Pełny numer elektro.info 7-8/2017 tylko dla Ciebie [PDF]

wystarczy założyć konto w portalu elektro.info.pl

Zasilanie budynków w energię elektryczną w warunkach normalnych a zasilanie w warunkach pożaru

Artykuł dotyczy problematyki stosowania źródeł zasilania w warunkach normalnych oraz ich adaptacji do zasilania budynku w warunkach pożaru. Porusza też problematykę ochrony przeciwporażeniowej dopuszczonej do stosowania w instalacjach przeciwpożarowych.
Artykuł dotyczy problematyki stosowania źródeł zasilania w warunkach normalnych oraz ich adaptacji do zasilania budynku w warunkach pożaru. Porusza też problematykę ochrony przeciwporażeniowej dopuszczonej do stosowania w instalacjach przeciwpożarowych.
Rys. redakcja EI

Przy projektowaniu układów zasilania budynków pojawia się szereg wątpliwości wynikających z oczekiwanego poziomu niezawodności dostaw energii elektrycznej.

W artykule:

• Przedstawienie problematyki ochrony przeciwporażeniowej zawartej w przepisach budowlanych zawierających wymogi jakie muszą spełniać instalacje przeciwpożarowe
• Omówienie modelowej (zgodnej z przepisami budowlanymi) koncepcji układu zasilania dla dowolnego budynku
• Opisy stosowanych rozwiązań uzupełnione o wzory obliczeniowe i rysunki poglądowe

Brak wytycznych w tym zakresie często prowadzi do błędnego rozumienia tego problemu przez inwestora oraz projektanta. Natomiast wymagania dotyczące ochrony ppoż. wymagają przystosowania budynku eksploatowanego w warunkach normalnych do zasilania pożarowego, gdzie warunki środowiskowe znacznie różnią się od warunków normalnych. W tym przypadku pewność zasilania urządzeń przeciwpożarowych musi być wysoka, gdyż od nich zależy bezpieczeństwo ewakuacji.

W artykule zostały przedstawione zagadnienia związane ze stosowaniem źródeł zasilania w warunkach normalnych oraz ich adaptacją do zasilania budynku w warunkach pożaru. Poruszona została również problematyka ochrony przeciwporażeniowej dopuszczonej do stosowania w instalacjach przeciwpożarowych oraz zagrożeń stwarzanych przez akumulatory stosowane jako źródła zasilania rezerwowego z uwagi na ważność tych zagadnień w ogólnym rozumieniu bezpieczeństwa.

Pominięta została problematyka doboru przewodów, której zostanie poświęcony osobny artykuł.

Wymagania dotyczące zasilania budynków zostały sprecyzowane w Rozporządzeniu Ministra Infrastruktury z 12 kwietnia 2002 roku w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2015 roku, poz. 1422) [2].

Zgodnie z § 181 pkt 1 Rozporządzenia [2]: Budynek, w którym zanik napięcia w elektroenergetycznej sieci zasilającej może spowodować zagrożenie życia lub zdrowia ludzi, poważne zagrożenie środowiska, a także znaczne straty materialne, należy zasilać co najmniej z dwóch niezależnych, samoczynnie załączających się źródeł energii elektrycznej oraz wyposażyć w samoczynnie załączające się oświetlenie awaryjne (zapasowe lub ewakuacyjne). W budynku wysokościowym jednym ze źródeł zasilania powinien być zespół prądotwórczy.

Są to bardzo ogólne wymagania, które nie precyzują wymagań w zakresie niezawodności zasilania oraz metodyki projektowania układów zasilania.

W odniesieniu do innych obiektów budowlanych, obowiązujące przepisy techniczno-prawne wzmiankowo traktują wymagania dotyczące zasilania w energię elektryczną oraz milcząco podchodzą do wymagań dotyczących układów zasilania i wymaganego poziomu niezawodności dostaw energii elektrycznej.

Wyjątkiem w tym zakresie jest Rozporządzenie Ministra Łączności z 21 kwietnia 1995 roku w sprawie zasilania energią elektryczną obiektów budowlanych łączności (DzU nr 50/1995, poz. 271) [3].

Rys. 1. Schemat blokowo-ideowy zasilania budynku, gdzie: kategoria III – długotrwała przerwa w zasilaniu nie powoduje wystąpienia negatywnych skutków w postaci zagrożenia życia lub dużych strat materialnych, kategoria II – dopuszcza się krótką przerwę niezbędną na uruchomienie zespołu prądotwórczego, kategoria I – nie dopuszcza się żadnej przerwy w zasilaniu, ST – siłownia telekomunikacyjna ac/dc, RNR – rozdzielnica napięcia rezerwowanego, RNG – rozdzielnica napięcia gwarantowanego [źródło: J. Wiatr – Podstawy projektowania przydomowych elektrowni fotowoltaicznych – Grupa Medium 2017 – wydanie I]
Rys. 1. Schemat blokowo-ideowy zasilania budynku, gdzie: kategoria III – długotrwała przerwa w zasilaniu nie powoduje wystąpienia negatywnych skutków w postaci zagrożenia życia lub dużych strat materialnych, kategoria II – dopuszcza się krótką przerwę niezbędną na uruchomienie zespołu prądotwórczego, kategoria I – nie dopuszcza się żadnej przerwy w zasilaniu, ST – siłownia telekomunikacyjna ac/dc, RNR – rozdzielnica napięcia rezerwowanego, RNG – rozdzielnica napięcia gwarantowanego [źródło: J. Wiatr – Podstawy projektowania przydomowych elektrowni fotowoltaicznych – Grupa Medium 2017 – wydanie I]

Z uwagi na to, że jest to jedyny dokument formalnoprawny precyzyjnie określający wymagania dotyczące zasilania obiektów budowlanych łączności, można na jego podstawie opracować koncepcję układu zasilania dowolnego budynku przedstawioną na rys. 1. W prezentowanym układzie zasilania znajdą się wszystkie źródła zasilania, a ich stosowanie w określonym układzie zasilania może być przyjmowane w zależności od potrzeb i wymaganego poziomu niezawodności. Natomiast podział na poziomy rezerwowania oraz przypisane im źródła zasilania wynika z przyjętego w gospodarce elektroenergetycznej podziału na kategorie zasilanych odbiorników.

Widoczny na rys. 1. pojedynczy zespół prądotwórczy oraz pojedynczy zasilacz UPS, w zależności od potrzeb może być projektowany w układzie redundantnym lub w układzie pracy równoległej.

Coraz powszechniej w układach zasilania budynków pojawiają się generatory PV (pominięte na rys. 1), które mogą funkcjonować autonomicznie lub synchronicznie z siecią elektroenergetyczną, do której oddają nadwyżkę wyprodukowanej energii.

Rys. 2. Schemat blokowy systemu PV: a) autonomicznego, b) przyłączonego do sieci [źródło: Poradnik projektanta Systemów Sygnalizacji Pożaru – cz. II – SITP Warszawa 2009]
Rys. 2. Schemat blokowy systemu PV: a) autonomicznego, b) przyłączonego do sieci [źródło: Poradnik projektanta Systemów Sygnalizacji Pożaru – cz. II – SITP Warszawa 2009]
Rys. 3. Schemat budowy panelu fotowoltaicznego [źródło: R. Lenartowicz, J. Fangrat –Instalacje zasilające urządzenia bezpieczeństwa pożarowego – ITB Warszawa 2016]
Rys. 3. Schemat budowy panelu fotowoltaicznego [źródło: R. Lenartowicz, J. Fangrat –Instalacje zasilające urządzenia bezpieczeństwa pożarowego – ITB Warszawa 2016]

Schematy blokowe obydwu układów PV przedstawia rys. 2. Generatory PV budowane są z paneli fotowoltaicznych, których budowę przedstawia rys. 3.

Rys. 4. Charaktrystyka prądowo-napięciowa I = f(U) pojedynczego ogniwa PV z zaznaczonym punktem mocy maksymalnej PPM [źródło: 33]
Rys. 4. Charaktrystyka prądowo-napięciowa I = f(U) pojedynczego ogniwa PV z zaznaczonym punktem mocy maksymalnej PPM [źródło: 33]
Rys. 5. Metodyka tworzenia charakterystyki prądowo-napięciowej generatora PV: a) połączenie szeregowe oraz równoległe, b) kształtowanie charakterystyki wyjściowej generatora PV [źródło: R. Lenartowicz, J. Fangrat –Instalacje zasilające urządzenia bezpieczeństwa pożarowego – ITB Warszawa 2016]
Rys. 5. Metodyka tworzenia charakterystyki prądowo-napięciowej generatora PV: a) połączenie szeregowe oraz równoległe, b) kształtowanie charakterystyki wyjściowej generatora PV [źródło: R. Lenartowicz, J. Fangrat –Instalacje zasilające urządzenia bezpieczeństwa pożarowego – ITB Warszawa 2016]

Charakterystykę prądowo-napięciową I = f(U) pojedynczego ogniwa PV przedstawia rys. 4. Łączenie szeregowe oraz równoległe paneli fotowoltaicznych pozwala na kształtowanie charakterystyki prądowo-napięciowej I = f(U), której przebieg przedstawia rys. 5.

Generator PV buduje się z połączonych równolegle gałęzi stanowiących połączone szeregowo panele fotowoltaiczne. Połączenie szeregowe pozwala na uzyskanie wymaganego napięcia (do wartości 1000 V dc) przy prądzie o wartości, jaką wytwarza pojedynczy panel. Natomiast połączenie równoległe umożliwia uzyskanie żądanej wartości prądu dla uzyskania oczekiwanej mocy wyjściowej.

Występujący w układzie zasilania budynku generator PV wraz ze współpracującymi elementami tworzącymi system fotowoltaiczny wymaga w wielu przypadkach magazynu energii. Stan ten powoduje konieczność zapewnienia neutralizacji zagrożeń wybuchowych stwarzanych przez mieszaninę powietrza z wodorem wydzielającym się z akumulatorów stanowiących wyposażenie magazynu energii.

Wymagania w tym zakresie precyzuje norma PN-EN 62040-1:2009 Systemy bezprzerwowego zasilania (UPS). Część 1: Wymagania ogólne i wymagania dotyczące bezpieczeństwa UPS. Aneks M (normatywny). Wentylacja przedziałów bateryjnych.

W praktyce sprowadza się to do wykonania wentylacji sterowanej przez automatykę wyposażoną w układ detekcji stężenia wodoru, dzięki której nie dopuszcza się do przekroczenia 30% Dolnej Granicy Wybuchowości (DGW), która dla mieszaniny wodoru (H2) z powietrzem wynosi 4%.

W przeciwieństwie do wymagań dotyczących układów zasilania budynków w warunkach normalnej eksploatacji, wymagania dotyczące zasilania urządzeń przeciwpożarowych są precyzyjnie określone w przepisach techniczno-prawnych oraz normach przedmiotowych. W świetle Rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku, w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (DzU nr 109/2010, poz. 719) [5], urządzenia przeciwpożarowe to stałe lub półstałe urządzenia uruchamiane ręcznie lub automatycznie, służące do:

  • zapobiegania powstania pożaru,
  • wykrywania powstałego pożaru,
  • zwalczania pożaru lub ograniczania jego skutków.

Urządzenia te można podzielić na:

  • wymagające zasilania do przejścia w stan pracy pożarowej,
  • niewymagające zasilania do przejścia w stan pożarowy.

Czytaj też: Niebezpieczeństwo pożarowe powodowane niedostosowaniem instalacji odgromowej >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Artykuł pochodzi z: miesięcznika elektro.info 10/2017

Komentarze

(0)

Wybrane dla Ciebie


Oznaczniki przewodów i kabli

Oznaczniki przewodów i kabli Zgodnie z obowiązującymi normami N-SEP-E-004, trwałe oznaczenie przewodów i kabli stanowi nieodłączną część standardów jakości nowoczesnych produktów, które są oczekiwane przez klienta(...) czytam dalej »


Urządzenie do detekcji zwarć łukowych

Detekcja zwarć łukowych Co roku w całej Europie wybucha ponad dwa miliony pożarów z powodu awarii w instalacji elektrycznej, których główną przyczyną są niebezpieczne zwarcia łukowe. Detektor (...) czytam dalej »


Oto nowe transformatory na szynę DIN»
Transformatory na szynę DIN -Breven

Każdy nowo powstały obiekt nie może istnieć bez punktów rozdzielczych, które w związku z rozwojem (...) czytam dalej »


Mierniki rezystancji izolacji - zobacz przegląd»

Ograniczniki przepięć do każdego typu sieci »

Miernik rezystancji izolacji - jaki wybrać Ograniczniki przepięć SPD - nowa generacja
Mierniki rezystencji izolacji są urządzeniami wspomagającymi "pomiary elektryczne" dzięki którym można określić m.in. stan techniczny instalacji elektrycznej oraz wskazać, które elementy obwodów wymagają... czytam dalej » Mogą być zainstalowane w obiektach przemysłowych z prądem zwarciowym do 100 kA. Jedna gama produktów dla wszystkich instalacji, obejmująca (...) czytam dalej »

Zasilanie urządzeń pożarowych w ujęciu normy 12101-10 »
Zasilanie urządzeń pożarowych

System prawny w prawodawstwie polskim porządkuje ważność aktów prawnych w następujący sposób: konstytucja, ratyfikowane umowy... czytam dalej »


Zaprojektuj ochronę przepięciową przy pomocy niezawodnego narzędzia » Czy diagnozować urządzenia elektryczne za pomocą termowizji »
Konfigurator systemów ochrony przepięciowej Pomiar za pomocą termowizji
Konfigurator systemów ochrony przepięciowej. Unikalne narzędzie doboru zabezpieczeń przepięciowych pozwalające na prawidłowe zaprojektowanie systemu SPD w kilku krokach (…) czytam dalej »
Kamera termowizyjna jest urządzeniem służącym do bezkontaktowego zobrazowania rozkładu temperatury na obserwowanej powierzchni na podstawie pomiaru (...) czytam dalej»

Jakie drukarki etykiet dla elektryków i elektroinstalatorów

Drukarka dla elektryka Po zakończeniu szkolenia odbędzie się praktyczny test egzaminacyjny. Uczestnik, który pozytywnie zaliczy test oraz zda pozytywnie egzamin kwalifikacyjny przed Państwową Komisją Kwalifikacyjną, otrzymuje imienne świadectwo upoważniające go do samodzielnego wykonywania pomiarów elektrycznych(...) czytam dalej »


Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników naszego portalu... dowiedz się więcej »
6/2018

AKTUALNY NUMER:

elektro.info 6/2018
W miesięczniku m.in.:
  • - Zasilacze UPS w układach zasilania urządzeń elektromedycznych
  • - Oszczędność kosztów dla przedsiębiorstwa przemysłowego na podstawie analizy faktur zakupowych za media energetyczne
Zobacz szczegóły
Absolutne enkodery magnetyczne  do montażu i integracji w napędach o dużej wydajności

Absolutne enkodery magnetyczne do montażu i integracji w napędach o dużej wydajności

Nowoczesne systemy napędowe i pozycjonowania wymagają zastosowania rozwiązania zapewniającego absolutne wykrywanie w czasie rzeczywistym bieżącej pozycji wałka lub...
MICROS sp.j. W. Kędra i J. Lic MICROS sp.j. W. Kędra i J. Lic
Firma Micros istnieje na polskim rynku elektronicznym nieprzerwanie od 1988 roku. Jej początki to mały sklep z asortymentem elektronicznym,...
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl