys. 2a).

W stanie tym reaktancja generatora charakteryzuje się małą wartością, wynoszącą przeciętnie (10–15)% znamionowej wartości reaktancji generatora. Stan ten trwa bardzo krótko ze względu na małą wartość elektromagnetycznej stałej czasowej „T” obwodu zwarcia, wynoszącej dla generatorów nn średnio 0,01 s.

Działanie klatki tłumiącej ze względu na małą wartość jej rezystancji szybko ustaje, co skutkuje powolnym wchodzeniem strumienia głównego w wirnik. Stan ten, nazywany stanem przejściowym (rys. 2b), charakteryzuje wzrost reaktancji generatora, która dla generatorów nn wynosi średnio (30–40)% wartości reaktancji znamionowej generatora.

Generator w krótkim czasie przechodzi w stan ustalony zwarcia, co objawia się dalszym wzrostem reaktancji obwodu zwarciowego. W stanie ustalonym zwarcia strumień główny oraz strumień wzbudzenia zamykają się przez wirnik generatora (rys. 2c).

Ponieważ kierunki tych strumieni są przeciwne, strumień wypadkowy ulega zmniejszeniu. Zjawisko to prowadzi do gwałtownego wzrostu reaktancji generatora, która dla generatorów nn wynosi (200–300)% wartości reaktancji znamionowej generatora.

W celu porównania zachowania się transformatora i generatora w czasie zwarcia, na rys. 3. przedstawiono przebieg strumienia magnetycznego w transformatorze dwuuzwojeniowym w różnych stanach pracy.

Rys. 3. Przebieg drogi strumienia magnetycznego w transformatorze dwuuzwojeniowym w różnych stanach jego pracy
Rys. 3. Przebieg drogi strumienia magnetycznego w transformatorze dwuuzwojeniowym w różnych stanach jego pracy

Z rysunku tego wynika, że droga strumienia magnetycznego nie ulega zmianie, przez co parametry zwarciowe transformatora praktycznie pozostają niezmienione w czasie zwarcia.

W zespołach prądotwórczych konstruowanych obecnie, instalowany jest regulator prądu wzbudzenia wyposażony w układ forsowania, który pozwala podczas zwarcia na utrzymanie określonej wartości reaktancji generatora. Wartość ta charakteryzowana jest krotnością prądu znamionowego generatora, utrzymywaną przez czas nie dłuższy niż 10 s (najczęściej: 3·InG).

Ograniczenie czasowe utrzymywania określonej wartości reaktancji generatora podczas zwarcia wynika z warunku wytrzymałości izolacji uzwojeń generatora. Wydłużenie tego czasu może skutkować zniszczeniem izolacji uzwojeń generatora. Unormowany przebieg zmienności impedancji generatora podczas zwarć oraz zmienność prądów zwarciowych przedstawia rys. 4.

Rys. 4. Unormowany przebieg zmienności impedancji generatora zespołu prądotwórczego podczas zwarć oraz zmienności prądu zwarciowego
Rys. 4. Unormowany przebieg zmienności impedancji generatora zespołu prądotwórczego podczas zwarć oraz zmienności prądu zwarciowego

Zjawisko to powoduje, że pomimo działania układu automatyki forsowania wzbudzenia, impedancja generatora zespołu prądotwórczego jest znacznie większa od impedancji transformatora elektroenergetycznego o takiej samej mocy jak moc zespołu prądotwórczego przyłączonego do Systemu Elektroenergetycznego. Ponieważ impedancja transformatora oraz impedancja generatora zespołu prądotwórczego w czasie działania automatyki forsowania wzbudzenia wyraża się następującymi wzorami:

stosunek parametrów zwarciowych tych źródeł przy jednakowych mocach, wyniesie:

Rys. 5. Porównanie mocy zwarciowych SEE i zespołu prądotwórczego
Rys. 5. Porównanie mocy zwarciowych SEE i zespołu prądotwórczego

gdzie:

ZT – impedancja transformatora, w [Ω],
Zk1G – impedancja generatora zespołu prądotwórczego w czasie funkcjonowania automatyki forsowania wzbudzenia, w [Ω],
n – krotność prądu znamionowego generatora zespołu prądotwórczego podczas zwarć na zaciskach generatora, podawana przez producenta zespołów w DTR, w [-],
UnT – napięcie nominalne transformatora, w [kV],
UnG – napięcie nominalne generatora zespołu prądotwórczego, w [kV],
SnT – znamionowa moc pozorna transformatora, w [MVA],
SnG – znamionowa moc pozorna generatora zespołu prądotwórczego, w [MVA],
xk
– napięcie zwarcia transformatora
dla S ≤ 400 kVA ⇒ xk = 0,045;
dla S ≥ 500 kVA ⇒ xk = 0,06.

Po ustaniu działania automatyki forsowania wzbudzenia generatora, stosunek impedancji tych źródeł wyniesie odpowiednio: 22 lub 16,7.

Przy takich warunkach zasilania może się okazać, że ochrona przeciwporażeniowa przez samoczynne wyłączenie przy zasilaniu z generatora zespołu prądotwórczego w warunkach pożaru jest nieskuteczna. Przyczyną tego stanu jest ograniczona wartość mocy zwarciowej generatora zespołu prądotwórczego:

w stosunku do mocy Systemu Elektroenenergetycznego (SEE), szacowanej w przybliżeniu jako „nieskończona”, co symbolicznie zostało przedstawione na rys. 5.

W tab. 1. podano moce zwarciowe wybranych zespołów prądotworczych nn.

Tab. 1. Moce zwarciowe wybranych zespołów prądotwórczych nn
Tab. 1. Moce zwarciowe wybranych zespołów prądotwórczych nn

W takim przypadku pomocne może być zastosowanie sterowania wartością spodziewanego napięcia dotykowego UST, tak by jego wartość nie przekraczała wartości napięcia dotykowego dopuszczalnego długotrwale UL.

Postępowanie takie jest zgodne z normą [13], a sposób realizacji tego zalecenia (przy uproszczonym założeniu: ZPE ≈ RPE) wyjaśnia rys. 6.

Rys. 6. Metodyka wyznaczania przekroju przewodu ochronnego SPE łączącego chronione urządzenie z GSU, dla spełnienia warunku UST ≤ UL, gdzie: UST – spodziewana wartość napięcia dotykowego; SPE – minimalny przekrój przewodu ochronnego, gwarantujący spełnienie warunku UST ≤ UL, kp – współczynnik korekcyjny, którego sposób wyznaczenia określa norma [13], l – długość przewodu łączącego odbiornik z GSU, Ia – prąd wyłączający zabezpieczenie w czasie wymaganym przez normę [15], RPE – rezystancja przewodu ochronnego, γ – konduktywność przewodu ochronnego łączącego chroniony odbiornik z GSU; źródło: N SEP-E 005 Dobór przewodów elektrycznych do zasilania urządzeń, których funkcjonowanie jest niezbędne w czasie pożaru.
Rys. 6. Metodyka wyznaczania przekroju przewodu ochronnego SPE łączącego chronione urządzenie z GSU, dla spełnienia warunku UST ≤ UL, gdzie: UST – spodziewana wartość napięcia dotykowego; SPE – minimalny przekrój przewodu ochronnego, gwarantujący spełnienie warunku UST ≤ UL, kp – współczynnik korekcyjny, którego sposób wyznaczenia określa norma [13], l – długość przewodu łączącego odbiornik z GSU, Ia – prąd wyłączający zabezpieczenie w czasie wymaganym przez normę [15], RPE – rezystancja przewodu ochronnego, γ – konduktywność przewodu ochronnego łączącego chroniony odbiornik z GSU; źródło: N SEP-E 005 Dobór przewodów elektrycznych do zasilania urządzeń, których funkcjonowanie jest niezbędne w czasie pożaru.

Dokładna analiza rys. 6. oraz zamieszczonych przy nim wzorów, prowadzi do oceny dwóch przypadków:

a) jeżeli Ik < Ia – czy spodziewane napięcie dotykowe UST, jakie powstanie na częściach przewodzących dostępnych chronionego urządzenia, w warunkach zakłóconych, nie przekroczy napięcia dotykowego dopuszczalnego długotrwale UL,

b) jeżeli Ik  ≥ Ia – czy nastąpi samoczynne wyłączenie zasilania w czasie nie dłuższym od określonego w normie PN-HD 60364-4-41:2009 [15].

Przyjęcie takiego sposobu rozwiązania ochrony przeciwporażeniowej gwarantuje jej zachowanie przy dowolnej wartości spodziewanego prądu zwarciowego Ik.

(...)

 

Literatura

1. Ustawa o ochronie przeciwpożarowej [tekst jednolity: Dz. U. z 2017 roku poz. 736]
2.Rozporządzeniu Ministra Infrastruktury z 12 kwietnia 2002 roku w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie [Dz. U. z 2015 roku poz.1422].
3. Rozporządzenie Ministra Łączności z 21 kwietnia 1995 roku w sprawie zasilania energią elektryczną obiektów budowlanych łączności [Dz. U. Nr 50/1995 poz. 271].
4. Rozporządzeniu Ministra Spraw Wewnętrznych i Administracji z dnia 20 czerwca 2007 r. w sprawie wykazu wyrobów służących zapewnieniu bezpieczeństwa publicznego lub ochronie zdrowia i życia oraz mienia, a także zasad wydawania dopuszczenia tych wyrobów do użytkowania [Dz. U. 2007 nr 143 poz. 1002 z późniejszymi zmianami].
5. Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010, w sprawie ochrony przeciwpożarowej budynków innych obiektów i terenów [Dz. U. Nr 109/2010 poz. 719].
6. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 17 listopada 2016 roku, w sprawie sposobu deklarowania właściwości użytkowych wyrobów budowlanych oraz sposobu znakowania ich znakiem budowlanym Dz. U. z 2016 roku poz. 1966].
7. Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z 24 lipca 2009 roku w sprawie przeciwpożarowego zaopatrzenia w wodę oraz dróg pożarowych
[Dz. U. Nr 124/2009 poz. 1030].
8. PN-EN 12101-10:2007 Systemy kontroli rozprzestrzeniania się dymu i ciepła – część 10: Zasilanie.
9. PN-IEC 60364-5-56:1999 Instalacje elektryczne w obiektach budowlanych. Dobór i montaż wyposażenia elektrycznego. Instalacje bezpieczeństwa.
10. PN-HD 60364-5-56:2013 Instalacje elektryczne w obiektach budowlanych. Dobór i montaż wyposażenia elektrycznego. Instalacje bezpieczeństwa.
11. PN-EN 54-4: 2002 Systemy sygnalizacji pożarowej. Część 4: Zasilacze.
12. PN-EN 12101-10: 2007 Systemy kontroli rozprzestrzeniania dymu i ciepła. Część 10: Zasilacze.
13. N SEP-E 005 Dobór przewodów elektrycznych do zasilania urządzeń, których funkcjonowanie jest niezbędne w czasie pożaru.
14. PN-EN 1363-2:2001 Badanie odporności ogniowej. Część 2: Procedury alternatywne i dodatkowe.
15. PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41. Instalacje dla zapewnia bezpieczeństwa Ochrona przed porażeniem elektrycznym.
16. PN-EN 50160;2010 Parametry jakościowe napięcia w publicznych sieciach rozdzielczych.
17. ISO8528-5 Zespoły prądotwórcze prądu przemiennego napędzane silnikiem spalinowym tłokowym. Zespoły prądotwórcze.
18. PN-EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1. Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych.
19. PN-EN 60896-21: 2007 Baterie ołowiowe stacjonarne. Część 21.: Typy wyposażone w zawory. Metody badań.|
20. PN-EN 60896-11:2007 Baterie ołowiowe stacjonarne. Część 11. Ogólne wymagania i metody badań.
21. M. T. Sarniak - Budowa i eksploatacja systemów fotowoltaicznych – Grupa Medium Warszawa 2015 – wydanie I
22. J. Wiatr; M. Orzechowski – Przeciwpożarowy wyłącznik prądu. Mity a rzeczywistość: elektro.info nr 1-2/2017 –cz. 1; elektro.info nr 3/2017 – cz. -2.
23. R. Lenartowicz, J. Fangrat –Instalacje zasilające urządzenia bezpieczeństwa pożarowego – ITB Warszawa 2016
24. J. Wiatr; M. Orzechowski – Instalacje elektryczne do zasilania urządzeń elektrycznych, których funkcjonowanie jest niezbędne w czasie pożaru – Grupa Medium 2016 – wydanie I.
25. Z. Łęgosz – Potrzeby własne w elektroenergetyce - OPBEE – materiał konferencyjne, Szklarska Poręba 11-13 grudnia 2011
26. Poradnik projektanta Systemów Sygnalizacji Pożaru – cz. II – SITP Warszawa 2009
27. J. Wiatr, M. Orzechowski – Poradnik Projektanta Elektryka – Grupa Medium Warszawa 2012, wydanie V
28. J. Wiatr, A. Boczkowski, M. Orzechowski – Ochrona przeciwporażeniowa oraz dobór przewodów i ich zabezpieczeń w instalacjach elektrycznych niskiego napięcia – DW MEDIUM Warszawa 2010 - wydanie I
29. J. Wiatr – Podstawy projektowania przydomowych elektrowni fotowoltaicznych – Grupa Medium 2017 – wydanie I.
30. T. Sutkowski – Rezerwowe i bezprzerwowe zasilanie w energię elektryczną. Urządzenia i układy. – COSiW SEP 2007
31. P. Tofiło – konspekt do wykładu dla studentów SGSP – r. a. 2012/2013
32. www.fizyka.wip.pcz.pl – 16.07.2017
33. www.aval.com.pl -19.07.2017
34. Karta katalogowa akumulatora EPL 210-12 – www.aval.com.pl - 28.07.2017

Czytaj też: Skutki patologiczne u porażonego w pierwszych chwilach zdarzenia >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Ten artykuł jest PŁATNY. Aby go przeczytać, wykup dostęp.
DOSTĘP ABONAMENTOWY
DOSTĘP SMS
Dostęp za pomocą SMS czasowo zawieszony







Reklamacje usługi prosimy zgłaszać przez formularz reklamacyjny
Masz już abonament - zaloguj się:
:
:
zapomniałem hasła
Nie posiadasz konta - kliknij i załóż »
Nie masz abonamentu - wykup dostęp:
Abonament umożliwia zalogowanym użytkownikom dostęp do wszystkich płatnych treści na naszym portalu.
Dostępne opcje abonamentowe:
Pakiet: dwuletnia prenumerata papierowa (20 numerów) + dwuletni dostęp do wszystkich treści portalu (730 dni) - 185,00 zł
Prenumerata + on-line w promocyjnej cenie. ► ZAMÓW
Pakiet: roczna prenumerata papierowa (10 numerów) + roczny dostęp do wszystkich treści portalu (365 dni) - 105,00 zł
Prenumerata + on-line w promocyjnej cenie. ► ZAMÓW
Pakiet: półroczna prenumerata papierowa (5 numerów) + półroczny dostęp do wszystkich treści portalu (183 dni) - 75,00 zł
Prenumerata + on-line w promocyjnej cenie. ► ZAMÓW
Prenumerata elektroniczna (365 dni) - 79,00 zł
Roczny dostęp do wszystkich płatnych treści naszego portalu.
Prenumerata elektroniczna (30 dni) - 15,00 zł
30 dniowy dostęp do wszystkich płatnych treści naszego portalu.
Prenumerata edukacyjna - roczna elektro.info - 75,00 zł
dla studentów: prenumerata + dostęp do treści portalu
Roczny dostęp dla prenumeratorów w specjalnej cenie - 0,00 zł
Jeśli zakupiłeś roczną prenumeratę papierową, masz możliwość skorzystania z bezpłatnego dostępu do wszystkich treści elektronicznych. Po weryfikacji danych skontaktujemy się z Tobą). Dostęp na czas trwania prenumeraty papierowej!
Dwuletni dostęp dla prenumeratorów w specjalnej cenie! - 0,00 zł
Jeśli zakupiłeś dwuletnią prenumeratę papierową, masz możliwość skorzystania z bezpłatnego dostępu do wszystkich treści elektronicznych. Po weryfikacji danych skontaktujemy się z Tobą). Dostęp na czas trwania prenumeraty papierowej!
30 dniowy dla prenumeratorów w specjalnej cenie - 0,00 zł
Jeśli zakupiłeś roczną prenumeratę papierową, masz możliwość skorzystania z bezpłatnego dostępu do wszystkich treści elektronicznych. Po weryfikacji danych skontaktujemy się z Tobą). Dostęp na czas trwania prenumeraty papierowej!
Prenumerata elektroniczna (730 dni) - 138,00 zł
Dwuletni dostęp do wszystkich płatnych treści naszego portalu.
Regulamin korzystania z portalu elektro.info.pl - zobacz regulamin
Uwagi prosimy zgłaszać na adres:
Artykuł pochodzi z: miesięcznika elektro.info 11/2017

Komentarze

(1)
IrenkaW | 01.03.2018, 12:12
Bardzo przydatne informacje
   1 / 1   

Wybrane dla Ciebie


Gdzie szukać pomocy przy doborze właściwego źródła zasilania »

Dobór źródła zasilania

Optymalne rozwiązania na każdym etapie, zarówno dystrybucji, jak i tworzenia dedykowanych pakietów zasilania. Wszystko po to, aby zapewnić jak najwyższą jakość ... czytam dalej »

 


Jak zmniejszyć swój rachunek za prąd »

koszt prądu

Oszczędzanie na rachunkach za prąd w domu lub firmie jest możliwe. Wystarczy dokładnie sprawdzić (...) zobacz ile możesz oszczędzić »

 


Jednoobwodowy licznik energii - jaki wybrać?»

Zobacz co nowego poznamy na targach Energetab 2019 »

Licznik energii jaki wybrać Energetab 2019 logo
Zasilacze awaryjne trzeciej generacji z bardzo wysoką sprawnością 96% w trybie On-Line oraz ze znakomitym współczynnikiem mocy 1(...) czytam więcej » ENERGETAB – największe w Polsce targi nowoczesnych urządzeń, aparatury i technologii dla przemysłu energetycznego, to miejsce jednych z najważniejszych spotkań czołowych przedstawicieli branży elektrotechnicznej w Polsce.(...) czytam dalej »

 


Łączniki i gniazda instalacyjne - jakie wybrać?

Kamery termowizyjne Perfekcyjne dopełnienie nowoczesnego wnętrza.
Prosta, ponadczasowa forma, jakość wykonania, niezawodny system, to tylko niektóre (...)
czytam dalej »


Automatyka przemysłowa i sterowanie - na jakie produkty zwrócić uwagę »

Przewodnik po złączach - znajdż idealne rozwiązanie dla siebie »

automatyka przemysłowa Przewodnik po złączach
Jak sztuczna inteligencja wspomoże pracę elektrowni i fabryk? Aż 63 proc. respondentów twierdzi, że sztuczna inteligencja pomoże zwalczyć (...) czytam więcej » Poznaj pierwszy w branży przewodnik elektroniczny po złączach. Internetowe narzędzie referencyjne ułatwiające dobór złączy. (...) chcę zobaczyć »

 


Oznaczniki mobilne na przewody i osprzęt - które wybrać »

Kamery termowizyjne Technika laminowania taśm, zapewnia trwałe nadruki poprzez całkowitą ochronę tekstu przed czynnikami niszczącymi, takimi jak: zdrapywanie, ścieranie, zmywanie, promieniowanie UV a nawet substancj (...) czytam dalej »

 


Dobór ograniczników przepięć typu 1 »

Bezpanelowe pozyskiwanie energii słonecznej - jak to zrobić?

ograniczniki bezpanelowa energia słoneczna
Kombinowane ograniczniki przepięć jako urządzenia do ograniczania przepięć mają za zadanie zmniejszenie do bezpiecznych poziomów napięcia w instalacji elektrycznej oraz na wejściu zasilanych urządzeń: podczas operacji łączeniowych ń (...) czytam więcej » Innowacje i technologia przeszły długą drogę. Rzeczywiście wkroczyliśmy w nową generację nowoczesnych udogodnień, które nie tylko sprawiają, że nasz styl życia jest bardziej luksusowy i komfortowy, ale... czytam dalej »

Szybki i łatwy sposób na budowę Twojego indywidualnego systemu wizyjnego»

zasilanie gwarantowane Badania przeprowadzone przez Computer Business Review wykazały, że od 2013 roku mamy do czynienia z dynamicznym wzrostem przenoszenia przez przedsiębiorców zasobów danych do tzw. chmury obliczeniowej (cloud computing). W związku z tym stale wzrastają wydatki przeznaczan ... czytam dalej »


Bramka IoT chmury do integracji nowych i istniejących systemów bez konieczności programowania.»

Zobacz jak robot testuje bankomaty?

bramka iot Robot testuje bankomaty
Dzięki prostemu połączeniu z procesem za pomocą protokołów, np. Modbus/TCP, dane czujników i dane procesowe są zbierane, przetwarzane i monitorowane ... czytam więcej » Około 30 sekund zajmuje średnio wypłacenie pieniędzy z wielofunkcyjnego bankomatu ATM. Urządzenia, które są dostępne „za rogiem” w większości miast, zmieniły nasze podejście ... czytam dalej »

Jaką zastosować ochronę urządzeń elektrycznych i elektronicznych przed przepięciami »

ochrona przed przepięciami Każdy ogranicznik przepięć ma pewną określoną zdolność do przenoszenia przez siebie pewnej energii udaru. Jeśli po zadziałaniu ... czytam dalej »


Złącza silnoprądowe - czy silikon sobie poradzi?

Złącza silnopradowe Czy możemy zastosować elastyczne przewody silikonowe i czy są one odporne na uszkodzenie i wysokie temperatury? Przykładowo dla przekroju kabla 240 mm2 ... chcę obejrzeć »


Może Cię to zainteresuje ▼

Wyświetlacz cyfrowy - jaki wybrać?

Przewdonik "Eliminuj błędy
i usprawnij instalacje przewodów" »

wyświetlacze cyfrowe kable i przewody - przewodnik
Współpracujący z dowolnym nadajnikiem sygnału w standardzie 4-20 mA. Urządzenia nie wymagające dodatkowego zasilania. Do obszaru zastosowań ... czytam więcej » Poznaj najskuteczniejsze sposoby oznaczania kabli i komponentów wykorzystywanych w branżach elektrycznych i telekomunikacyjnych... czytam dalej »


Transformatory oraz dławiki dostosowane do indywidualnych wymagań »

transformatory ei Mają zastosowanie w sieciach przesyłowych i rozdzielczych. Stosowane są do zasilania układów trakcyjnych w pojazdach szynowych, w instalacjach wykorzystujących napędy (...) czytam dalej »


1-fazowe liczniki energii elektrycznej - widziałeś to?!

Switch zarządzalny – czy warto? Jaki wybrać?

Liczniki energii jakie wybrać Switche niezarządzalne
Wymagania stawiane licznikom energii elektrycznej zawarte są w normach oraz przepisach (...) czytam dalej » Switch zarządzalny daje możliwość nie tylko stworzenia siecilokalnej, ale daje wiele innicf możliwości. Między innymi pozwala także dostosować porty, a więc i parametry sieci do... czytam dalej »

Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników naszego portalu... dowiedz się więcej »
9/2019

AKTUALNY NUMER:

elektro.info 9/2019
W miesięczniku m.in.:
  • - Metody badania funkcji zabezpieczeń nadprądowych przekaźników elektroenergetycznych
  • - Fotowoltaika szansą rozwoju dla komunikacji miejskiej
Zobacz szczegóły

SEP świętuje 100 lat!

Jak co roku targom ENERGETAB towarzyszą konferencje organizowane przez izby i stowarzyszenia patronujące. Z okazji obchodzonego w tym roku 100-lecia Stowarzyszenia Elektryków Polskich...

Przekaźnik instalacyjny o wysokiej odporności na prąd udarowy

RPI-1ZI-U24A firmy Relpol, to nowy przekaźnik instalacyjny, który wytrzymuje prąd załączania 120 A w czasie 20 ms. Przekaźnik ten przeznaczony jest do załączania obwodów o wysokim...
.steute Polska .steute Polska
steute jest międzynarodowym przedsiębiorstwem specjalizującym się w projektowaniu oraz produkcji bezpiecznej, niezawodnej aparatury...

Ciekawe strony

Elektryk na Fixly.pl

EPS System - agregaty prądotwórcze

Producent oświetlenia

Ciekawa Architektura

Instalacje

Literatura fachowa

Rekuperacja

Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl