elektro.info

Zaawansowane wyszukiwanie

Wykorzystanie zespołów prądotwórczych do tymczasowego zasilania elektroenergetycznych sieci nn

Zespoły prądotwórcze mogą zostać wykorzystane do tymczasowego zasilania sieci elektroenergetycznych nn pod warunkiem przystosowania instalacji elektrycznych w zasilanych budynkach do tymczasowych warunków zasilania.

Zespoły prądotwórcze mogą zostać wykorzystane do tymczasowego zasilania sieci elektroenergetycznych nn pod warunkiem przystosowania instalacji elektrycznych w zasilanych budynkach do tymczasowych warunków zasilania.

Sieci elektroenergetyczne niskiego napięcia należą do sieci rozdzielczych przeznaczonych do zasilania w energię elektryczną
budynków lub innych obiektów budowlanych. Wykonywane są w układzie promieniowym lub magistralnym oraz bardzo rzadko w układzie dwupromieniowym. Budynki mieszkalne są do nich przyłączane za pośrednictwem przyłączy kablowych lub napowietrznych.

Zobacz także

Impakt SA Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii

Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii Nowa rodzina zasilaczy PowerWalker UPS VFI EVS 5 kVA z magazynami energii

Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych....

Seria PowerWalker VFI EVS to nowa generacja zasilaczy UPS, oferująca długi czas podtrzymania dzięki zastosowaniu baterii LiFePO4 o 40% mniejszej masie i wymiarach w odniesieniu do klasycznych baterii kwasowo-ołowiowych. Zastosowana topologia podwójnej konwersji (VFI-SS-311) gwarantuje najwyższy poziom bezpieczeństwa, a wyspecjalizowane układy utrzymują współczynnik mocy PF na poziomie > 0.99. Oczywiście zależy on od podłączonych urządzeń odbiorczych. Wszelkie informacje o stanie UPS widoczne są na...

Riello Delta Power Sp. z o.o. Projekt przygotowania zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w elektrowni

Projekt przygotowania zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w elektrowni Projekt przygotowania zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w elektrowni

Firma Riello Delta Power Sp. z o.o. na przełomie lat 2022 i 2023 zrealizowała projekt zabudowy, produkcji, dostarczenia i instalacji dwóch zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków...

Firma Riello Delta Power Sp. z o.o. na przełomie lat 2022 i 2023 zrealizowała projekt zabudowy, produkcji, dostarczenia i instalacji dwóch zespołów prądotwórczych na potrzeby funkcjonowania nowych bloków gazowo-parowych w jednej z kluczowych dla polskiego systemu energetycznego elektrowni w Polsce północno-zachodniej.

mgr inż. Dariusz Zgorzalski, EVER Sp. z o.o. Wybrane aspekty wymagań zasilaczy stosowanych do urządzeń przeciwpożarowych – na przykładzie zasilacza do napędów bram napowietrzających UZS-230V-1kW-1F firmy EVER

Wybrane aspekty wymagań zasilaczy stosowanych do urządzeń przeciwpożarowych – na przykładzie zasilacza do napędów bram napowietrzających UZS-230V-1kW-1F firmy EVER Wybrane aspekty wymagań zasilaczy stosowanych do urządzeń przeciwpożarowych – na przykładzie zasilacza do napędów bram napowietrzających UZS-230V-1kW-1F firmy EVER

W poprzednich częściach dowiodłem, że zasilacze do bram napowietrzających stanowią istotny element systemu wentylacji pożarowej, od strony formalnej muszą posiadać świadectwo dopuszczenia CNBOP-PIB, a...

W poprzednich częściach dowiodłem, że zasilacze do bram napowietrzających stanowią istotny element systemu wentylacji pożarowej, od strony formalnej muszą posiadać świadectwo dopuszczenia CNBOP-PIB, a stosowanie niecertyfikowanych UPSów niesie za sobą ryzyko istotnych konsekwencji. Podkreśliłem, że świadectwo dopuszczenia CNBOP-PIB jest warunkiem koniecznym, ale nie wystarczającym. Kompatybilność funkcjonalna, elektryczna i mechaniczna całego systemu jest podstawą do tego, aby urządzenia działały...

Z uwagi na zaliczenie tych obiektów do III kategorii zasilania zgodnie z podziałem przyjętym w gospodarce elektroenergetycznej, nie są one wyposażane w źródła zasilania rezerwowego lub awaryjnego. Zdarzenia, jakie pojawiły się po pierwszych opadach śniegu, które spowodowały brak dostaw energii elektrycznej do szeregu gospodarstw domowych wskutek awarii sieci elektroenergetycznych spowodowanej nieprzewidywalnymi zjawiskami atmosferycznym, wymuszają potrzebę opracowania sposobów tymczasowego zapewnienia dostaw energii elektrycznej w sytuacjach awaryjnych.

Jedynym sposobem jest wykorzystanie zespołów prądotwórczych. Takie rozwiązanie wymaga przygotowania układu przyłączenia zespołu do sieci elektroenergetycznej oraz przystosowania instalacji elektrycznych do poboru mocy o wartości ograniczonej do niezbędnych potrzeb socjalnych.

Zasady obliczania mocy zapotrzebowanej w budynkach mieszkalnych

Dla mieszkań w budynkach wielorodzinnych lub budynków jednorodzinnych o podstawowym wyposażeniu, zgodnie z wymaganiami N SEP-E 002 Instalacje elektryczne w obiektach budowlanych. Instalacje elektryczne w budynkach mieszkalnych. Podstawy planowania, należy przyjmować wartości mocy zapotrzebowanej PM1 nie niższe niż*):

  • 12,5 kW, dla mieszkań posiadających zaopatrzenie w ciepłą wodę z zewnętrznej centralnej sieci grzewczej,
  • 30 kW, dla mieszkań nieposiadających zaopatrzenia w ciepłą wodę z zewnętrznej sieci grzewczej,
  • 7 kW w przypadku instalacji modernizowanych.

Oprócz mocy zapotrzebowanej przez mieszkania występuje zapotrzebowane mocy przez odbiorniki administracyjne (do tych odbiorników należy również zaliczyć urządzenia ppoż. instalowane w budynku).

Moc zapotrzebowana przez wielorodzinny budynek mieszkalny, zgodnie z N SEP-E-002 Instalacje elektryczne w obiektach budowlanych. Instalacje elektryczne w budynkach mieszkalnych. Podstawy planowania, należy obliczyć ze wzoru:

b wykorzystanie zespolow sieci nn wz01

Wzór 1

gdzie:

PM1 – moc zapotrzebowana przez pojedyncze mieszkanie, w [kW],

n – liczba mieszkań zasilanych z jednego WLZ-tu, w [-],

kj – współczynnik jednoczesności określony w N SEP-E 002 lub odczytany z rys. 1., w [-],

PA – moc zapotrzebowana przez odbiorniki administracyjne, ustalona w uzgodnieniu z inwestorem (administratorem budynku), w [kW].

W praktyce nie zawsze spełnienie wymagań normy jest możliwe.

Norma dotyczy budynków wznoszonych po 2002 roku. Jej zalecenia są stosowane w praktyce projektowej, mimo że nie jest normą przeznaczoną do obowiązkowego stosowania.

Rozbieżności w mocach przyjmowanych w praktyce wynikają głównie z możliwości technicznych eksploatowanych sieci elektroenergetycznych.

b wykorzystanie zespolow sieci nn rys01

Rys. 1. Wartości współczynnika jednoczesności kj’ dla wybranych grup odbiorników energii elektrycznej w budynkach mieszkalnych, w zależności od liczby mieszkań wg przepisów niemieckich [H. Markiewicz; A. Klajn – Instalacje elektryczne w budynkach mieszkalnych. Podstawy planowania i obliczeń – podręczniki INPE dla elektryków – zeszyt 7 – 2005 r.], gdzie: 1 – ogrzewanie akumulacyjne, 2 – ogrzewanie bezpośrednie, 3 – odbiorniki ogólnego przeznaczenia, 4 – przepływowe ogrzewacze wody

W przypadku sieci znajdujących się w eksploatacji najbardziej wiarygodne wyniki dają pomiary obciążeń, które są wykonywane przez spółki dystrybucyjne.

W warunkach awaryjnych moce zapotrzebowane muszą zostać zmniejszone do niezbędnych potrzeb socjalnych pozwalających na korzystanie z oświetlenia, lodówki oraz telewizora lub radia. Skutkuje to zmniejszeniem mocy szczytowej możliwej do pobrania przez pojedyncze mieszkanie lub budynek jednorodzinny do wartości (2–3) kW.

Przy takim założeniu, należy korzystając z charakterystyki odzwierciedlającej współczynnik jednoczesności funkcji liczby odbiorców przedstawionej na rys. 1. dla odbiorników ogólnego przeznaczenia wyznaczyć wartość mocy zapotrzebowanej dla sieci elektroenergetycznej objętej tymczasowym zasilaniem realizowanym z wykorzystaniem zespołu prądotwórczego.

W kwestii odbiorników administracyjnych minimalną moc niezbędną przy zasilaniu tymczasowym należy uzgodnić z administratorem budynku.

Układy sieci elektroenergetycznych nn, zasilające odbiory komunalne

Stosowane w praktyce układy sieci elektroenergetycznych nn umożliwiają przyłączenie generatora zespołu prądotwórczego do szyn rozdzielnicy niskiego napięcia stacji transformatorowej. Układ współpracy zespołu prądotwórczego z siecią elektroenergetyczną musi uniemożliwiać:

  • równoległą pracę zespołu prądotwórczego z systemem elektroenergetycznym (SEE),
  • wsteczne podanie napięcia z generatora zespołu prądotwórczego do SEE.

Na rys. 2, rys. 3 i rys. 4 zostały przedstawione schematy sieci elektroenergetycznych nn, stosowane w prak­tyce.

Sposób przyłączenia zespołu prądotwórczego przedstawia rys. 5.

W takim przypadku instalacje elektryczne przyłączonych budynków muszą zostać przygotowane do zasilania tymczasowego. W tym celu w instalacjach elektrycznych budynków należy wykonać układ automatyki umożliwiającej przełączenie zasilania poszczególnych odbiorców na tor zasilania tymczasowego, w którym należy zainstalować aparat ograniczający moc do wartości minimum socjalnego.

b wykorzystanie zespolow sieci nn rys02

Rys. 2. Schemat sieci promieniowej; rys. J. Wiatr

b wykorzystanie zespolow sieci nn rys03

Rys. 3. Schemat sieci magistralnej: a) kablowej, b) napowietrznej; rys. J. Wiatr

b wykorzystanie zespolow sieci nn rys04

Rys. 4. Schemat sieci dwupromieniowej; rys. J. Wiatr

Przykładowe rozwiązanie układu zasilania odbiorców umożliwiające automatyczne przejście na warunki zasilania tymczasowego przedstawia rys. 6.

b wykorzystanie zespolow sieci nn rys05

Rys. 5. Sposób przyłączenia zespołu prądotwórczego do tymczasowego zasilania sieci elektroenergetycznej nn; rys. J. Wiatr

b wykorzystanie zespolow sieci nn rys06

Rys. 6. Przykład układu sterowania umożliwiającego automatyczne przełączenie odbiorników mieszkaniowych na warunki zasilania tymczasowego; rys. J. Wiatr

Generator zespołu prądotwórczego należy uziemić. Można do tego celu wykorzystać istniejące uziemienie transformatora, pod warunkiem spełniania przez nie warunku R ≤ 5 Ω.

Przyłączenie zespołu prądotwórczego należy wykonać w sposób gwarantujący niemożliwość podania napięcia z dwóch źródeł jednocześnie oraz podania napięcia z generatora zespołu prądotwórczego do Systemu Elektroenergetycznego (SEE).

Dobór mocy zespołu prądotwórczego

Bardzo istotnym problemem jest dobór mocy zespołu prądotwórczego tak, by zagwarantować pokrycie mocy zapotrzebowanej przez zasilane odbiorniki.

Za podstawę doboru mocy zespołu prądotwórczego należy przyjąć wartość mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej przez zasilane odbiorniki.

Moc czynną zapotrzebowaną należy wyznaczyć z następującego wzoru:

b wykorzystanie zespolow sieci nn wz02

Wzór 2

gdzie:

PZ – moc czynna zapotrzebowana czynna, w [kW],

kj – współczynnik jednoczesności, w [-],

Pi – moc czynna i-tego odbiornika objętego systemem zasilania awaryjnego, w [kW].

Kolejnym krokiem jest obliczenie mocy biernej zapotrzebowanej, którą należy wyznaczyć w następujący sposób:

b wykorzystanie zespolow sieci nn wz03

Wzór 3

gdzie:

QZ– moc bierna zapotrzebowana, w [kvar],

cos φi – współczynnik mocy i-tego odbiornika objętego systemem zasilania gwarantowanego, w [-].

Na podstawie obliczonej wartości mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej należy obliczyć współczynnik mocy cos φZ:

b wykorzystanie zespolow sieci nn wz04

Wzór 4

gdzie:

cos φZ– współczynnik mocy obliczony na podstawie mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej, w [-].

Kolejnym krokiem jest obliczenie minimalnej mocy czynnej, jaką musi dysponować generator zespołu prądotwórczego.

Wyznaczenie mocy pozornej na podstawie mocy czynnej zapotrzebowanej oraz mocy biernej zapotrzebowanej ze wzoru:

b wykorzystanie zespolow sieci nn wz05

Wzór 5

może prowadzić do błędnych wyników.

Względne obciążenie generatora mocą czynną można określić współczynnikiem wykorzystania, który należy obliczyć z poniższego wzoru:

b wykorzystanie zespolow sieci nn wz06

Wzór 6

Wymagana minimalna moc czynna zespołu prądotwórczego musi spełniać następującą nierówność:

b wykorzystanie zespolow sieci nn wz07

Wzór 7

Obliczony ze wzoru (6) współczynnik wykorzystania p należy podstawić do wzoru (7). W przypadku gdy p ≤ 1, do wzoru (7) należy wstawić wartość 1.

Wartość współczynnika mocy cos φnG należy przyjąć zgodnie z DTR zespołu prądotwórczego.

W przypadku braku informacji w tym zakresie można przyjmować cos φnG = 0,8.

Moc pozorna zespołu prądotwórczego musi spełniać następującą nierówność:

b wykorzystanie zespolow sieci nn wz08

Wzór 8

gdzie:

PGmin – minimalna mocy czynna, jaką musi pokryć generator zespołu prądotwórczego, w [kW].

Mała wartość współczynnika mocy powoduje zmniejszenie siły elektromotorycznej generatora wskutek rozmagnesowującego działania składowej biernej prądu obciążenie.

Jeżeli generator oddaje większą moc bierną niż znamionowa, ze względu na konieczność utrzymania napięcia znamionowego i nieprzeciążanie wirnika należy zmniejszyć moc czynną obciążenia. W dopuszczalnych dla prądów wirnika granicach, automatyka zespołu prądotwórczego reguluje wartość prądu wzbudzenia utrzymując na stałym poziomie wartość napięcia wyjściowego generatora.

Zatem wytwarzanie energii elektrycznej przez generator zespołu prądotwórczego przy współczynniku mocy cos φZ  < cos φnG skutkuje koniecznością zwiększenia jego mocy pozornej (S) do wartości umożliwiającej pełne pokrycie mocy czynnej ­zapotrzebowanej oraz mocy biernej zapotrzebowanej QZ.

Wprowadzanie układów kompensacji mocy biernej (szczególnie indukcyjnej) jest niewskazane ze względu na charakter pracy źródła zasilającego. W konsekwencji może doprowadzić do przedwczesnego zniszczenia kondensatorów.

Ponieważ projektowane zasilanie tymczasowe dotyczy istniejących sieci nn, istnieje możliwość wykonania pomiarów po wymuszeniu przejścia przez przełączane odbiory na warunki zasilania tymczasowego. Pozwoli to na bardzo precyzyjne oszacowanie mocy zespołu prądotwórczego niezbędnego do zasilania tymczasowego określonej sieci elektroenergetycznej nn. Uzyskane w wyniku pomiarów wartości mocy czynnej oraz mocy biernej i współczynnika mocy posłużą wówczas do obliczenia wymaganej mocy zespołu z wykorzystaniem wzorów (4) – (8).

Ochrona przeciwporażeniowa w warunkach zasilania z generatora zespołu prądotwórczego

Oprócz problemów z mocą, która może zostać pobrana w czasie funkcjonowania układu zasilania tymczasowego, pojawiają się problemy z zachowaniem skutecznej ochrony przeciwporażeniowej zgodnie z wymaganiami normy PN HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Ochrona dla zapewnienia bezpieczeństwa. Część 4-41: Ochrona przed porażeniem elektrycznym.

Problemy te wynikają z fizyki pracy generatora zespołu prądotwórczego, w którym podczas zwarć występuje zmienność drogi strumieni magnetycznych, skutkująca zamiennością parametrów obwodu zwarciowego w znacznych graniach.

Zespół prądotwórczy w stosunku do systemu elektroenergetycznego jest źródłem „miękkim”, w którym impedancja obwodu zwarciowego ulega szybkim zmianom w czasie zwarcia (przyjmuje się, że system elektroenergetyczny charakteryzuje się stałą impedancją obwodu zwarciowego z uwagi na dużą wartość mocy zwarciowej).

W chwili wystąpienia zwarcia ulega zmianie rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego. Rozpływy strumieni w generatorze podczas zwarcia przedstawia rys. 7.

W początkowej fazie zwarcia nazywanej stanem podprzejściowym, wskutek działania klatki tłumiącej, strumień główny wytwarzany przez prądy płynące w uzwojeniu stojana jest wypychany poza wirnik (rys. 7a). W stanie tym reaktancja generatora charakteryzuje się małą wartością, wynoszącą przeciętnie (10–15)% wartości znamionowej. Stan ten trwa bardzo krótko ze względu na małą wartość elektromagnetycznej stałej czasowej T, wynoszącej dla generatorów nn średnio 0,01 s.

b wykorzystanie zespolow sieci nn rys07

Rys. 7. Przebieg wypychanego poza wirnik strumienia stojana w czasie zwarcia: a) stan podprzejściowy, b) stan przejściowy, c) stan ustalony [2]; rys. J. Wiatr

Działanie klatki tłumiącej ze względu na małą wartość jej rezystancji szybko ustaje, co skutkuje powolnym wchodzeniem strumienia głównego w wirnik. Stan ten nazywany stanem przejściowym charakteryzuje wzrost reaktancji generatora, która dla generatorów nn wynosi średnio (30–40)% wartości znamionowej generatora.

Generator w krótkim czasie przechodzi w stan ustalony zwarcia, co objawia się dalszym wzrostem reaktancji obwodu zwarciowego. W stanie ustalonym zwarcia strumień główny oraz strumień wzbudzenia zamykają się przez wirnik generatora. Ponieważ kierunki tych strumieni są przeciwne, strumień wypadkowy ulega silnemu zmniejszeniu. Zjawisko to prowadzi do gwałtownego wzrostu reaktancji generatora, która dla generatorów nn wynosi (200–300)% wartości reaktancji znamionowej generatora.

unormowane charakterystyki

Rys. 8. Unormowane charakterystyki: a) zmienności reaktancji zwarciowej generatora , b) zmienności prądu zwarciowego generatora, przy zwarciu na jego zaciskach - patrz: opis po prawej; rys. J. Wiatr

W zespołach prądotwórczych konstruowanych obecnie, instalowany jest regulator prądu wzbudzenia wyposażony w układ forsowania, który pozwala podczas zwarcia na utrzymanie określonej wartości reaktancji generatora. Wartość ta charakteryzowana jest krotnością prądu znamionowego generatora, utrzymywaną przez czas nie dłuższy niż 10 s.

Ograniczenie czasowe utrzymywania określonej wartości reaktancji generatora podczas zwarcia wynika z warunku wytrzymałości izolacji uzwojeń generatora. Wydłużenie tego czasu może skutkować zniszczeniem izolacji uzwojeń generatora.

Na rys. 8. przedstawiono uproszczone charakterystyki zmienności reaktancji zwarciowej w generatorze nowoczesnego zespołu prądotwórczego oraz zmienności prądu zwarciowego na jego zaciskach. Parametry obwodu zwarciowego ulegają szybkim zmianom, co powoduje trudności w uzyskaniu skutecznej ochrony przeciwporażeniowej w odległej instalacji odbiorczej.

W nowoczesnych zespołach prądotwórczych producent zapewnia (wskutek działania układów automatyki) utrzymanie prądu zwarciowego na zaciskach generatora o wartości 3·In przez 10 s (dłuższe utrzymywanie takiego stanu grozi zniszczeniem izolacji uzwojeń). Dzięki czemu do obliczeń skuteczności samoczynnego wyłączenia można przyjmować wartość reaktancji zwarciowej generatora Xk1G (na jego zaciskach) wyliczoną ze wzoru (9):

b wykorzystanie zespolow sieci nn wz09

Wzór 9

gdzie:

UnG – napięcie znamionowe generatora zespołu prądotwórczego, w [kV],

SnG – moc znamionowa generatora zespołu prądotwórczego, w [MVA],

XnG – znamionowa reaktancja generatora, w [Ω].

Pomimo to reaktancja obwodu zwarcia generatora zespołu prądotwórczego jest znacznie większa od impedancji zwarciowej transformatora przyłączonego do SEE o takiej samej mocy.

Dla porównania tych wartości w tab. 1. zostały przedstawione impedancje wybranych transformatorów oraz generatorów.

Przez 10 s, kiedy działa układ forsowania wzbudzenia, reaktancja ta jest większa ponad siedmiokrotnie od impedancji transformatora, a po ustaniu działania układu forsowania wzbudzenia – ponad dwudziestokrotnie.

W przypadku gdy zespół prądotwórczy jest oddalony o kilkanaście metrów od zasilanej rozdzielnicy, wartość impedancji obwodu zwarciowego w dalszym ciągu rośnie i powoduje dalsze zmniejszanie się prądów zwarciowych.

Znaczna wartość reaktancji obwodu zwarciowego zasilanego przez generator zespołu prądotwórczego może być powodem nieskutecznej ochrony przeciwporażeniowej w instalacji, w której zastosowano samoczynne wyłączenie zasilania. Obwód zwarciowy dla potrzeb ochrony przeciwporażeniowej przedstawia rys. 9.

Odmienność warunków zasilania z zespołu prądotwórczego w odniesieniu do Systemu Elektroenergetycznego

System Elektroenergetyczny (SEE) jest zasilany przez kilkadziesiąt generatorów przyłączonych za pośrednictwem transformatorów blokowych do sieci elektroenergetycznych WN pracujących w układzie zamkniętym.

Moc zwarciowa SEE w uproszczeniu jest określana jako nieskończona, podczas gdy w odniesieniu do zespołu prądotwórczego posiada ona wartość ograniczoną (patrz: rys. 5.). Wartość jej w różnych punktach sieci przyłączonych do SEE ma wartości skończone, ale wartości ich są duże.

Przeciętnie wartość mocy zwarciowej odniesiona do strony SN w GPZ, kształtuje się na poziomie (150–250) MVA. Zespół prądotwórczy po przejęciu zasilania stanowi jedyne źródło zasilania odbiorników objętych systemem zasilania awaryjnego.

Dysponowana przez jego generator moc zwarciowa zależy od mocy generatora i ma wartość skończoną. Dla przykładu dla wybranych generatorów niskiego napięcia, moc zwarciowa została przedstawiona w tab. 2.

b wykorzystanie zespolow sieci nn tab2

Tab. 2. Moc zwarciowa na zaciskach wybranych generatorów zespołów prądotwórczych.

Zasady projektowania ochrony przeciwporażeniowej

Spośród trzech układów sieci: TT, IT i TN (TN-C; TN-C-S i TN-S), przy zasilaniu obiektów budowlanych najbardziej nadaje się układ TN-S lub TN-C-S.

Układ IT może być stosowany tylko w ograniczonym zakresie, po spełnieniu określonych warunków.

Warunek samoczynnego wyłączenia w sieci TN, należy uznać za spełniony jeżeli:

b wykorzystanie zespolow sieci nn wz10

Wzór 10

b wykorzystanie zespolow sieci nn wz11

Wzór 11

W praktyce korzysta się z innej postaci tego wzoru:

b wykorzystanie zespolow sieci nn wz12

Wzór 12

w którym został uwzględniony wzrost rezystancji przewodów pętli zwarciowej wynikający z prawa Wiedemanna-Franza oraz trudne do analitycznego oszacowania rezystancje łączeń występujących w obwodzie zwarciowym, gdzie:

Zs – impedancja pętli zwarciowej obejmującej źródło zasilania, przewód roboczy, aż do punktu zwarcia i przewód ochronny między punktem zwarcia a źródłem, w [Ω],

Ia – prąd powodujący samoczynne zadziałanie urządzenia wyłączającego, w czasie zależnym od napięcia znamionowego Uo podanego w tab. 3.,

RkG – rezystancja uzwojeń generatora, w [Ω],

Xk1G – reaktancja generatora dla zwarć jednofazowych, w [Ω],

RL – rezystancja kabla zasilającego oraz przewodów instalacji odbiorczej, w [Ω],

XL – reaktancja kabla zasilającego oraz przewodów instalacji odbiorczej, w [Ω],

Uo – napięcie pomiędzy przewodem fazowym a uziemionym przewodem ochronnym (PE) lub ochronno-neutralnym (PEN), w [V].

b wykorzystanie zespolow sieci nn tab3

Tab. 3. Maksymalne czasy wyłączenia dla normalnych warunków środowiskowych [10]

Uwagi

  1. Dłuższe czasy wyłączenia mogą być dopuszczone w sieciach rozdzielczych oraz elektrowniach i w sieciach przesyłowych systemów.
  2. Krótsze czasy wyłączenia mogą być wymagane dla specjalnych instalacji lub lokalizacji objętych arkuszami normy PN-IEC (HD) 60364 grupy 700.
  3. Dla układu sieci IT samoczynne wyłączenie zasilania nie jest zwykle wymagane po pojawieniu się pojedynczego zwarcia z ziemią.
  4. Maksymalne czasy wyłączenia podane w tab. 3. powinny być stosowane do obwodów odbiorczych o prądzie znamionowym nieprzekraczającym 32 A.
  5. Jeżeli w układzie sieci TT wyłączenie jest realizowane przez zabezpieczenia nadprądowe, a połączenia wyrównawcze ochronne są przyłączone do części przewodzących obcych znajdujących się w instalacji, to mogą być stosowane maksymalne czasy wyłączenia przewidywane dla układu sieci TN.
  6. W układach sieci TN czas wyłączenia nieprzekraczający 5 s jest dopuszczony w obwodach rozdzielczych i w obwodach niewymienionych w pkt 4.
  7. W układach sieci TT czas wyłączenia nieprzekraczający 1 s jest dopuszczony w obwodach rozdzielczych i w obwodach niewymienionych w pkt 4.
  8. Jeżeli samoczynne wyłączenie zasilania nie może być uzyskane we właściwym czasie, to powinny być zastosowane dodatkowe połączenia wyrównawcze ochronne.
b wykorzystanie zespolow sieci nn tab4

Tab. 4. Maksymalne czasy wyłączenia dla warunków środowiskowych o zwiększonym zagrożeniu w układzie sieci TN [11]

W normie PN-HD 60364-4-481: 1994 podane są maksymalne czasy wyłączenia dla warunków środowiskowych o zwiększonym zagrożeniu. Dotyczą one specjalnych instalacji lub lokalizacji objętych arkuszami normy PN-IEC (HD) 60364 grupy 700. Czasy te podano w tab. 4.

W układach ac powinna być zastosowana ochrona uzupełniająca za pomocą urządzeń ochronnych różnicowoprądowych o znamionowym prądzie różnicowym nieprzekraczającym 30 mA:

  • w obwodach odbiorczych gniazd wtyczkowych o prądzie znamionowym nieprzekraczającym 20 A, które są przewidziane do powszechnego użytkowania i do obsługiwania przez osoby niewykwalifikowane, oraz
  • w obwodach zasilających urządzenia ruchome o prądzie znamionowym nieprzekraczającym 32 A, używane na zewnątrz.

W przypadku gdy spełnienie warunku samoczynnego wyłączenia w instalacji zasilanej z zespołu prądotwórczego jest niemożliwe, należy przeprowadzi ocenę skuteczności ochrony przeciwporażeniowej przy uszkodzeniu (przed dotykiem pośrednim) przez sprawdzenie, czy w czasie zwarcia doziemnego o prądzie zwarciowym równym Ia wystąpiłoby na częściach przewodzących dostępnych napięcie dotykowe o wartości nieprzekraczającej napięcia dotykowego, dopuszczalnego długotrwale w danych warunkach środowiskowych (UL).

Sprawdzenie to można wykonać przez obliczenie spodziewanych wartości napięć dotykowych, jakie wystąpią na objętych ochroną częściach przewodzących dostępnych.

Największa spodziewana wartość napięcia dotykowego UST będzie równa:

b wykorzystanie zespolow sieci nn wz13

Wzór 13

Zależność określona wzorem (13) wynika bezpośrednio z rys. 10.

Zgodnie z wymaganiami określonymi w PN-HD 60364-4-41 uważa się, że ochrona jest skuteczna, jeżeli napięcie dotykowe UST jest mniejsze od dopuszczalnego długotrwale w danych warunkach środowiskowych, czyli:

b wykorzystanie zespolow sieci nn wz14

Wzór 14

gdzie:

Ia– prąd wyłączający głównego urządzenia zabezpieczającego w zespole prądotwórczym, w czasie określonym w tab. 3., w [A],

ZPE – wartość impedancji przewodu ochronnego PE między rozpatrywaną częścią przewodzącą dostępną a głównym połączeniem wyrównawczym, w [Ω],

UL – dopuszczalna długotrwale w danych warunkach środowiskowych wartość napięcia dotykowego, w [V].

Jeżeli określony wzorem warunek nie może zostać spełniony, to należy wykonać połączenie wyrównawcze dodatkowe (miejscowe), łączące części przewodzące jednocześnie dostępne.

Skuteczność wykonanego połączenia wyrównawczego dodatkowego sprawdza się przez obliczenie spodziewanej wartości napięcia dotykowego zgodnie ze wzorem (PN‑HD 60364 4-41):

b wykorzystanie zespolow sieci nn wz15

Wzór 15

gdzie:

Ia – prąd wyłączający urządzenia zabezpieczającego (w obwodzie zasilania zespołu prądotwórczego lub urządzenia odbiorczego) w czasie określonym w tabeli 3., w [A],

RPE – wartość rezystancji przewodu połączenia wyrównawczego miejscowego PE pomiędzy częściami przewodzącymi dostępnymi jednocześnie, w [Ω],

UL – dopuszczalna długotrwale w danych warunkach środowiskowych wartość napięcia dotykowego, w [V].

Wartość rezystancji RPE należy ustalić na drodze obliczeniowej zgodnie ze wzorem:

b wykorzystanie zespolow sieci nn wz16

Wzór 16

gdzie:

L – długość przewodu wyrównawczego, w [m],

γ – przewodność elektryczna materiału żyły przewodu wyrównawczego, w [m/(Ω·mm2)],

S – przekrój żyły przewodu wyrównawczego, w [mm2].

Prowadzi to przy znanych odległościach części przewodzących jednocześnie dostępnych do określenia następującego warunku dotyczącego minimalnego przekroju przewodu wyrównawczego, przy określonej wartości napięcia dopuszczalnego długotrwale (UL):

Wnioski

  • Zespoły prądotwórcze mogą zostać wykorzystane do tymczasowego zasilania sieci elektroenergetycznych nn pod warunkiem przystosowania instalacji eklektrycznych w zasilanych budynkach do tymczasowych warunków zasilania. Należy również przystosować układ przyłączenia zespołu prądotwórczego do sieci elektroenergetycznej, tak by niemożliwe było dostarczanie energii z SEE oraz generatora zespołu prądotwórczego jednocześnie oraz podanie napięcia z generatora ZP do SEE.
  • W przypadku występowania obiektów użyteczności publicznej przyłączonych do wspólnej sieci, należy zablokować możliwość poboru energii z zespołu prądotwórczego instalowanego doraźnie. Budynki użyteczności publicznej należy wyposażyć w indywidualne zespoły prądotwórcze o mocy dobranej do potrzeb.
  • W instalacjach elektrycznych objętych układem zasilania tymczasowego należy zapewnić ochronę przeciwporażeniową gwarantującą spełnienie warunków określonych w normie [10] w warunkach normalnych oraz w warunkach zasilania tymczasowego z generatora zespołu prądotwórczego.

Przykładowy projekt stanowiący praktyczną realizację treści artykułu opublikujemy w nr. 1–2/2017.

Literatura

  1. J. Wiatr; M. Orzechowski, Poradnik projektanta elektryka, DW Medium 2012
  2. J. Wiatr, Zespoły prądotwórcze w układach zasilania awaryjnego, DW Medium 2008
  3. R. Kacejko; J. Machowski, Zwarcia w systemach elektroenergetycznych, WNT 2001
  4. Ochrona przeciwporażeniowa w warunkach polowych – MON Inż. 349/72
  5. Praca zbiorowa pod redakcją J. Wiatr, Poradnik Projektanta systemów zasilania awaryjnego i gwarantowanego – EATON POWER QUALITY 2008
  6. J. Wiatr; M. Miegoń, Zasilacze UPS i baterie akumulatorów w układach zasilania gwarantowanego, DW Medium 2008
  7. L. Danielski; R. Zacirka, Badanie ochrony przeciwporażeniowej w obiektach z przemiennikami częstotliwości, elektro.info nr 12/2005
  8. R. Matla – Gospodarka elektroenergetyczna, OW PW 1988
  9. J. Marzecki – Miejskie sieci rozdzielcze, OWPW
  10. PN-HD 60364-4-41:2009 Instalacje elektryczne niskiego napięcia. Część 4-41: Ochrona dla zapewnienia bezpieczeństwa. Ochrona przeciwporażeniowa
  11. J. Wiatr, A. Boczkowski, M. Orzechowski, Ochrona przeciwporażeniowa i dobór przewodów w instalacjach elektrycznych niskiego napięcia oraz ich zabezpieczeń, DW MEDIUM 2010
  12. J. Wiatr, M. Orzechowski, Dobór przewodów i kabli elektrycznych niskiego napięcia (zagadnienia wybrane), Dom Wydawniczy MEDIUM 2011, wydanie II.

Zasilacze UPS i zespoły prądotwórcze - pobierz bezpłatny e-book >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!


*) Norma N SEP‑E 002 określa wartości mocy zapotrzebowanej w kVA, dopuszcza posługiwanie się jednostkami mocy czynnej

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Najnowsze produkty i technologie

Fakro Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu?

Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu? Elegancja i funkcjonalność: dlaczego schody strychowe są idealnym wyborem dla Twojego domu?

Składane schody prowadzące na strych są popularną alternatywą dla tradycyjnych schodów, które zazwyczaj zajmują bardzo dużo miejsca. W jakie konstrukcje warto zainwestować? Czym się charakteryzują?

Składane schody prowadzące na strych są popularną alternatywą dla tradycyjnych schodów, które zazwyczaj zajmują bardzo dużo miejsca. W jakie konstrukcje warto zainwestować? Czym się charakteryzują?

PHOENIX CONTACT Sp.z o.o. Efektywność prefabrykacji przewodów

Efektywność prefabrykacji przewodów Efektywność prefabrykacji przewodów

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo...

Konstruktorzy szaf sterowniczych stoją przed wieloma wyzwaniami: począwszy od międzynarodowej presji konkurencyjnej i niedoboru wykwalifikowanych pracowników, po rosnące koszty pracy i materiałów. Stosunkowo niewiele można zrobić, aby wpłynąć na te aspekty, dlatego coraz częściej w centrum uwagi znajduje się produkcja własna ze wszystkimi procesami i strukturami, a także ogólna struktura kosztów.

Zakłady Kablowe BITNER Sp. z o.o. EMC na przykładzie kabli zasilających i sterowniczych

EMC na przykładzie kabli zasilających i sterowniczych EMC na przykładzie kabli zasilających i sterowniczych

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych...

Kompatybilność elektromagnetyczna kabli elektrycznych jest kluczowym parametrem, który charakteryzuje sposób stosowania i użytkowania danych kabli do wzajemnej współpracy kilku urządzeń elektrycznych zestawionych w całość. Prawidłowe funkcjonowanie urządzeń może być zapewnione tylko i wyłącznie wtedy, gdy zakłócenia generowane przez otoczenie będą skutecznie blokowane. Generowane spodziewane zakłócenia elektromagnetyczne przez wyposażenie otaczające kable muszą zatem być w odpowiedni sposób odseparowane.

Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Jaki dysk zewnętrzny wybrać, robiąc backup danych? Jaki dysk zewnętrzny wybrać, robiąc backup danych?

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia...

Dzięki kopii zapasowej możesz wykonać kopię całej zawartości swojego komputera. W ten sposób nie stracisz swoich plików i programów. Istnieją różne typy pamięci zewnętrznych z oddzielną funkcją tworzenia kopii zapasowych. Czytaj dalej i dowiedz się, który z nich może odpowiadać Twoim potrzebom!

Renowa24.pl Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza Okna dachowe Fakro – klucz do doskonałego oświetlenia poddasza

Dlaczego wybór okien dachowych jest ważny?

Dlaczego wybór okien dachowych jest ważny?

BayWa r.e. Solar Systems BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

BayWa r.e. Solar Systems otwiera magazyn w Gdańsku! BayWa r.e. Solar Systems otwiera magazyn w Gdańsku!

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie...

Na początku 2024 roku firma BayWa r.e. Solar Systems zrobiła kolejny duży krok w rozwoju działalności na polskim rynku, otwierając nowy magazyn w Gdańsku. Jego powierzchnia to 25 000 m kw., co łącznie daje ponad 45 tys. m kw. powierzchni magazynowej BayWa r.e. Solar Systems w Polsce.

WAGO ELWAG Sp. z o.o. Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych Przelotowa złączka instalacyjna 2773 Inline do przewodów sztywnych

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi...

Dzięki takim złączkom od firmy WAGO ELWAG naprawienie lub przedłużenie przewodu jest tak proste jak nigdy dotąd! Za ich pomocą można nawet w najmniejszych przestrzeniach – szybko i bez użycia narzędzi – połączyć przewody o przekroju od 0,75 do 4 mm kw. Wystarczy po prostu odizolować końcówkę przewodu i bez użycia jakichkolwiek narzędzi wsunąć ją do złączki – i bezpieczne połączenie gotowe.

ASTAT Sp. z o.o. Modułowe filtry aktywne firmy Schaffner

Modułowe filtry aktywne firmy Schaffner Modułowe filtry aktywne firmy Schaffner

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej,...

Aby przeciwdziałać negatywnym skutkom wyższych harmonicznych, można wykorzystać różne rozwiązania. Uzależnione są one od takich czynników jak: moc zapotrzebowana w zakładzie, sztywność sieci zasilającej, moc odbiorników czy budowa samej instalacji elektroenergetycznej. Dobór konkretnego rozwiązania powinien opierać się na analizie układu zasilającego zakład, reżimu pracy i zainstalowanych odbiorników. Bardzo ważnym punktem doboru jest wykonanie pomiarów Jakości Energii Elektrycznej i ich prawidłowa...

IGE+XAO Polska Sp. z o.o. Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego Jak projektować schematy elektryczne i jakiego używać oprogramowania wspomagającego

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

Niniejszy artykuł zawiera informacje o projektowaniu schematów elektrycznych i używaniu oprogramowania wspomagającego projektowanie w branży elektrycznej i automatyce.

SIBA Polska Sp. z o.o. Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami Bezpieczniki firmy SIBA – zastosowanie w magazynach energii z akumulatorami

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów...

Magazyny energii mogą być źródłem zasilania tylko wtedy gdy są sprawne. Systemy umożliwiające pracę urządzeń w przypadku awarii zasilania są zróżnicowane od małych urządzeń UPS do baterii akumulatorów zapewniających zasilanie całych zakładów. Jest zatem sprawą kluczową, aby systemy zasilania awaryjnego same działały bez zarzutu. Bezpieczniki produkowane przez firmę SIBA zabezpieczają urządzenia, które w przypadku awarii zasilania dostarczają energię kluczowym odbiorom.

SONEL S.A. Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych Pomiary impedancji pętli zwarcia na farmach fotowoltaicznych

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV...

W związku z dynamicznym rozwojem farm fotowoltaicznych rośnie zapotrzebowanie na prawidłowe pomiary impedancji pętli zwarcia na odcinku inwerter-transformator nn/SN. Z pomocą przychodzi Sonel MZC-340-PV – pierwszy na świecie miernik przeznaczony do pomiarów impedancji pętli zwarcia w sieciach o napięciach dochodzących aż do 900 V AC, z kategorią pomiarową CAT IV 1000 V.

GROMTOR sp. z o.o. Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych Nowoczesne narzędzia do projektowania i realizacji instalacji odgromowych

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie...

Wyładowania atmosferyczne jako nieodłączny element burz stanowią poważne zagrożenie dla ludzi oraz infrastruktury. Aby zminimalizować ryzyko strat spowodowanych przez wyładowania atmosferyczne, można skutecznie zabezpieczać wszelkiego rodzaju obiekty, projektując i montując instalację odgromową zgodną z obowiązującymi przepisami.

Redakcja news Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami! Wiosenna promocja w Elektroklubie! Do wygrania 3-dniowy wyjazd z atrakcjami!

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa...

Elektroklub jest programem partnerskim dla klientów wybranych hurtowni elektrotechnicznych, który powstał we współpracy z trzema producentami z tej branży: Philips, NKT i Schneider Electric. Obecnie trwa w nim wiosenna promocja, w której można wygrać supernagrody!

Solfinity sp. z o.o. sp.k. Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Inwertery hybrydowe: przyszłość zrównoważonej energetyki Inwertery hybrydowe: przyszłość zrównoważonej energetyki

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są...

Chcesz zwiększyć wydajność swojej instalacji fotowoltaicznej? Pomyśl o inwerterach hybrydowych. Dowiedz się, czym są te urządzenia, jakie korzyści płyną z ich wykorzystania i dlaczego to właśnie one są przyszłością zrównoważonej energetyki.

CSI S.A Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210 Komputer PICO-EHL4-SEMI z oszczędnymi procesorami Intel® Celeron® J6412 oraz N6210

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel®...

Firma CSI S.A. poszerza ofertę komputerów Mini PC o nowy produkt z serii PICO-SEMI od AAEON. Komputer PICO-EHL4-SEMI jest dostępny w dwóch wersjach procesorowych: Intel® Celeron® J6412 o mocy 10 W i Intel® Celeron® N6210 o mocy 6,5 W.

Ewimar Sp. z o.o. Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Nowe ograniczniki przepięć do systemów automatyki i nie tylko Nowe ograniczniki przepięć do systemów automatyki i nie tylko

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Już wkrótce gama produktów z firmy Ewimar, zostanie wzbogacona o nowe produkty ochrony przeciwprzepięciowej, dedykowane do linii zasilających, linii pomiarowych oraz transmisyjnych.

Pewny Lokal Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków? Świadectwa energetyczne a nowoczesne instalacje elektryczne – jak innowacje technologiczne przekładają się na klasę energetyczną budynków?

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych...

Nowoczesne technologie doprowadziły do wyraźnej transformacji sektora budownictwa, szczególnie w kwestii poprawy efektywności energetycznej. W dobie rosnącej świadomości ekologicznej i zmian klimatycznych optymalizacja zużycia energii staje się priorytetem. Jednym z ważniejszych kroków prowadzących do obniżenia klasy energetycznej budynków jest wprowadzenie świadectwa energetycznego i nowoczesnych instalacji elektrycznych.

Fronius Polska Sp. z o.o. Fronius GEN24

Fronius GEN24 Fronius GEN24

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius...

Fronius zapewnia optymalne bezpieczeństwo i wysoki stopień zużycia energii na potrzeby własne w produkcji energii słonecznej – wszystko dzięki wysokiej jakości falownikom, do których dołącza teraz Fronius GEN24.

Dominik Mamcarz, Ekspert ds. Techniczno-Rozwojowych w Alseva EPC CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych CABLE POOLING: optymalne wykorzystanie zasobów elektrycznych

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem...

Odnawialne źródła energii (OZE) odgrywają kluczową rolę w globalnych wysiłkach na rzecz zrównoważonego rozwoju i redukcji emisji gazów cieplarnianych. Jednym z wyzwań związanych z efektywnym wykorzystaniem energii ze źródeł odnawialnych jest gromadzenie i przesyłanie wyprodukowanej energii elektrycznej. W tym kontekście technologia cable pooling zyskuje na znaczeniu, umożliwiając zoptymalizowane zarządzanie przesyłem energii elektrycznej ze źródeł OZE.

leroymerlin.pl Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED Barwa światła, moc, rodzaj trzonka. Sprawdź, czym kierować się przy zakupie żarówek LED

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz,...

Oświetlenie LED cieszy się ogromną popularnością i nie ma w tym nic dziwnego, jeśli weźmie się pod lupę wszystkie jego zalety. Żarówki LED są wykorzystywane zarówno w warunkach domowych, jak i na zewnątrz, mają różne rozmiary, dzięki czemu można je dopasować do praktycznie każdego rodzaju lamp, są energooszczędne, a to tylko kilka z wielu ich zalet. Na co zwracać uwagę przy zakupie tego rodzaju żarówek i jak dopasować ich parametry do swoich potrzeb?

Bankier.pl Które produkty bankowe przydają się podczas remontu?

Które produkty bankowe przydają się podczas remontu? Które produkty bankowe przydają się podczas remontu?

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić...

Przeprowadzenie remontu to drogie i wymagające zadanie. Niemalże wszystkie wykonywane prace zmuszają zainteresowanych do podejmowania poważnych i przemyślanych decyzji finansowych. Mogą to jednak ułatwić niektóre produkty bankowe. O których z nich mowa? Tego lepiej dowiedzieć się jeszcze przed rozpoczęciem prac budowalnych.

NNV Sp z o.o. Czy fotowoltaika podnosi wartość nieruchomości?

Czy fotowoltaika podnosi wartość nieruchomości? Czy fotowoltaika podnosi wartość nieruchomości?

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest...

Panele fotowoltaiczne są coraz bardziej popularne. W dobie rosnących cen energii wiele osób ceni sobie niezależność od zewnętrznych dostawców prądu, oszczędność, jaką daje fotowoltaika oraz to, że jest to ekologiczne źródło energii. Montaż paneli fotowoltaicznych na działce lub dachu domu ma jeszcze jedną zaletę – w przypadku sprzedaży nieruchomości podnosi jej wartość.

APATOR SA Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia Apator uruchomił kolejny magazyn energii w sieci niskiego napięcia

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego...

Apator SA we współpracy z TAURON Dystrybucja SA uruchomił magazyn energii służący do stabilizacji parametrów pracy sieci dystrybucyjnej niskiego napięcia. To kolejny projekt realizowany przez toruńskiego producenta dla krajowych Operatorów Sieci Dystrybucji, którzy poszukują skutecznych rozwiązań technicznych do bilansowania sieci oraz redukcji nadmiernych obciążeń w szczytach produkcji energii z odnawialnych źródeł.

Brother Polska Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Drukarki etykiet dla elektryków i elektroinstalatorów Brother Drukarki etykiet dla elektryków i elektroinstalatorów Brother

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch...

Najnowsze przemysłowe drukarki etykiet stworzone zostały z myślą o profesjonalistach, dla których ważna jest jakość, niezawodność oraz trwałość tworzonych oznaczeń. P‑touch E100VP, P-touch E300VP i P-touch E550WVP to przenośne i szybkie urządzenia, które oferują specjalne funkcje do druku najpopularniejszych typów etykiet. Urządzenia pozwalają na szybkie i bezproblemowe drukowanie oznaczeń kabli, przewodów, gniazdek elektrycznych, przełączników oraz paneli krosowniczych.

PHOENIX CONTACT Sp.z o.o. Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact Bezpieczeństwo Twojej inwestycji w PV to również certyfikowane ograniczniki przepięć Phoenix Contact

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych....

Jak wykazano w różnych testach, nie tylko na uczelniach technicznych w Polsce, duży procent ograniczników przepięć (SPD) dostępnych na rynku nie spełnia parametrów deklarowanych w kartach katalogowych. Dodatkowo w różnych materiałach marketingowych również można znaleźć nie zawsze pełne informacje na temat wymagań stawianych SPD, co nie pomaga w właściwym doborze odpowiedniego modelu do aplikacji. W tym artykule postaramy się przybliżyć najważniejsze zagadnienia, które pozwolą dobrać bezpieczne ograniczniki...

Finder Polska Sp. z o.o. Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej Automatyka budynkowa – jak żyć wygodniej, lepiej i oszczędniej

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni...

Inteligentny dom często mylony jest z budynkiem pasywnym. Należy jednak pamiętać, że nie można tych dwóch pojęć stosować zamiennie. Samo zastosowanie smart home i innych komponentów automatyki nie czyni z tradycyjnego domu budynku pasywnego. Niewątpliwie jednak należy pamiętać, że elementy automatyki budynkowej są składową pasywnych budowli i nawet zwykłe mieszkanie potrafią uczynić bardziej oszczędnym i ekologicznym.

F&F Pabianice MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania MeternetPRO – system zdalnego odczytu, rejestracji danych oraz sterowania i powiadamiania

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa...

Wiele ostatnio mówi się o poprawie efektywności energetycznej oraz energii odnawialnej w kontekście redukcji gazów cieplarnianych i rosnących kosztów energii. W silnie konkurencyjnym otoczeniu przedsiębiorstwa wykazują dużą determinację do zmian prowadzących do optymalizacji kosztów, co zapewnić ma im zachowanie przewagi konkurencyjnej, wynikającej np. z przyjętej strategii przewagi kosztowej.

PHOENIX CONTACT Sp.z o.o. Modularny system drukujący – Thermomark E series

Modularny system drukujący – Thermomark E series Modularny system drukujący – Thermomark E series

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym...

System drukujący Thermomark E to całkowita nowość na rynku oznaczania. Jest to modułowy system do automatyzacji produkcji oznaczników łączący ze sobą etap drukowania i montażu różnych materiałów w jednym cyklu roboczym. Rozwiązanie to umożliwia proste i bardzo wydajne oznaczanie przemysłowe, dzięki czemu efektywność naszej produkcji może wzrosnąć diametralnie.

Grupa Pracuj S.A. W jakich zawodach niezwykle ważna jest odporność na stres?

W jakich zawodach niezwykle ważna jest odporność na stres? W jakich zawodach niezwykle ważna jest odporność na stres?

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest...

Stres to jedna z rzeczy, z którą mierzymy się wszyscy, niemal każdego dnia. W domu, w pracy, niekiedy podczas podróży. Istnieje wiele zawodów, związanych z wysokim poziomem stresu. Bardzo istotna jest wtedy odporność psychiczna osoby zatrudnionej na danym stanowisku. To cecha, jaką doceni wielu pracodawców. Dowiedzmy się więc, w jakich kategoriach zawodowych jest ona szczególnie istotna i jak może wpłynąć na Twoją karierę!

BayWa r.e. Solar Systems SMA – pełne portfolio dla rynku PV

SMA – pełne portfolio dla rynku PV SMA – pełne portfolio dla rynku PV

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

Firma SMA istnieje na rynku już od 40 lat. W ofercie producenta znajdują się falowniki do zastosowań domowych, biznesowych, komercyjnych, a także do dużych projektów.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.