Pełny numer elektro.info 7-8/2017 tylko dla Ciebie [PDF]

wystarczy założyć konto w portalu elektro.info.pl

Napięcie zaburzeń wspólnych trójfazowych falowników i metody jego ograniczania w napędach z przemiennikami częstotliwości

Rys. 1. Główne obwody prądów upływu doziemnego wywoływanego napięciem zaburzeń wspólnych falowników w lokomotywie zasilanej napięciem stałym 3 kV [6, 8]
Rys. 1. Główne obwody prądów upływu doziemnego wywoływanego napięciem zaburzeń wspólnych falowników w lokomotywie zasilanej napięciem stałym 3 kV [6, 8]

Napięcie zaburzeń wspólnych falownika [1, 2] powoduje powstawanie pasożytniczych prądów upływu doziemnego przeładowującego doziemne pojemności pasożytnicze kabla silnikowego i silnika. Napięcie zaburzeń wspólnych to niepożądany skutek stosowania modulacji szerokościowej MSI impulsów napięcia w falownikach.

Pasożytnicze napięcie zaburzeń wspólnych falownika przyjmuje kształt fali prostokątnej o częstotliwości równej częstotliwości przełączania tranzystorów mocy falownika, dla współczynnika głębokości modulacji MSI wynoszącego zero (modulacja sinusoidalna) [2]. Dlatego w początkowej fazie rozruchu silnika ma ono największą wartość skuteczną, która jest równa połowie napięcia baterii kondensatorów falownika, tj.:

 

 

– gdzie Uff jest napięciem międzyfazowym transformatora zasilającego przemiennik częstotliwości z falownikiem napięciowym.

Przy częstotliwości przełączania tranzystorów IGBT falownika, w napędowym przemienniku częstotliwości z typową wartością bliską 5 kHz, już przy doziemnych pojemnościach pasożytniczych (kabla silnikowego i silnika) rzędu kilkudziesięciu nanofaradów przemienny pasożytniczy prąd doziemny osiąga wartości rzędu pojedynczych amperów.

Prąd ten zwykle nie jest wykrywany przez wyłączniki różnicowoprądowe, które część użytkowników stosuje mając błędne przekonanie, że działają one prawidłowo w środowisku wysokoczęstotliwościowych doziemnych prądów odkształconych [3].

Przy zasilaniu napędów z przemiennikami częstotliwości transformatorami o elektroenergetycznym układzie sieciowym typu TN, wysokoczęstotliwościowe pasożytnicze prądy upływu doziemnego przepływają przez uzwojenia transformatora powodując powstawanie przepięć, tym większych, im mniejsza jest moc pozorna transformatora w stosunku do mocy pozornej przemiennika częstotliwości (np. 2:1).

Ponieważ w układzie sieciowym transformatora typu TN punkt neutralny jego uzwojeń wtórnych jest sztywno uziemiony, dlatego całe napięcie zaburzeń wspólnych falownika odkłada się na pojemnościach doziemnych kabla silnikowego (zwykle ekranowanego z uziemionym ekranem) i silnika.

Przy zasilaniu napędów z przemiennikami częstotliwości transformatorami elektroenergetycznymi o układzie sieciowym typu IT, wysokoczęstotliwościowe prądy upływu doziemnego wypływające z kabla silnikowego i silnika płyną do przemiennika częstotliwości (zawiera on falownik, który jest generatorem napięcia zaburzeń wspólnych) za pośrednictwem doziemnych pojemności pasożytniczych transformatora, gdyż nie występuje tu uziemienie punktu gwiazdowego uzwojeń wtórnych transformatora.

 

Przy zasilaniu przemienników częstotliwości transformatorami o układzie sieciowym IT zwykle nie są uziemione pojemnościowe filtry prądów doziemnych wbudowane do obwodu pośredniego przemiennika częstotliwości, gdyż ich uziemienie uniemożliwia pracę przemiennika częstotliwości przy wystąpieniu pojedynczego zwarcia doziemnego, zarówno po stronie zasilnia, jak i po stronie silnikowej przemiennika [4]. (Filtry te są uziemione przy zasilaniu przemienników częstotliwości z transformatorów o układzie sieciowym TN.)

 

Ze względu na zwykle mniejszą wartość impedancji pasożytniczych pojemności kabla silnikowego i silnika w stosunku do impedancji transformatora zasilającego przemiennik częstotliwości, zachodzi tu dodatkowe zjawisko zmodulowania napięć fazowych transformatora napięciem zaburzeń wspólnych falownika [5].

Zakładając stosunek impedancji pojemności upływu doziemnego ekranowanego kabla silnikowego i silnika (strona obciążenia przemiennika częstotliwości) do impedancji pojemności upływu doziemnego transformatora (strona zasilania przemiennika częstotliwości) jak 10:1, można przyjąć, że w układzie sieciowym transformatora o układzie IT nie płyną prądy doziemne, a całe napięcie zaburzeń wspólnych falownika odkłada się między ziemią i nieuziemionym punktem neutralnym transformatora, powodując wysokoczęstotliwościowe zmodulowanie jego napięć fazowych.

Zmodulowane wysokoczęstotliwościowo napięcia fazowe transformatora wpływają negatywnie na półprzewodniki mocy przemiennika częstotliwości o uziemionych radiatorach (prostownik, falownik) zwiększając ich awaryjność [5].

W ogólnym przypadku napięcia zaburzające występujące w napędach z przemiennikami częstotliwości zawierającymi falownik napięciowy dzielimy na:

  • wysokoczęstotliwościowe napięcia zaburzeń różnicowych (zaburzenia międzyfazowe) (ang. DMV – differential mode voltage),
  • wysokoczęstotliwościowe napięcia zaburzeń wspólnych (zaburzenia doziemne) (ang. CMV – common mode voltage).

Do filtracji tych dwóch napięć zaburzających DMV i CMV stosowane są inne metody ograniczania ich negatywnego odziaływania na transformator i silnik oraz inne rodzaje filtrów biernych LC.

Główne obwody rozpływu prądów upływu doziemnego powodowanego napięciem zaburzeń wspólnych falownika będą dalej omówione na przykładzie wielosystemowej lokomotywy elektrycznej z przemiennikami częstotliwości do napędów obwodów głównych i pomocniczych [6, 7].

Obwody elektryczne przepływu wysoko­częstotliwościowych prądów upływu doziemnego

Analizując konfigurację zasilania falownikiem transformatora izolacyjnego TR2 i zasilanych z niego pomocniczych przemienników częstotliwości umieszczonych w lokomotywie elektrycznej zasilanej z sieci trakcyjnej napięcia stałego 3 kV, co jest przedstawione na rys. 1., można wyróżnić kilka głównych elektrycznych obwodów przepływu prądów pasożytniczych.

Rys. 1. Główne obwody prądów upływu doziemnego wywoływanego napięciem zaburzeń wspólnych falowników w lokomotywie zasilanej napięciem stałym 3 kV [6, 8]

Prądy zaburzeń doziemnych wytwarzane przez falownik zasilający transformator izolacyjny TR2 przepływają przez sieć trakcyjną powrotną (szynową) i sieć trakcyjną zasilającą (przewód trakcyjny) lokomotywy elektrycznej. Prądy te powodują powstawanie wysokoczęstotliwościowych przemiennych prądów błądzących w ziemi otaczającej torowiska [9] oraz są przyczyną zaburzeń elektromagnetycznych w podstacjach trakcyjnych.

Ponieważ z transformatora izolacyjnego TR2 zasilane są pomocnicze przemienniki częstotliwości napędów: pomp, sprężarek i wentylatorów oraz pomocnicze zasilacze typu UPS (oświetlenie), dlatego powstają dodatkowe lokalne obwody przepływu prądów upływu doziemnego (dla uzwojenia wtórnego transformatora TR2 o układzie sieciowym typu TN) lub prądy upływu pojemnościowego płynące wewnątrz lokomotywy (dla uzwojenia wtórnego transformatora TR2 o układzie sieciowym typu IT).

Metody ograniczania prądów upływu pojemnościowego mają na celu wyeliminowanie napięcia zaburzeń wspólnych falownika z kabla silnikowego i silnika lub wytworzenie obwodów przepływu prądów zaburzających pomijających uziemione części układu napędowego, w szczególności instalację ochronną PE i transformator.

W dalszej części artykułu przedstawione są filtry bierne umożliwiające ograniczenie pojemnościowego prądu upływu doziemnego, które można stosować przy zasilaniu przemiennika częstotliwości z transformatora o układzie sieciowym TN i IT.

Czytaj też: Sterowniki PLC i układy sterowania – wprowadzenie >>>

Filtry bierne LC napięcia zaburzeń wspólnych falownika

W literaturze prezentowane są różne rodzaje filtrów biernych dołączanych do wyjść mocy falowników napięciowych [10]. Zwykle instalowane są one jako opcja w pobliżu falownika (między falownikiem i silnikiem).

Producenci przemienników częstotliwości dostarczają głównie filtry sinusoidalne LC, które filtrują napięcie zaburzeń różnicowych z napięć międzyfazowych wytwarzanych w falowniku MSI (modulacja szerokościowa). Rzadziej spotykane są konfiguracje filtra sinusoidalnego tłumiącego dodatkowo napięcie zaburzeń wspólnych falownika.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!


Komentarze

(0)

Wybrane dla Ciebie

 


Oznaczniki kabli i przewodów - jakie wybrać »

Gdzie znajdziesz systemy zasilania dla każdej dziedziny przemysłu »

drukarka etykiet systemy zasilania
Sposoby oznaczania kabli i przewodów w elektrycznych są różne.Jedne mniej trwałe, a inne (...) czytam więcej » Oferują zaawansowane usługi badawczo-rozwojowe obejmujące elektronikę, wbudowane oprogramowanie, mechanikę systemu zasilania (...) czytam dalej »

 


Gdzie znajduje zastosowanie współczesna termowizja?

Kamery termowizyjne Zadbaj o bezpieczeństwo i uniknij awarii. Za pomocą kamery termowizyjnej możliwe jest bezdotykowe sprawdzenie instalacji elektrycznej przy pełnym obciążeniu. Dzięki temu można (...) czytam dalej »

 


Jak odwzorować światło dzienne przy użyciu opraw oświetleniowych »

Bezpanelowe pozyskiwanie energii słonecznej - jak to zrobić?

Ośiwetlenie - jakie wybrać? bezpanelowa energia słoneczna
Rodzaj oświetlenia ma również fundamentalny wpływ na nasz wzrok oraz bezpośrednio wpływa na nasze ciało, umysł i (...) czytam więcej » Innowacje i technologia przeszły długą drogę. Rzeczywiście wkroczyliśmy w nową generację nowoczesnych udogodnień, które nie tylko sprawiają, że nasz styl życia jest bardziej luksusowy i komfortowy, ale... czytam dalej »

Jaką drukarkę do oznaczeń elektrycznych wybrać»

etykietowanie kabli i przewodów Priorytetem przy oznaczaniu sieci i jej poszczególnych elementów czy kolejnych aparatur w szafach rozdzielczych, kilometrów kabli, dziesiątek przełączników czy kolejnych aparatur w szafach rozdzielczych jest ...... czytam dalej »


Automatyka i czujniki - dlaczego to takie ważne »

Poznaj tajemnicę elektryków - złączki bezszynowe »

Czujniki i automatyka złączki bezszynowe
Zarówno w sektorze energetyki tradycyjnej jak i odnawialnej, czujniki oraz automatyka muszą być odporne na oddziaływaniu warunków środowiskowych. Ekstremalne ... czytam więcej » Czy wiesz jak wykonać montaż i jak można łączyć ze sobą złączki bez użycia szyn ... czytam dalej »

Zasilacze a odporność na zwarcia - dlaczego to takie ważne?

Promocje na kamery termowizyjne W sieciach zasilających obiekty przemysłowe i użyteczności publicznej powszechnie stosuje się zasilacze bezprzerwowe UPS w celu ochrony ważnych urządzeń odbiorczych, wrażliwyc ... czytam dalej »


Złącza silnoprądowe - czy silikon sobie poradzi?

Złącza silnopradowe Czy możemy zastosować elastyczne przewody silikonowe i czy są one odporne na uszkodzenie i wysokie temperatury? Przykładowo dla przekroju kabla 240 mm2 ... czytam dalej »


Może Cię to zainteresuje ▼

Wyświetlacz cyfrowy - jaki wybrać?

Kable i przewody - dobierz odpowiednie do swojego projektu »

wyświetlacze cyfrowe kable i przewody - jakie wybrać
Współpracujący z dowolnym nadajnikiem sygnału w standardzie 4-20 mA. Urządzenia nie wymagające dodatkowego zasilania. Do obszaru zastosowań ... czytam więcej » Właściwie wykonana i dostosowana do konkretnych zagrożeń środowiskowych instalacja elektryczna powinna do minimum ograniczać zagrożenia... czytam dalej »


Jak odwzorować światło dzienne przy użyciu opraw oświetleniowych »

Uwaga konkurs! Znasz "elektrycznych" producentów? Zagraj i wygraj atrakcyjne nagrody »

Oświetlenie jakie wybrać aby przypominało światło dzienne Konkurs
Rodzaj oświetlenia ma również fundamentalny wpływ na nasz wzrok oraz bezpośrednio wpływa na nasze ciało, umysł i ... czytam dalej » Weź udział w letnim konkursie i zgarnij nagrody. Co tydzien nowa gra i nowa szansa na wygraną. Sprawdź się i zawalcz o wygraną! chcę zagrać »

Co jeszcze potrafią enkodery Ethernet?

UPS zasilacze Rynek systemów przemysłowych dynamicznie się rozwija, a standard Industrial Ethernet jest przyszłością systemów (...) czytam dalej »


Jak komunikować urządzenia w środowisku przemysłowym?

Urządzenia przeciwprzepięciowe (SPD) - jakie wybrać ?

Switche zarządzalne spd ograniczniki przepięć
Switche niezarządzalne to urządzenia, które mają za zadanie przekazywanie danych między urządzeniami w wymagającym środowisku przemysłowym. Ich zadaniem jest zapewnienie przede wszystkim stabilnej, jak również wydajnej komunikacji.(...) czytam dalej » Ochronniki przepięciowe odpowiednie do zastosowań w instalacjach 230 V lub 400 V, systemy jedno- lub trójfazowe, wymienny moduł warystora i zamknięty moduł iskiernika, wizualna i zdalna sygnalizacja stanu warystora oraz ... czytam dalej »

Dodaj komentarz
Nie jesteś zalogowany - zaloguj się lub załóż konto. Dzięki temu uzysksz możliwość obserwowania swoich komentarzy oraz dostęp do treści i możliwości dostępnych tylko dla zarejestrowanych użytkowników naszego portalu... dowiedz się więcej »
6/2019

AKTUALNY NUMER:

elektro.info 6/2019
W miesięczniku m.in.:
  • - Wpływ stacji szybkiego ładowania pojazdów elektrycznych na sieć elektroenergetyczną
  • - Projekt zasilania oświetlenia terenu bazy logistycznej
Zobacz szczegóły
Cantoni Motor S.A. Cantoni Motor S.A.
Grupa Cantoni została pionierem w produkcji silników elektrycznych już w XIX wieku i od tego czasu kontynuuje misję wdrażania...
Dom Wydawniczy MEDIUM Rzetelna Firma
Copyright @ 2004-2012 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
realizacja i CMS: omnia.pl