Pełny numer elektro.info 7-8/2017 tylko dla Ciebie [PDF]

wystarczy założyć konto w portalu elektro.info.pl

Zastosowanie ogniw słonecznych w autonomicznych systemach zasilania

Przykładowa instalacja autonomicznie zasilana energią słoneczną stacji użytkowników Veturilo – Warszawskiego Roweru Publicznego przy pl. Konstytucji.
Przykładowa instalacja autonomicznie zasilana energią słoneczną stacji użytkowników Veturilo – Warszawskiego Roweru Publicznego przy pl. Konstytucji.
fot. G. Mazurek

Ogniwa i moduły fotowoltaiczne (PV) są jednymi z najczęściej stosowanych generatorów energii odnawialnej. Umożliwiają one bezpośrednią konwersję promieniowania słonecznego na energię elektryczną.

W odróżnieniu od innych źródeł „czystej” energii najprostsze instalacje PV nie zawierają elementów ruchomych i cechują się prostą konstrukcją mechaniczną. Dzięki temu znajdują one liczne zastosowania przy zasilaniu małych, energooszczędnych urządzeń elektrycznych i elektronicznych. Instalacje PV stosuje się głównie w lokalizacjach, gdzie nie jest możliwe przyłączenie do sieci energetycznej lub koszt takiego przyłączenia okazuje się zbyt wysoki.

Najprostszymi instalacjami PV są systemy autonomiczne [6] (znane również jako: samodzielne, wyspowe, wolnostojące, ang. off-grid, stand-alone). Na rys. 1. pokazano przykładowy schemat takiego systemu.

Rys. 1. Schemat blokowy autonomicznego systemu fotowoltaicznego
Rys. 1. Schemat blokowy autonomicznego systemu fotowoltaicznego; rys. G. Mazurek

Moduł PV (lub grupa kilku połączonych modułów) jest jedynym źródłem energii, ponieważ system nie jest dołączony do sieci energetycznej.

Energia wytworzona w module PV jest przesyłana do obciążenia oraz do akumulatora, poprzez odpowiedni kontroler ładowania. Dzięki temu możliwe jest dostarczenie zasilania również w nocy i w okresach bez aktywności słonecznej, z nadwyżki energii zgromadzonej wcześniej w akumulatorze.

Jeżeli dołączone są tylko obciążenia zasilane niskim napięciem stałym (np. 12 V lub 24 V), to w systemie nie występuje falownik ani przetwornica DC/DC.

Fot. 1-2. Przykładowe instalacje autonomiczne zasilane energią słoneczną; fot. G. Mazurek

Autonomiczne systemy PV znajdują zastosowania [5] m.in.:

  • w sektorze telekomunikacyjnym (np. do zasilania stacji bazowych, aparatów telefonicznych na obszarach pustynnych),
  • w budynkach oddalonych od skupisk ludzkich (np. schroniska górskie, domki letniskowe),
  • a także do zasilania parkometrów, znaków drogowych, tablic informacyjnych, świateł nawigacyjnych, oświetlenia przystanków komunikacji miejskiej.

Znane są także zastosowania przy uzdatnianiu wody i nawadnianiu, a także w zasilaniu chłodni medycznych oraz ochronie katodowej. Przykłady autonomicznych systemów PV pokazano na fot. 1. i fot. 2.

Dobór elementów autonomicznej instalacji PV

Podstawowe elementy autonomicznej instalacji PV, jak pokazano na rys. 1. , to:

  • moduł PV (lub grupa modułów),
  • akumulator
  • i kontroler ładowania.

W praktyce najczęściej stosowane są moduły PV wykonane w technologii krzemu krystalicznego [5]. Napięcie nominalne modułów jest dobrane w ten sposób, aby umożliwić efektywne ładowanie typowych akumulatorów (12 V lub 24 V) i wynosi ono ok. 16 V lub 35 V, w zależności od wykonania modułu.

Moce nominalne dostępnych na rynku modułów PV rozciągają się od 5 Wp do 230 Wp [5]. W przypadku potrzeby uzyskania większej mocy generatora PV należy zastosować grupę (panel) kilku połączonych ze sobą modułów.

Do utrzymania dostępności zasilania również w chwilach braku aktywności słonecznej w systemach PV stosuje się akumulatory elektrochemiczne, zazwyczaj kwasowo-ołowiowe [5].

Akumulator pracujący w takim systemie powinien być dostosowany do częstych i głębokich cykli ładowania i rozładowania, z możliwością występowania stanów całkowitego rozładowania. Dlatego też zaleca się stosowanie specjalnych akumulatorów przeznaczonych dla instalacji PV (np. z elektrodami rurowymi [5]), tolerujących dużą liczbę cykli ładowania, a co za tym idzie – gwarantujących większą trwałość i niezawodność.

Pojemność akumulatora musi być tak dobrana, aby zapewnić wymagany czas autonomii, tzn. podtrzymania zasilania przy braku energii z modułów PV.

Dla zastosowań niekrytycznych oraz instalacji w miejscach o wysokim nasłonecznieniu zaleca się 5–7 dni autonomii, a w pozostałych przypadkach: 7–14 dni [4].

Sposób wyznaczania wymaganej pojemności akumulatorów można znaleźć w literaturze [6].

Kontroler (regulator) ładowania jest odpowiedzialny za utrzymywanie w pełni naładowanego akumulatora, a także za zapobieganie jego przeładowaniu i nadmiernemu rozładowaniu.

Regulator musi być dobrany stosownie do natężenia prądu dostarczanego przez moduły PV i pobieranego przez obciążenie. Dostępne są kontrolery przystosowane do prądów roboczych od 5 do 40 A [5].

Istotnym czynnikiem jest również pobór prądu zasilania przez sam kontroler, który powinien być jak najniższy ze względu na wnoszone straty energii. Typowo pobór prądu kontrolera nie przekracza wartości 4 mA lub 14 mA [5], w zależności od modelu i dopuszczalnego natężenia prądu roboczego.

Głównym problemem systemów zasilanych energią słoneczną jest sezonowa oraz krótkoterminowa zmienność warunków nasłonecznienia.

Poziom nasłonecznienia zależy głównie od położenia geograficznego oraz warunków klimatycznych w miejscu instalacji.

Przykładowo, według danych z systemu PVGIS [3] dla lokalizacji w Warszawie średnie dzienne sumy nasłonecznienia płaszczyzny poziomej mogą się wahać od 0,6 kWh/m2 w styczniu do 5,6 kWh/m2 w czerwcu.

Około 80% całkowitego rocznego nasłonecznienia przypada w Polsce na sezon wiosenno-letni, tzn. pięć miesięcy liczonych od kwietnia do końca września [5], [10]. W związku z tym, aby zagwarantować określony poziom dostępności źródła zasilania podczas całego okresu eksploatacji, przy założeniu stałego poziomu poboru energii, moc nominalna zainstalowanych modułów PV powinna być dobrana odpowiednio dla miesiąca o najbardziej niekorzystnym nasłonecznieniu [2], [4].

Minimalną moc modułów PV, które powinny być zainstalowane w autonomicznym systemie zasilania, najprostszym sposobem można wyznaczyć z zależności [2], [6]:

(1)

gdzie:

W – dzienne zapotrzebowanie energetyczne zasilanych urządzeń, w [Wh],
Z1 – efektywny czas nasłonecznienia płaszczyzny poziomej w ciągu dnia, w [h], w którym natężenie promieniowania słonecznego odpowiada warunkom STC (E0 = 1 kW/m2),
Z2 – współczynnik związany z pochyleniem płaszczyzny modułów PV,
Z3 – współczynnik związany z temperaturą modułu,
V – łączny współczynnik sprawności, uwzględniający straty w przewodach, przy ładowaniu akumulatora oraz wynikające z wahań nasłonecznienia i temperatury modułu (w pierwszym przybliżeniu [2] można przyjąć V = 0,76),
PPV – poszukiwana moc nominalna modułów PV.

Współczynnik Z1 jest równy liczbowo średniemu dziennemu napromieniowaniu płaszczyzny poziomej w [kWh/m2] i jest związany z położeniem geograficznym miejsca instalacji i numerem miesiąca w roku. Wartości współczynników Z1, Z2, Z3 dla konkretnego miesiąca i miejsca instalacji należy odczytać z odpowiednich tabel [2], [6].

Przykładowo szacuje się [6], że do zasilania domku letniskowego, wyposażonego wyłącznie w kilka urządzeń małej mocy (6 lamp, lodówka, telewizor, hydrofor), w sezonie letnim każdego dnia wymagana jest energia 516 Wh, natomiast w sezonie zimowym: 248 Wh.

Dla polskich warunków, przy kącie pochylenia modułów b = 45°, w sierpniu można przyjąć [6]: Z1 = 4, Z2 = 1, Z3 = 0,88, natomiast w grudniu: Z1 = 0,48, Z2 = 1,55, Z3 = 0,99 (w tych miesiącach przypadają minimalne wartości nasłonecznienia Z1 odpowiednio dla lata i zimy).

Zgodnie z (1) dla sezonu letniego wymagany będzie moduł PV (lub połączenie kilku modułów) o mocy nominalnej przynajmniej 193 Wp, a w sezonie zimowym: 439 Wp – ze względu na znacznie niższy poziom nasłonecznienia.

Zatem przy założeniu całorocznej eksploatacji należy zastosować moduły PV o łącznej mocy około 500 Wp [6]. W miesiącach letnich instalacja taka będzie przewymiarowana – ilość produkowanej energii może być
ponaddwukrotnie wyższa od przewidywanego zapotrzebowania.

Aby uniknąć efektu przewymiarowania, można zastosować przeciwne kryterium [11], eliminujące nadprodukcję energii.

Maksymalna efektywność systemu będzie osiągnięta, jeżeli moc modułów zostanie dobrana odpowiednio dla miesiąca o najwyższym poziomie nasłonecznienia w rozpatrywanym okresie eksploatacji. Takie podejście daje najlepsze rezultaty, gdy występuje idealna korelacja pomiędzy nasłonecznieniem i zapotrzebowaniem na energię elektryczną [11].

W przypadku zasilania odbiorników o stałym poborze energii ten warunek nigdy nie będzie spełniony. Ponadto w pozostałych miesiącach, cechujących się niższym poziomem nasłonecznienia, będą występować niedobory produkowanej energii, skutkujące przestojami w zasilaniu i obniżonym poziomem dostępności systemu.

Ilość energii wytworzonej w systemie PV łącznie w ciągu miesiąca lub roku można z dość dobrą dokładnością prognozować na podstawie ogólnodostępnych tabel i baz danych ze średnimi wartościami nasłonecznienia, jak pokazano w [9]. Jednak aby oszacować poziom dostępności (niezawodności) autonomicznego systemu zasilania opartego na modułach PV w konkretnym miesiącu, nie wystarczają już długookresowe średnie. W takim przypadku konieczna jest analiza wyników pomiarów zbieranych w krótszych okresach.

Warto przeczytać: Budowa i eksploatacja systemów fotowoltaicznych >>>

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Artykuł pochodzi z: miesięcznika elektro.info 6/2016

Komentarze

(0)

Wybrane dla Ciebie


Jak czyścić i konserwować urządzenia elektryczne pod napięciem?

czyszczenie urządzeń pod napięciem Za pomocą kamery termowizyjnej możliwe jest bezdotykowe sprawdzenie instalacji elektrycznej przy pełnym obciążeniu. Dzięki temu można uniknąć poważnych awarii, nadmiernych strat energii i w najgorszym wypadku (...) czytam dalej »


Nowe wtykowe złącza silnoprądowe przystosowane do podłączania mobilnych zespołów prądotwórczych do rozdzielnic nn»

Systemy fotowoltaiczne. Jak zwiększyć efektywność energetyczną?

Złącza silnoprądowe wtykowe Rola miedzi w energetyce słonecznej
Wykonane z tworzywa sztucznego odpornego na wysokie temperatury z kolorowymi oznaczeniami i znacznikami kodowymi uniemożliwiającymi błędne połączenie(...) czytam dalej » Sektor energii słonecznej umacnia się coraz bardziej. Według Solar Power Europe, w roku 2017 została zainstalowana globalnie większa moc energii fotowoltaicznej niż (...) czytam dalej »

Przeciwpożarowa kontrola instalacji elektrycznej »

Kamera termowizyjna przy badaniu sieci elektrycznej Za pomocą kamery termowizyjnej możliwe jest bezdotykowe sprawdzenie instalacji elektrycznej przy pełnym obciążeniu. Dzięki temu można uniknąć poważnych awarii, nadmiernych strat energii i w najgorszym wypadku (...) czytam dalej »


Miejskie stacje ładowania pojazdów elektrycznych - jakie mogą mieć funkcjonalności»

Licznik zużycia energii elektrycznej - na jakie parametry zwrócić uwagę?

miejska stacja ładowania Liczniki energii elektrycznej
Samochody elektryczne stają się coraz bardziej popularne. Jednak ich żywot jest uzależniony od stacji ładowania. Stacja ładowania to urządzenie elektryczne, które(...) czytam dalej » Rozwój technologii przemysłowych oraz rozwój budownictwa powodują coraz większe zapotrzebowanie na moc (...) czytam dalej »

Rozwój odnawialnych źródeł energii w Polsce »
Magazyny energi w polsce

Aparatura łączeniową i sterownicza dla automatyki przemysłowej, techniki medycznej oraz automatyki budynków... czytam dalej »


Co się stało z tymi kablami?»

Jakie bezpieczniki wybrać do projektu?

Plątanina kabli  jak sobie z nią poradzić Bezpieczniki siba
Wszelkie błędy popełnione na etapie projektowania, wykonawstwa i eksploatacji nawarstwiają się latami, stopniowo pro­wadząc do wydłużenia czasu poświęcanego na administrację systemu, zmniejszając pewność jego działania i tym samym zwiększając koszty ... czytam dalej » "Okazało się, że bezpiecznik przegrzał się, ponieważ zamontowano go w miejscu gdzie nie miał wystarczającego chłodzenia. Byliśmy w stanie znaleźć rozwiązanie tego problemu - także (...) czytam dalej»

Bezpłatne ebooki dla elektryków i nie tylko !
Ebooki dla elektryków i nie tylko

Darmowe ebooki i poradniki: projektowanie, budowa, osprzęt... (...) czytam dalej »


Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników naszego portalu... dowiedz się więcej »
9/2018

AKTUALNY NUMER:

elektro.info 9/2018
W miesięczniku m.in.:
  • - Nowoczesne urządzenia rozdzielcze zwiększające bezpieczeństwo pracy
  • - Projekt zasilania osiedla domków jednorodzinnych w energię elektryczną
Zobacz szczegóły
Jak zwiększyć niezawodność instalacji elektrycznej?

Jak zwiększyć niezawodność instalacji elektrycznej?

Instalacja elektryczna znajduje się w każdym budynku i jest częścią układu niskiego napięcia. Powinna być wykonana z niezwykłą starannością oraz dokładnością. Co...
Essentra Components Essentra Components
Essentra plc jest spółką notowaną w indeksie FTSE 250 i wiodącym międzynarodowym dostawcą specjalistycznych produktów i rozwiązań ....
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl