przebieg prądu zwarciowego
Najprostsze, dobrze ilustrujące przebieg prądu zwarciowego, jest zwarcie trójfazowe symetryczne (rys. 2.). Dla tego typu zwarcia, przebiegi napięć i prądów okresowych w poszczególnych fazach są przesunięte względem siebie o kąt fazowy 2P/3, składowe nieokresowe są różne, a suma ich wartości chwilowych jest równa zero. Z podanych powodów, trójfazowy układ zwarciowy pokazany na rysunku 2a można zastąpić układem jednofazowym przedstawionym na rysunku 2b.
Przyjmując, że napięcie zasilające w chwili wystąpienia zwarcia ma wartość chwilową opisaną wzorem:
(1)
przebieg czasowy prądu zwarciowego i (t) w obwodzie pokazanym na rysunku 2b wyraża równanie:
(2)
w którym:
(3)
Z równania (2) wynika, że prąd zwarciowy zawiera dwie składowe. Składową okresową iok o pulsacji w sieci zasilającej oraz zanikającą, według funkcji wykładniczej, składową nieokresową inok (rys. 3.). Z równania (2) wynika również, że składowa okresowa (iok) i nieokresowa (inok) zależą od parametrów Rk, Lk obwodu zwarciowego, kąta fazowego φ napięcia w chwili zwarcia oraz kąta przesunięcia fazowego j. W przeważającej liczbie przypadków obwodach nn – RK >> XK. Oznacza to, że wartość maksymalna składowej nieokresowej, równa składowej okresowej, ale o przeciwnym znaku, wystąpi przy zerowej wartości chwilowej napięcia w chwili zwarcia, tj. przy kącie ψ=0 lub Π.
Maksymalna wartość chwilowa prądu zwarciowego, prąd udarowy – ip, wystąpi po czasie 10 ms od chwili powstania zwarcia.